init.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717
  1. /*
  2. * Initialize MMU support.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/init.h>
  9. #include <linux/bootmem.h>
  10. #include <linux/efi.h>
  11. #include <linux/elf.h>
  12. #include <linux/memblock.h>
  13. #include <linux/mm.h>
  14. #include <linux/mmzone.h>
  15. #include <linux/module.h>
  16. #include <linux/personality.h>
  17. #include <linux/reboot.h>
  18. #include <linux/slab.h>
  19. #include <linux/swap.h>
  20. #include <linux/proc_fs.h>
  21. #include <linux/bitops.h>
  22. #include <linux/kexec.h>
  23. #include <asm/dma.h>
  24. #include <asm/io.h>
  25. #include <asm/machvec.h>
  26. #include <asm/numa.h>
  27. #include <asm/patch.h>
  28. #include <asm/pgalloc.h>
  29. #include <asm/sal.h>
  30. #include <asm/sections.h>
  31. #include <asm/tlb.h>
  32. #include <asm/uaccess.h>
  33. #include <asm/unistd.h>
  34. #include <asm/mca.h>
  35. #include <asm/paravirt.h>
  36. extern void ia64_tlb_init (void);
  37. unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
  38. #ifdef CONFIG_VIRTUAL_MEM_MAP
  39. unsigned long VMALLOC_END = VMALLOC_END_INIT;
  40. EXPORT_SYMBOL(VMALLOC_END);
  41. struct page *vmem_map;
  42. EXPORT_SYMBOL(vmem_map);
  43. #endif
  44. struct page *zero_page_memmap_ptr; /* map entry for zero page */
  45. EXPORT_SYMBOL(zero_page_memmap_ptr);
  46. void
  47. __ia64_sync_icache_dcache (pte_t pte)
  48. {
  49. unsigned long addr;
  50. struct page *page;
  51. page = pte_page(pte);
  52. addr = (unsigned long) page_address(page);
  53. if (test_bit(PG_arch_1, &page->flags))
  54. return; /* i-cache is already coherent with d-cache */
  55. flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
  56. set_bit(PG_arch_1, &page->flags); /* mark page as clean */
  57. }
  58. /*
  59. * Since DMA is i-cache coherent, any (complete) pages that were written via
  60. * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
  61. * flush them when they get mapped into an executable vm-area.
  62. */
  63. void
  64. dma_mark_clean(void *addr, size_t size)
  65. {
  66. unsigned long pg_addr, end;
  67. pg_addr = PAGE_ALIGN((unsigned long) addr);
  68. end = (unsigned long) addr + size;
  69. while (pg_addr + PAGE_SIZE <= end) {
  70. struct page *page = virt_to_page(pg_addr);
  71. set_bit(PG_arch_1, &page->flags);
  72. pg_addr += PAGE_SIZE;
  73. }
  74. }
  75. inline void
  76. ia64_set_rbs_bot (void)
  77. {
  78. unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
  79. if (stack_size > MAX_USER_STACK_SIZE)
  80. stack_size = MAX_USER_STACK_SIZE;
  81. current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
  82. }
  83. /*
  84. * This performs some platform-dependent address space initialization.
  85. * On IA-64, we want to setup the VM area for the register backing
  86. * store (which grows upwards) and install the gateway page which is
  87. * used for signal trampolines, etc.
  88. */
  89. void
  90. ia64_init_addr_space (void)
  91. {
  92. struct vm_area_struct *vma;
  93. ia64_set_rbs_bot();
  94. /*
  95. * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
  96. * the problem. When the process attempts to write to the register backing store
  97. * for the first time, it will get a SEGFAULT in this case.
  98. */
  99. vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  100. if (vma) {
  101. INIT_LIST_HEAD(&vma->anon_vma_chain);
  102. vma->vm_mm = current->mm;
  103. vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
  104. vma->vm_end = vma->vm_start + PAGE_SIZE;
  105. vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
  106. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  107. down_write(&current->mm->mmap_sem);
  108. if (insert_vm_struct(current->mm, vma)) {
  109. up_write(&current->mm->mmap_sem);
  110. kmem_cache_free(vm_area_cachep, vma);
  111. return;
  112. }
  113. up_write(&current->mm->mmap_sem);
  114. }
  115. /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
  116. if (!(current->personality & MMAP_PAGE_ZERO)) {
  117. vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  118. if (vma) {
  119. INIT_LIST_HEAD(&vma->anon_vma_chain);
  120. vma->vm_mm = current->mm;
  121. vma->vm_end = PAGE_SIZE;
  122. vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
  123. vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
  124. down_write(&current->mm->mmap_sem);
  125. if (insert_vm_struct(current->mm, vma)) {
  126. up_write(&current->mm->mmap_sem);
  127. kmem_cache_free(vm_area_cachep, vma);
  128. return;
  129. }
  130. up_write(&current->mm->mmap_sem);
  131. }
  132. }
  133. }
  134. void
  135. free_initmem (void)
  136. {
  137. unsigned long addr, eaddr;
  138. addr = (unsigned long) ia64_imva(__init_begin);
  139. eaddr = (unsigned long) ia64_imva(__init_end);
  140. while (addr < eaddr) {
  141. ClearPageReserved(virt_to_page(addr));
  142. init_page_count(virt_to_page(addr));
  143. free_page(addr);
  144. ++totalram_pages;
  145. addr += PAGE_SIZE;
  146. }
  147. printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
  148. (__init_end - __init_begin) >> 10);
  149. }
  150. void __init
  151. free_initrd_mem (unsigned long start, unsigned long end)
  152. {
  153. struct page *page;
  154. /*
  155. * EFI uses 4KB pages while the kernel can use 4KB or bigger.
  156. * Thus EFI and the kernel may have different page sizes. It is
  157. * therefore possible to have the initrd share the same page as
  158. * the end of the kernel (given current setup).
  159. *
  160. * To avoid freeing/using the wrong page (kernel sized) we:
  161. * - align up the beginning of initrd
  162. * - align down the end of initrd
  163. *
  164. * | |
  165. * |=============| a000
  166. * | |
  167. * | |
  168. * | | 9000
  169. * |/////////////|
  170. * |/////////////|
  171. * |=============| 8000
  172. * |///INITRD////|
  173. * |/////////////|
  174. * |/////////////| 7000
  175. * | |
  176. * |KKKKKKKKKKKKK|
  177. * |=============| 6000
  178. * |KKKKKKKKKKKKK|
  179. * |KKKKKKKKKKKKK|
  180. * K=kernel using 8KB pages
  181. *
  182. * In this example, we must free page 8000 ONLY. So we must align up
  183. * initrd_start and keep initrd_end as is.
  184. */
  185. start = PAGE_ALIGN(start);
  186. end = end & PAGE_MASK;
  187. if (start < end)
  188. printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
  189. for (; start < end; start += PAGE_SIZE) {
  190. if (!virt_addr_valid(start))
  191. continue;
  192. page = virt_to_page(start);
  193. ClearPageReserved(page);
  194. init_page_count(page);
  195. free_page(start);
  196. ++totalram_pages;
  197. }
  198. }
  199. /*
  200. * This installs a clean page in the kernel's page table.
  201. */
  202. static struct page * __init
  203. put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
  204. {
  205. pgd_t *pgd;
  206. pud_t *pud;
  207. pmd_t *pmd;
  208. pte_t *pte;
  209. if (!PageReserved(page))
  210. printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
  211. page_address(page));
  212. pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
  213. {
  214. pud = pud_alloc(&init_mm, pgd, address);
  215. if (!pud)
  216. goto out;
  217. pmd = pmd_alloc(&init_mm, pud, address);
  218. if (!pmd)
  219. goto out;
  220. pte = pte_alloc_kernel(pmd, address);
  221. if (!pte)
  222. goto out;
  223. if (!pte_none(*pte))
  224. goto out;
  225. set_pte(pte, mk_pte(page, pgprot));
  226. }
  227. out:
  228. /* no need for flush_tlb */
  229. return page;
  230. }
  231. static void __init
  232. setup_gate (void)
  233. {
  234. void *gate_section;
  235. struct page *page;
  236. /*
  237. * Map the gate page twice: once read-only to export the ELF
  238. * headers etc. and once execute-only page to enable
  239. * privilege-promotion via "epc":
  240. */
  241. gate_section = paravirt_get_gate_section();
  242. page = virt_to_page(ia64_imva(gate_section));
  243. put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
  244. #ifdef HAVE_BUGGY_SEGREL
  245. page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
  246. put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
  247. #else
  248. put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
  249. /* Fill in the holes (if any) with read-only zero pages: */
  250. {
  251. unsigned long addr;
  252. for (addr = GATE_ADDR + PAGE_SIZE;
  253. addr < GATE_ADDR + PERCPU_PAGE_SIZE;
  254. addr += PAGE_SIZE)
  255. {
  256. put_kernel_page(ZERO_PAGE(0), addr,
  257. PAGE_READONLY);
  258. put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
  259. PAGE_READONLY);
  260. }
  261. }
  262. #endif
  263. ia64_patch_gate();
  264. }
  265. void __devinit
  266. ia64_mmu_init (void *my_cpu_data)
  267. {
  268. unsigned long pta, impl_va_bits;
  269. extern void __devinit tlb_init (void);
  270. #ifdef CONFIG_DISABLE_VHPT
  271. # define VHPT_ENABLE_BIT 0
  272. #else
  273. # define VHPT_ENABLE_BIT 1
  274. #endif
  275. /*
  276. * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
  277. * address space. The IA-64 architecture guarantees that at least 50 bits of
  278. * virtual address space are implemented but if we pick a large enough page size
  279. * (e.g., 64KB), the mapped address space is big enough that it will overlap with
  280. * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
  281. * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
  282. * problem in practice. Alternatively, we could truncate the top of the mapped
  283. * address space to not permit mappings that would overlap with the VMLPT.
  284. * --davidm 00/12/06
  285. */
  286. # define pte_bits 3
  287. # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
  288. /*
  289. * The virtual page table has to cover the entire implemented address space within
  290. * a region even though not all of this space may be mappable. The reason for
  291. * this is that the Access bit and Dirty bit fault handlers perform
  292. * non-speculative accesses to the virtual page table, so the address range of the
  293. * virtual page table itself needs to be covered by virtual page table.
  294. */
  295. # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
  296. # define POW2(n) (1ULL << (n))
  297. impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
  298. if (impl_va_bits < 51 || impl_va_bits > 61)
  299. panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
  300. /*
  301. * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
  302. * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
  303. * the test makes sure that our mapped space doesn't overlap the
  304. * unimplemented hole in the middle of the region.
  305. */
  306. if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
  307. (mapped_space_bits > impl_va_bits - 1))
  308. panic("Cannot build a big enough virtual-linear page table"
  309. " to cover mapped address space.\n"
  310. " Try using a smaller page size.\n");
  311. /* place the VMLPT at the end of each page-table mapped region: */
  312. pta = POW2(61) - POW2(vmlpt_bits);
  313. /*
  314. * Set the (virtually mapped linear) page table address. Bit
  315. * 8 selects between the short and long format, bits 2-7 the
  316. * size of the table, and bit 0 whether the VHPT walker is
  317. * enabled.
  318. */
  319. ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
  320. ia64_tlb_init();
  321. #ifdef CONFIG_HUGETLB_PAGE
  322. ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
  323. ia64_srlz_d();
  324. #endif
  325. }
  326. #ifdef CONFIG_VIRTUAL_MEM_MAP
  327. int vmemmap_find_next_valid_pfn(int node, int i)
  328. {
  329. unsigned long end_address, hole_next_pfn;
  330. unsigned long stop_address;
  331. pg_data_t *pgdat = NODE_DATA(node);
  332. end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
  333. end_address = PAGE_ALIGN(end_address);
  334. stop_address = (unsigned long) &vmem_map[
  335. pgdat->node_start_pfn + pgdat->node_spanned_pages];
  336. do {
  337. pgd_t *pgd;
  338. pud_t *pud;
  339. pmd_t *pmd;
  340. pte_t *pte;
  341. pgd = pgd_offset_k(end_address);
  342. if (pgd_none(*pgd)) {
  343. end_address += PGDIR_SIZE;
  344. continue;
  345. }
  346. pud = pud_offset(pgd, end_address);
  347. if (pud_none(*pud)) {
  348. end_address += PUD_SIZE;
  349. continue;
  350. }
  351. pmd = pmd_offset(pud, end_address);
  352. if (pmd_none(*pmd)) {
  353. end_address += PMD_SIZE;
  354. continue;
  355. }
  356. pte = pte_offset_kernel(pmd, end_address);
  357. retry_pte:
  358. if (pte_none(*pte)) {
  359. end_address += PAGE_SIZE;
  360. pte++;
  361. if ((end_address < stop_address) &&
  362. (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
  363. goto retry_pte;
  364. continue;
  365. }
  366. /* Found next valid vmem_map page */
  367. break;
  368. } while (end_address < stop_address);
  369. end_address = min(end_address, stop_address);
  370. end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
  371. hole_next_pfn = end_address / sizeof(struct page);
  372. return hole_next_pfn - pgdat->node_start_pfn;
  373. }
  374. int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
  375. {
  376. unsigned long address, start_page, end_page;
  377. struct page *map_start, *map_end;
  378. int node;
  379. pgd_t *pgd;
  380. pud_t *pud;
  381. pmd_t *pmd;
  382. pte_t *pte;
  383. map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
  384. map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
  385. start_page = (unsigned long) map_start & PAGE_MASK;
  386. end_page = PAGE_ALIGN((unsigned long) map_end);
  387. node = paddr_to_nid(__pa(start));
  388. for (address = start_page; address < end_page; address += PAGE_SIZE) {
  389. pgd = pgd_offset_k(address);
  390. if (pgd_none(*pgd))
  391. pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
  392. pud = pud_offset(pgd, address);
  393. if (pud_none(*pud))
  394. pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
  395. pmd = pmd_offset(pud, address);
  396. if (pmd_none(*pmd))
  397. pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
  398. pte = pte_offset_kernel(pmd, address);
  399. if (pte_none(*pte))
  400. set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
  401. PAGE_KERNEL));
  402. }
  403. return 0;
  404. }
  405. struct memmap_init_callback_data {
  406. struct page *start;
  407. struct page *end;
  408. int nid;
  409. unsigned long zone;
  410. };
  411. static int __meminit
  412. virtual_memmap_init(u64 start, u64 end, void *arg)
  413. {
  414. struct memmap_init_callback_data *args;
  415. struct page *map_start, *map_end;
  416. args = (struct memmap_init_callback_data *) arg;
  417. map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
  418. map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
  419. if (map_start < args->start)
  420. map_start = args->start;
  421. if (map_end > args->end)
  422. map_end = args->end;
  423. /*
  424. * We have to initialize "out of bounds" struct page elements that fit completely
  425. * on the same pages that were allocated for the "in bounds" elements because they
  426. * may be referenced later (and found to be "reserved").
  427. */
  428. map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
  429. map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
  430. / sizeof(struct page));
  431. if (map_start < map_end)
  432. memmap_init_zone((unsigned long)(map_end - map_start),
  433. args->nid, args->zone, page_to_pfn(map_start),
  434. MEMMAP_EARLY);
  435. return 0;
  436. }
  437. void __meminit
  438. memmap_init (unsigned long size, int nid, unsigned long zone,
  439. unsigned long start_pfn)
  440. {
  441. if (!vmem_map)
  442. memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
  443. else {
  444. struct page *start;
  445. struct memmap_init_callback_data args;
  446. start = pfn_to_page(start_pfn);
  447. args.start = start;
  448. args.end = start + size;
  449. args.nid = nid;
  450. args.zone = zone;
  451. efi_memmap_walk(virtual_memmap_init, &args);
  452. }
  453. }
  454. int
  455. ia64_pfn_valid (unsigned long pfn)
  456. {
  457. char byte;
  458. struct page *pg = pfn_to_page(pfn);
  459. return (__get_user(byte, (char __user *) pg) == 0)
  460. && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
  461. || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
  462. }
  463. EXPORT_SYMBOL(ia64_pfn_valid);
  464. int __init find_largest_hole(u64 start, u64 end, void *arg)
  465. {
  466. u64 *max_gap = arg;
  467. static u64 last_end = PAGE_OFFSET;
  468. /* NOTE: this algorithm assumes efi memmap table is ordered */
  469. if (*max_gap < (start - last_end))
  470. *max_gap = start - last_end;
  471. last_end = end;
  472. return 0;
  473. }
  474. #endif /* CONFIG_VIRTUAL_MEM_MAP */
  475. int __init register_active_ranges(u64 start, u64 len, int nid)
  476. {
  477. u64 end = start + len;
  478. #ifdef CONFIG_KEXEC
  479. if (start > crashk_res.start && start < crashk_res.end)
  480. start = crashk_res.end;
  481. if (end > crashk_res.start && end < crashk_res.end)
  482. end = crashk_res.start;
  483. #endif
  484. if (start < end)
  485. memblock_add_node(__pa(start), end - start, nid);
  486. return 0;
  487. }
  488. static int __init
  489. count_reserved_pages(u64 start, u64 end, void *arg)
  490. {
  491. unsigned long num_reserved = 0;
  492. unsigned long *count = arg;
  493. for (; start < end; start += PAGE_SIZE)
  494. if (PageReserved(virt_to_page(start)))
  495. ++num_reserved;
  496. *count += num_reserved;
  497. return 0;
  498. }
  499. int
  500. find_max_min_low_pfn (u64 start, u64 end, void *arg)
  501. {
  502. unsigned long pfn_start, pfn_end;
  503. #ifdef CONFIG_FLATMEM
  504. pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
  505. pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
  506. #else
  507. pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
  508. pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
  509. #endif
  510. min_low_pfn = min(min_low_pfn, pfn_start);
  511. max_low_pfn = max(max_low_pfn, pfn_end);
  512. return 0;
  513. }
  514. /*
  515. * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
  516. * system call handler. When this option is in effect, all fsyscalls will end up bubbling
  517. * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
  518. * useful for performance testing, but conceivably could also come in handy for debugging
  519. * purposes.
  520. */
  521. static int nolwsys __initdata;
  522. static int __init
  523. nolwsys_setup (char *s)
  524. {
  525. nolwsys = 1;
  526. return 1;
  527. }
  528. __setup("nolwsys", nolwsys_setup);
  529. void __init
  530. mem_init (void)
  531. {
  532. long reserved_pages, codesize, datasize, initsize;
  533. pg_data_t *pgdat;
  534. int i;
  535. BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
  536. BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
  537. BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
  538. #ifdef CONFIG_PCI
  539. /*
  540. * This needs to be called _after_ the command line has been parsed but _before_
  541. * any drivers that may need the PCI DMA interface are initialized or bootmem has
  542. * been freed.
  543. */
  544. platform_dma_init();
  545. #endif
  546. #ifdef CONFIG_FLATMEM
  547. BUG_ON(!mem_map);
  548. max_mapnr = max_low_pfn;
  549. #endif
  550. high_memory = __va(max_low_pfn * PAGE_SIZE);
  551. for_each_online_pgdat(pgdat)
  552. if (pgdat->bdata->node_bootmem_map)
  553. totalram_pages += free_all_bootmem_node(pgdat);
  554. reserved_pages = 0;
  555. efi_memmap_walk(count_reserved_pages, &reserved_pages);
  556. codesize = (unsigned long) _etext - (unsigned long) _stext;
  557. datasize = (unsigned long) _edata - (unsigned long) _etext;
  558. initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
  559. printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
  560. "%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT - 10),
  561. num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
  562. reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
  563. /*
  564. * For fsyscall entrpoints with no light-weight handler, use the ordinary
  565. * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
  566. * code can tell them apart.
  567. */
  568. for (i = 0; i < NR_syscalls; ++i) {
  569. extern unsigned long sys_call_table[NR_syscalls];
  570. unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
  571. if (!fsyscall_table[i] || nolwsys)
  572. fsyscall_table[i] = sys_call_table[i] | 1;
  573. }
  574. setup_gate();
  575. }
  576. #ifdef CONFIG_MEMORY_HOTPLUG
  577. int arch_add_memory(int nid, u64 start, u64 size)
  578. {
  579. pg_data_t *pgdat;
  580. struct zone *zone;
  581. unsigned long start_pfn = start >> PAGE_SHIFT;
  582. unsigned long nr_pages = size >> PAGE_SHIFT;
  583. int ret;
  584. pgdat = NODE_DATA(nid);
  585. zone = pgdat->node_zones + ZONE_NORMAL;
  586. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  587. if (ret)
  588. printk("%s: Problem encountered in __add_pages() as ret=%d\n",
  589. __func__, ret);
  590. return ret;
  591. }
  592. #endif
  593. /*
  594. * Even when CONFIG_IA32_SUPPORT is not enabled it is
  595. * useful to have the Linux/x86 domain registered to
  596. * avoid an attempted module load when emulators call
  597. * personality(PER_LINUX32). This saves several milliseconds
  598. * on each such call.
  599. */
  600. static struct exec_domain ia32_exec_domain;
  601. static int __init
  602. per_linux32_init(void)
  603. {
  604. ia32_exec_domain.name = "Linux/x86";
  605. ia32_exec_domain.handler = NULL;
  606. ia32_exec_domain.pers_low = PER_LINUX32;
  607. ia32_exec_domain.pers_high = PER_LINUX32;
  608. ia32_exec_domain.signal_map = default_exec_domain.signal_map;
  609. ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
  610. register_exec_domain(&ia32_exec_domain);
  611. return 0;
  612. }
  613. __initcall(per_linux32_init);