efi.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371
  1. /*
  2. * Extensible Firmware Interface
  3. *
  4. * Based on Extensible Firmware Interface Specification version 0.9
  5. * April 30, 1999
  6. *
  7. * Copyright (C) 1999 VA Linux Systems
  8. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  9. * Copyright (C) 1999-2003 Hewlett-Packard Co.
  10. * David Mosberger-Tang <davidm@hpl.hp.com>
  11. * Stephane Eranian <eranian@hpl.hp.com>
  12. * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  13. * Bjorn Helgaas <bjorn.helgaas@hp.com>
  14. *
  15. * All EFI Runtime Services are not implemented yet as EFI only
  16. * supports physical mode addressing on SoftSDV. This is to be fixed
  17. * in a future version. --drummond 1999-07-20
  18. *
  19. * Implemented EFI runtime services and virtual mode calls. --davidm
  20. *
  21. * Goutham Rao: <goutham.rao@intel.com>
  22. * Skip non-WB memory and ignore empty memory ranges.
  23. */
  24. #include <linux/module.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/crash_dump.h>
  27. #include <linux/kernel.h>
  28. #include <linux/init.h>
  29. #include <linux/types.h>
  30. #include <linux/slab.h>
  31. #include <linux/time.h>
  32. #include <linux/efi.h>
  33. #include <linux/kexec.h>
  34. #include <linux/mm.h>
  35. #include <asm/io.h>
  36. #include <asm/kregs.h>
  37. #include <asm/meminit.h>
  38. #include <asm/pgtable.h>
  39. #include <asm/processor.h>
  40. #include <asm/mca.h>
  41. #include <asm/setup.h>
  42. #include <asm/tlbflush.h>
  43. #define EFI_DEBUG 0
  44. extern efi_status_t efi_call_phys (void *, ...);
  45. struct efi efi;
  46. EXPORT_SYMBOL(efi);
  47. static efi_runtime_services_t *runtime;
  48. static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  49. #define efi_call_virt(f, args...) (*(f))(args)
  50. #define STUB_GET_TIME(prefix, adjust_arg) \
  51. static efi_status_t \
  52. prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
  53. { \
  54. struct ia64_fpreg fr[6]; \
  55. efi_time_cap_t *atc = NULL; \
  56. efi_status_t ret; \
  57. \
  58. if (tc) \
  59. atc = adjust_arg(tc); \
  60. ia64_save_scratch_fpregs(fr); \
  61. ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
  62. adjust_arg(tm), atc); \
  63. ia64_load_scratch_fpregs(fr); \
  64. return ret; \
  65. }
  66. #define STUB_SET_TIME(prefix, adjust_arg) \
  67. static efi_status_t \
  68. prefix##_set_time (efi_time_t *tm) \
  69. { \
  70. struct ia64_fpreg fr[6]; \
  71. efi_status_t ret; \
  72. \
  73. ia64_save_scratch_fpregs(fr); \
  74. ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
  75. adjust_arg(tm)); \
  76. ia64_load_scratch_fpregs(fr); \
  77. return ret; \
  78. }
  79. #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
  80. static efi_status_t \
  81. prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
  82. efi_time_t *tm) \
  83. { \
  84. struct ia64_fpreg fr[6]; \
  85. efi_status_t ret; \
  86. \
  87. ia64_save_scratch_fpregs(fr); \
  88. ret = efi_call_##prefix( \
  89. (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
  90. adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
  91. ia64_load_scratch_fpregs(fr); \
  92. return ret; \
  93. }
  94. #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
  95. static efi_status_t \
  96. prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
  97. { \
  98. struct ia64_fpreg fr[6]; \
  99. efi_time_t *atm = NULL; \
  100. efi_status_t ret; \
  101. \
  102. if (tm) \
  103. atm = adjust_arg(tm); \
  104. ia64_save_scratch_fpregs(fr); \
  105. ret = efi_call_##prefix( \
  106. (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
  107. enabled, atm); \
  108. ia64_load_scratch_fpregs(fr); \
  109. return ret; \
  110. }
  111. #define STUB_GET_VARIABLE(prefix, adjust_arg) \
  112. static efi_status_t \
  113. prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
  114. unsigned long *data_size, void *data) \
  115. { \
  116. struct ia64_fpreg fr[6]; \
  117. u32 *aattr = NULL; \
  118. efi_status_t ret; \
  119. \
  120. if (attr) \
  121. aattr = adjust_arg(attr); \
  122. ia64_save_scratch_fpregs(fr); \
  123. ret = efi_call_##prefix( \
  124. (efi_get_variable_t *) __va(runtime->get_variable), \
  125. adjust_arg(name), adjust_arg(vendor), aattr, \
  126. adjust_arg(data_size), adjust_arg(data)); \
  127. ia64_load_scratch_fpregs(fr); \
  128. return ret; \
  129. }
  130. #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
  131. static efi_status_t \
  132. prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
  133. efi_guid_t *vendor) \
  134. { \
  135. struct ia64_fpreg fr[6]; \
  136. efi_status_t ret; \
  137. \
  138. ia64_save_scratch_fpregs(fr); \
  139. ret = efi_call_##prefix( \
  140. (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
  141. adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
  142. ia64_load_scratch_fpregs(fr); \
  143. return ret; \
  144. }
  145. #define STUB_SET_VARIABLE(prefix, adjust_arg) \
  146. static efi_status_t \
  147. prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
  148. u32 attr, unsigned long data_size, \
  149. void *data) \
  150. { \
  151. struct ia64_fpreg fr[6]; \
  152. efi_status_t ret; \
  153. \
  154. ia64_save_scratch_fpregs(fr); \
  155. ret = efi_call_##prefix( \
  156. (efi_set_variable_t *) __va(runtime->set_variable), \
  157. adjust_arg(name), adjust_arg(vendor), attr, data_size, \
  158. adjust_arg(data)); \
  159. ia64_load_scratch_fpregs(fr); \
  160. return ret; \
  161. }
  162. #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
  163. static efi_status_t \
  164. prefix##_get_next_high_mono_count (u32 *count) \
  165. { \
  166. struct ia64_fpreg fr[6]; \
  167. efi_status_t ret; \
  168. \
  169. ia64_save_scratch_fpregs(fr); \
  170. ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
  171. __va(runtime->get_next_high_mono_count), \
  172. adjust_arg(count)); \
  173. ia64_load_scratch_fpregs(fr); \
  174. return ret; \
  175. }
  176. #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
  177. static void \
  178. prefix##_reset_system (int reset_type, efi_status_t status, \
  179. unsigned long data_size, efi_char16_t *data) \
  180. { \
  181. struct ia64_fpreg fr[6]; \
  182. efi_char16_t *adata = NULL; \
  183. \
  184. if (data) \
  185. adata = adjust_arg(data); \
  186. \
  187. ia64_save_scratch_fpregs(fr); \
  188. efi_call_##prefix( \
  189. (efi_reset_system_t *) __va(runtime->reset_system), \
  190. reset_type, status, data_size, adata); \
  191. /* should not return, but just in case... */ \
  192. ia64_load_scratch_fpregs(fr); \
  193. }
  194. #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
  195. STUB_GET_TIME(phys, phys_ptr)
  196. STUB_SET_TIME(phys, phys_ptr)
  197. STUB_GET_WAKEUP_TIME(phys, phys_ptr)
  198. STUB_SET_WAKEUP_TIME(phys, phys_ptr)
  199. STUB_GET_VARIABLE(phys, phys_ptr)
  200. STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
  201. STUB_SET_VARIABLE(phys, phys_ptr)
  202. STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
  203. STUB_RESET_SYSTEM(phys, phys_ptr)
  204. #define id(arg) arg
  205. STUB_GET_TIME(virt, id)
  206. STUB_SET_TIME(virt, id)
  207. STUB_GET_WAKEUP_TIME(virt, id)
  208. STUB_SET_WAKEUP_TIME(virt, id)
  209. STUB_GET_VARIABLE(virt, id)
  210. STUB_GET_NEXT_VARIABLE(virt, id)
  211. STUB_SET_VARIABLE(virt, id)
  212. STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
  213. STUB_RESET_SYSTEM(virt, id)
  214. void
  215. efi_gettimeofday (struct timespec *ts)
  216. {
  217. efi_time_t tm;
  218. if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
  219. memset(ts, 0, sizeof(*ts));
  220. return;
  221. }
  222. ts->tv_sec = mktime(tm.year, tm.month, tm.day,
  223. tm.hour, tm.minute, tm.second);
  224. ts->tv_nsec = tm.nanosecond;
  225. }
  226. static int
  227. is_memory_available (efi_memory_desc_t *md)
  228. {
  229. if (!(md->attribute & EFI_MEMORY_WB))
  230. return 0;
  231. switch (md->type) {
  232. case EFI_LOADER_CODE:
  233. case EFI_LOADER_DATA:
  234. case EFI_BOOT_SERVICES_CODE:
  235. case EFI_BOOT_SERVICES_DATA:
  236. case EFI_CONVENTIONAL_MEMORY:
  237. return 1;
  238. }
  239. return 0;
  240. }
  241. typedef struct kern_memdesc {
  242. u64 attribute;
  243. u64 start;
  244. u64 num_pages;
  245. } kern_memdesc_t;
  246. static kern_memdesc_t *kern_memmap;
  247. #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
  248. static inline u64
  249. kmd_end(kern_memdesc_t *kmd)
  250. {
  251. return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
  252. }
  253. static inline u64
  254. efi_md_end(efi_memory_desc_t *md)
  255. {
  256. return (md->phys_addr + efi_md_size(md));
  257. }
  258. static inline int
  259. efi_wb(efi_memory_desc_t *md)
  260. {
  261. return (md->attribute & EFI_MEMORY_WB);
  262. }
  263. static inline int
  264. efi_uc(efi_memory_desc_t *md)
  265. {
  266. return (md->attribute & EFI_MEMORY_UC);
  267. }
  268. static void
  269. walk (efi_freemem_callback_t callback, void *arg, u64 attr)
  270. {
  271. kern_memdesc_t *k;
  272. u64 start, end, voff;
  273. voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
  274. for (k = kern_memmap; k->start != ~0UL; k++) {
  275. if (k->attribute != attr)
  276. continue;
  277. start = PAGE_ALIGN(k->start);
  278. end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
  279. if (start < end)
  280. if ((*callback)(start + voff, end + voff, arg) < 0)
  281. return;
  282. }
  283. }
  284. /*
  285. * Walk the EFI memory map and call CALLBACK once for each EFI memory
  286. * descriptor that has memory that is available for OS use.
  287. */
  288. void
  289. efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
  290. {
  291. walk(callback, arg, EFI_MEMORY_WB);
  292. }
  293. /*
  294. * Walk the EFI memory map and call CALLBACK once for each EFI memory
  295. * descriptor that has memory that is available for uncached allocator.
  296. */
  297. void
  298. efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
  299. {
  300. walk(callback, arg, EFI_MEMORY_UC);
  301. }
  302. /*
  303. * Look for the PAL_CODE region reported by EFI and map it using an
  304. * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
  305. * Abstraction Layer chapter 11 in ADAG
  306. */
  307. void *
  308. efi_get_pal_addr (void)
  309. {
  310. void *efi_map_start, *efi_map_end, *p;
  311. efi_memory_desc_t *md;
  312. u64 efi_desc_size;
  313. int pal_code_count = 0;
  314. u64 vaddr, mask;
  315. efi_map_start = __va(ia64_boot_param->efi_memmap);
  316. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  317. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  318. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  319. md = p;
  320. if (md->type != EFI_PAL_CODE)
  321. continue;
  322. if (++pal_code_count > 1) {
  323. printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
  324. "dropped @ %llx\n", md->phys_addr);
  325. continue;
  326. }
  327. /*
  328. * The only ITLB entry in region 7 that is used is the one
  329. * installed by __start(). That entry covers a 64MB range.
  330. */
  331. mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
  332. vaddr = PAGE_OFFSET + md->phys_addr;
  333. /*
  334. * We must check that the PAL mapping won't overlap with the
  335. * kernel mapping.
  336. *
  337. * PAL code is guaranteed to be aligned on a power of 2 between
  338. * 4k and 256KB and that only one ITR is needed to map it. This
  339. * implies that the PAL code is always aligned on its size,
  340. * i.e., the closest matching page size supported by the TLB.
  341. * Therefore PAL code is guaranteed never to cross a 64MB unless
  342. * it is bigger than 64MB (very unlikely!). So for now the
  343. * following test is enough to determine whether or not we need
  344. * a dedicated ITR for the PAL code.
  345. */
  346. if ((vaddr & mask) == (KERNEL_START & mask)) {
  347. printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
  348. __func__);
  349. continue;
  350. }
  351. if (efi_md_size(md) > IA64_GRANULE_SIZE)
  352. panic("Whoa! PAL code size bigger than a granule!");
  353. #if EFI_DEBUG
  354. mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
  355. printk(KERN_INFO "CPU %d: mapping PAL code "
  356. "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
  357. smp_processor_id(), md->phys_addr,
  358. md->phys_addr + efi_md_size(md),
  359. vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
  360. #endif
  361. return __va(md->phys_addr);
  362. }
  363. printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
  364. __func__);
  365. return NULL;
  366. }
  367. static u8 __init palo_checksum(u8 *buffer, u32 length)
  368. {
  369. u8 sum = 0;
  370. u8 *end = buffer + length;
  371. while (buffer < end)
  372. sum = (u8) (sum + *(buffer++));
  373. return sum;
  374. }
  375. /*
  376. * Parse and handle PALO table which is published at:
  377. * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
  378. */
  379. static void __init handle_palo(unsigned long palo_phys)
  380. {
  381. struct palo_table *palo = __va(palo_phys);
  382. u8 checksum;
  383. if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
  384. printk(KERN_INFO "PALO signature incorrect.\n");
  385. return;
  386. }
  387. checksum = palo_checksum((u8 *)palo, palo->length);
  388. if (checksum) {
  389. printk(KERN_INFO "PALO checksum incorrect.\n");
  390. return;
  391. }
  392. setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
  393. }
  394. void
  395. efi_map_pal_code (void)
  396. {
  397. void *pal_vaddr = efi_get_pal_addr ();
  398. u64 psr;
  399. if (!pal_vaddr)
  400. return;
  401. /*
  402. * Cannot write to CRx with PSR.ic=1
  403. */
  404. psr = ia64_clear_ic();
  405. ia64_itr(0x1, IA64_TR_PALCODE,
  406. GRANULEROUNDDOWN((unsigned long) pal_vaddr),
  407. pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
  408. IA64_GRANULE_SHIFT);
  409. paravirt_dv_serialize_data();
  410. ia64_set_psr(psr); /* restore psr */
  411. }
  412. void __init
  413. efi_init (void)
  414. {
  415. void *efi_map_start, *efi_map_end;
  416. efi_config_table_t *config_tables;
  417. efi_char16_t *c16;
  418. u64 efi_desc_size;
  419. char *cp, vendor[100] = "unknown";
  420. int i;
  421. unsigned long palo_phys;
  422. /*
  423. * It's too early to be able to use the standard kernel command line
  424. * support...
  425. */
  426. for (cp = boot_command_line; *cp; ) {
  427. if (memcmp(cp, "mem=", 4) == 0) {
  428. mem_limit = memparse(cp + 4, &cp);
  429. } else if (memcmp(cp, "max_addr=", 9) == 0) {
  430. max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
  431. } else if (memcmp(cp, "min_addr=", 9) == 0) {
  432. min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
  433. } else {
  434. while (*cp != ' ' && *cp)
  435. ++cp;
  436. while (*cp == ' ')
  437. ++cp;
  438. }
  439. }
  440. if (min_addr != 0UL)
  441. printk(KERN_INFO "Ignoring memory below %lluMB\n",
  442. min_addr >> 20);
  443. if (max_addr != ~0UL)
  444. printk(KERN_INFO "Ignoring memory above %lluMB\n",
  445. max_addr >> 20);
  446. efi.systab = __va(ia64_boot_param->efi_systab);
  447. /*
  448. * Verify the EFI Table
  449. */
  450. if (efi.systab == NULL)
  451. panic("Whoa! Can't find EFI system table.\n");
  452. if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
  453. panic("Whoa! EFI system table signature incorrect\n");
  454. if ((efi.systab->hdr.revision >> 16) == 0)
  455. printk(KERN_WARNING "Warning: EFI system table version "
  456. "%d.%02d, expected 1.00 or greater\n",
  457. efi.systab->hdr.revision >> 16,
  458. efi.systab->hdr.revision & 0xffff);
  459. config_tables = __va(efi.systab->tables);
  460. /* Show what we know for posterity */
  461. c16 = __va(efi.systab->fw_vendor);
  462. if (c16) {
  463. for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
  464. vendor[i] = *c16++;
  465. vendor[i] = '\0';
  466. }
  467. printk(KERN_INFO "EFI v%u.%.02u by %s:",
  468. efi.systab->hdr.revision >> 16,
  469. efi.systab->hdr.revision & 0xffff, vendor);
  470. efi.mps = EFI_INVALID_TABLE_ADDR;
  471. efi.acpi = EFI_INVALID_TABLE_ADDR;
  472. efi.acpi20 = EFI_INVALID_TABLE_ADDR;
  473. efi.smbios = EFI_INVALID_TABLE_ADDR;
  474. efi.sal_systab = EFI_INVALID_TABLE_ADDR;
  475. efi.boot_info = EFI_INVALID_TABLE_ADDR;
  476. efi.hcdp = EFI_INVALID_TABLE_ADDR;
  477. efi.uga = EFI_INVALID_TABLE_ADDR;
  478. palo_phys = EFI_INVALID_TABLE_ADDR;
  479. for (i = 0; i < (int) efi.systab->nr_tables; i++) {
  480. if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
  481. efi.mps = config_tables[i].table;
  482. printk(" MPS=0x%lx", config_tables[i].table);
  483. } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
  484. efi.acpi20 = config_tables[i].table;
  485. printk(" ACPI 2.0=0x%lx", config_tables[i].table);
  486. } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
  487. efi.acpi = config_tables[i].table;
  488. printk(" ACPI=0x%lx", config_tables[i].table);
  489. } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
  490. efi.smbios = config_tables[i].table;
  491. printk(" SMBIOS=0x%lx", config_tables[i].table);
  492. } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
  493. efi.sal_systab = config_tables[i].table;
  494. printk(" SALsystab=0x%lx", config_tables[i].table);
  495. } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
  496. efi.hcdp = config_tables[i].table;
  497. printk(" HCDP=0x%lx", config_tables[i].table);
  498. } else if (efi_guidcmp(config_tables[i].guid,
  499. PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID) == 0) {
  500. palo_phys = config_tables[i].table;
  501. printk(" PALO=0x%lx", config_tables[i].table);
  502. }
  503. }
  504. printk("\n");
  505. if (palo_phys != EFI_INVALID_TABLE_ADDR)
  506. handle_palo(palo_phys);
  507. runtime = __va(efi.systab->runtime);
  508. efi.get_time = phys_get_time;
  509. efi.set_time = phys_set_time;
  510. efi.get_wakeup_time = phys_get_wakeup_time;
  511. efi.set_wakeup_time = phys_set_wakeup_time;
  512. efi.get_variable = phys_get_variable;
  513. efi.get_next_variable = phys_get_next_variable;
  514. efi.set_variable = phys_set_variable;
  515. efi.get_next_high_mono_count = phys_get_next_high_mono_count;
  516. efi.reset_system = phys_reset_system;
  517. efi_map_start = __va(ia64_boot_param->efi_memmap);
  518. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  519. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  520. #if EFI_DEBUG
  521. /* print EFI memory map: */
  522. {
  523. efi_memory_desc_t *md;
  524. void *p;
  525. for (i = 0, p = efi_map_start; p < efi_map_end;
  526. ++i, p += efi_desc_size)
  527. {
  528. const char *unit;
  529. unsigned long size;
  530. md = p;
  531. size = md->num_pages << EFI_PAGE_SHIFT;
  532. if ((size >> 40) > 0) {
  533. size >>= 40;
  534. unit = "TB";
  535. } else if ((size >> 30) > 0) {
  536. size >>= 30;
  537. unit = "GB";
  538. } else if ((size >> 20) > 0) {
  539. size >>= 20;
  540. unit = "MB";
  541. } else {
  542. size >>= 10;
  543. unit = "KB";
  544. }
  545. printk("mem%02d: type=%2u, attr=0x%016lx, "
  546. "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
  547. i, md->type, md->attribute, md->phys_addr,
  548. md->phys_addr + efi_md_size(md), size, unit);
  549. }
  550. }
  551. #endif
  552. efi_map_pal_code();
  553. efi_enter_virtual_mode();
  554. }
  555. void
  556. efi_enter_virtual_mode (void)
  557. {
  558. void *efi_map_start, *efi_map_end, *p;
  559. efi_memory_desc_t *md;
  560. efi_status_t status;
  561. u64 efi_desc_size;
  562. efi_map_start = __va(ia64_boot_param->efi_memmap);
  563. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  564. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  565. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  566. md = p;
  567. if (md->attribute & EFI_MEMORY_RUNTIME) {
  568. /*
  569. * Some descriptors have multiple bits set, so the
  570. * order of the tests is relevant.
  571. */
  572. if (md->attribute & EFI_MEMORY_WB) {
  573. md->virt_addr = (u64) __va(md->phys_addr);
  574. } else if (md->attribute & EFI_MEMORY_UC) {
  575. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  576. } else if (md->attribute & EFI_MEMORY_WC) {
  577. #if 0
  578. md->virt_addr = ia64_remap(md->phys_addr,
  579. (_PAGE_A |
  580. _PAGE_P |
  581. _PAGE_D |
  582. _PAGE_MA_WC |
  583. _PAGE_PL_0 |
  584. _PAGE_AR_RW));
  585. #else
  586. printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
  587. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  588. #endif
  589. } else if (md->attribute & EFI_MEMORY_WT) {
  590. #if 0
  591. md->virt_addr = ia64_remap(md->phys_addr,
  592. (_PAGE_A |
  593. _PAGE_P |
  594. _PAGE_D |
  595. _PAGE_MA_WT |
  596. _PAGE_PL_0 |
  597. _PAGE_AR_RW));
  598. #else
  599. printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
  600. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  601. #endif
  602. }
  603. }
  604. }
  605. status = efi_call_phys(__va(runtime->set_virtual_address_map),
  606. ia64_boot_param->efi_memmap_size,
  607. efi_desc_size,
  608. ia64_boot_param->efi_memdesc_version,
  609. ia64_boot_param->efi_memmap);
  610. if (status != EFI_SUCCESS) {
  611. printk(KERN_WARNING "warning: unable to switch EFI into "
  612. "virtual mode (status=%lu)\n", status);
  613. return;
  614. }
  615. /*
  616. * Now that EFI is in virtual mode, we call the EFI functions more
  617. * efficiently:
  618. */
  619. efi.get_time = virt_get_time;
  620. efi.set_time = virt_set_time;
  621. efi.get_wakeup_time = virt_get_wakeup_time;
  622. efi.set_wakeup_time = virt_set_wakeup_time;
  623. efi.get_variable = virt_get_variable;
  624. efi.get_next_variable = virt_get_next_variable;
  625. efi.set_variable = virt_set_variable;
  626. efi.get_next_high_mono_count = virt_get_next_high_mono_count;
  627. efi.reset_system = virt_reset_system;
  628. }
  629. /*
  630. * Walk the EFI memory map looking for the I/O port range. There can only be
  631. * one entry of this type, other I/O port ranges should be described via ACPI.
  632. */
  633. u64
  634. efi_get_iobase (void)
  635. {
  636. void *efi_map_start, *efi_map_end, *p;
  637. efi_memory_desc_t *md;
  638. u64 efi_desc_size;
  639. efi_map_start = __va(ia64_boot_param->efi_memmap);
  640. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  641. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  642. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  643. md = p;
  644. if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
  645. if (md->attribute & EFI_MEMORY_UC)
  646. return md->phys_addr;
  647. }
  648. }
  649. return 0;
  650. }
  651. static struct kern_memdesc *
  652. kern_memory_descriptor (unsigned long phys_addr)
  653. {
  654. struct kern_memdesc *md;
  655. for (md = kern_memmap; md->start != ~0UL; md++) {
  656. if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
  657. return md;
  658. }
  659. return NULL;
  660. }
  661. static efi_memory_desc_t *
  662. efi_memory_descriptor (unsigned long phys_addr)
  663. {
  664. void *efi_map_start, *efi_map_end, *p;
  665. efi_memory_desc_t *md;
  666. u64 efi_desc_size;
  667. efi_map_start = __va(ia64_boot_param->efi_memmap);
  668. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  669. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  670. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  671. md = p;
  672. if (phys_addr - md->phys_addr < efi_md_size(md))
  673. return md;
  674. }
  675. return NULL;
  676. }
  677. static int
  678. efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
  679. {
  680. void *efi_map_start, *efi_map_end, *p;
  681. efi_memory_desc_t *md;
  682. u64 efi_desc_size;
  683. unsigned long end;
  684. efi_map_start = __va(ia64_boot_param->efi_memmap);
  685. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  686. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  687. end = phys_addr + size;
  688. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  689. md = p;
  690. if (md->phys_addr < end && efi_md_end(md) > phys_addr)
  691. return 1;
  692. }
  693. return 0;
  694. }
  695. u32
  696. efi_mem_type (unsigned long phys_addr)
  697. {
  698. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  699. if (md)
  700. return md->type;
  701. return 0;
  702. }
  703. u64
  704. efi_mem_attributes (unsigned long phys_addr)
  705. {
  706. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  707. if (md)
  708. return md->attribute;
  709. return 0;
  710. }
  711. EXPORT_SYMBOL(efi_mem_attributes);
  712. u64
  713. efi_mem_attribute (unsigned long phys_addr, unsigned long size)
  714. {
  715. unsigned long end = phys_addr + size;
  716. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  717. u64 attr;
  718. if (!md)
  719. return 0;
  720. /*
  721. * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
  722. * the kernel that firmware needs this region mapped.
  723. */
  724. attr = md->attribute & ~EFI_MEMORY_RUNTIME;
  725. do {
  726. unsigned long md_end = efi_md_end(md);
  727. if (end <= md_end)
  728. return attr;
  729. md = efi_memory_descriptor(md_end);
  730. if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
  731. return 0;
  732. } while (md);
  733. return 0; /* never reached */
  734. }
  735. u64
  736. kern_mem_attribute (unsigned long phys_addr, unsigned long size)
  737. {
  738. unsigned long end = phys_addr + size;
  739. struct kern_memdesc *md;
  740. u64 attr;
  741. /*
  742. * This is a hack for ioremap calls before we set up kern_memmap.
  743. * Maybe we should do efi_memmap_init() earlier instead.
  744. */
  745. if (!kern_memmap) {
  746. attr = efi_mem_attribute(phys_addr, size);
  747. if (attr & EFI_MEMORY_WB)
  748. return EFI_MEMORY_WB;
  749. return 0;
  750. }
  751. md = kern_memory_descriptor(phys_addr);
  752. if (!md)
  753. return 0;
  754. attr = md->attribute;
  755. do {
  756. unsigned long md_end = kmd_end(md);
  757. if (end <= md_end)
  758. return attr;
  759. md = kern_memory_descriptor(md_end);
  760. if (!md || md->attribute != attr)
  761. return 0;
  762. } while (md);
  763. return 0; /* never reached */
  764. }
  765. EXPORT_SYMBOL(kern_mem_attribute);
  766. int
  767. valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
  768. {
  769. u64 attr;
  770. /*
  771. * /dev/mem reads and writes use copy_to_user(), which implicitly
  772. * uses a granule-sized kernel identity mapping. It's really
  773. * only safe to do this for regions in kern_memmap. For more
  774. * details, see Documentation/ia64/aliasing.txt.
  775. */
  776. attr = kern_mem_attribute(phys_addr, size);
  777. if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
  778. return 1;
  779. return 0;
  780. }
  781. int
  782. valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
  783. {
  784. unsigned long phys_addr = pfn << PAGE_SHIFT;
  785. u64 attr;
  786. attr = efi_mem_attribute(phys_addr, size);
  787. /*
  788. * /dev/mem mmap uses normal user pages, so we don't need the entire
  789. * granule, but the entire region we're mapping must support the same
  790. * attribute.
  791. */
  792. if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
  793. return 1;
  794. /*
  795. * Intel firmware doesn't tell us about all the MMIO regions, so
  796. * in general we have to allow mmap requests. But if EFI *does*
  797. * tell us about anything inside this region, we should deny it.
  798. * The user can always map a smaller region to avoid the overlap.
  799. */
  800. if (efi_memmap_intersects(phys_addr, size))
  801. return 0;
  802. return 1;
  803. }
  804. pgprot_t
  805. phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
  806. pgprot_t vma_prot)
  807. {
  808. unsigned long phys_addr = pfn << PAGE_SHIFT;
  809. u64 attr;
  810. /*
  811. * For /dev/mem mmap, we use user mappings, but if the region is
  812. * in kern_memmap (and hence may be covered by a kernel mapping),
  813. * we must use the same attribute as the kernel mapping.
  814. */
  815. attr = kern_mem_attribute(phys_addr, size);
  816. if (attr & EFI_MEMORY_WB)
  817. return pgprot_cacheable(vma_prot);
  818. else if (attr & EFI_MEMORY_UC)
  819. return pgprot_noncached(vma_prot);
  820. /*
  821. * Some chipsets don't support UC access to memory. If
  822. * WB is supported, we prefer that.
  823. */
  824. if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
  825. return pgprot_cacheable(vma_prot);
  826. return pgprot_noncached(vma_prot);
  827. }
  828. int __init
  829. efi_uart_console_only(void)
  830. {
  831. efi_status_t status;
  832. char *s, name[] = "ConOut";
  833. efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
  834. efi_char16_t *utf16, name_utf16[32];
  835. unsigned char data[1024];
  836. unsigned long size = sizeof(data);
  837. struct efi_generic_dev_path *hdr, *end_addr;
  838. int uart = 0;
  839. /* Convert to UTF-16 */
  840. utf16 = name_utf16;
  841. s = name;
  842. while (*s)
  843. *utf16++ = *s++ & 0x7f;
  844. *utf16 = 0;
  845. status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
  846. if (status != EFI_SUCCESS) {
  847. printk(KERN_ERR "No EFI %s variable?\n", name);
  848. return 0;
  849. }
  850. hdr = (struct efi_generic_dev_path *) data;
  851. end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
  852. while (hdr < end_addr) {
  853. if (hdr->type == EFI_DEV_MSG &&
  854. hdr->sub_type == EFI_DEV_MSG_UART)
  855. uart = 1;
  856. else if (hdr->type == EFI_DEV_END_PATH ||
  857. hdr->type == EFI_DEV_END_PATH2) {
  858. if (!uart)
  859. return 0;
  860. if (hdr->sub_type == EFI_DEV_END_ENTIRE)
  861. return 1;
  862. uart = 0;
  863. }
  864. hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
  865. }
  866. printk(KERN_ERR "Malformed %s value\n", name);
  867. return 0;
  868. }
  869. /*
  870. * Look for the first granule aligned memory descriptor memory
  871. * that is big enough to hold EFI memory map. Make sure this
  872. * descriptor is atleast granule sized so it does not get trimmed
  873. */
  874. struct kern_memdesc *
  875. find_memmap_space (void)
  876. {
  877. u64 contig_low=0, contig_high=0;
  878. u64 as = 0, ae;
  879. void *efi_map_start, *efi_map_end, *p, *q;
  880. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  881. u64 space_needed, efi_desc_size;
  882. unsigned long total_mem = 0;
  883. efi_map_start = __va(ia64_boot_param->efi_memmap);
  884. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  885. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  886. /*
  887. * Worst case: we need 3 kernel descriptors for each efi descriptor
  888. * (if every entry has a WB part in the middle, and UC head and tail),
  889. * plus one for the end marker.
  890. */
  891. space_needed = sizeof(kern_memdesc_t) *
  892. (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
  893. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  894. md = p;
  895. if (!efi_wb(md)) {
  896. continue;
  897. }
  898. if (pmd == NULL || !efi_wb(pmd) ||
  899. efi_md_end(pmd) != md->phys_addr) {
  900. contig_low = GRANULEROUNDUP(md->phys_addr);
  901. contig_high = efi_md_end(md);
  902. for (q = p + efi_desc_size; q < efi_map_end;
  903. q += efi_desc_size) {
  904. check_md = q;
  905. if (!efi_wb(check_md))
  906. break;
  907. if (contig_high != check_md->phys_addr)
  908. break;
  909. contig_high = efi_md_end(check_md);
  910. }
  911. contig_high = GRANULEROUNDDOWN(contig_high);
  912. }
  913. if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
  914. continue;
  915. /* Round ends inward to granule boundaries */
  916. as = max(contig_low, md->phys_addr);
  917. ae = min(contig_high, efi_md_end(md));
  918. /* keep within max_addr= and min_addr= command line arg */
  919. as = max(as, min_addr);
  920. ae = min(ae, max_addr);
  921. if (ae <= as)
  922. continue;
  923. /* avoid going over mem= command line arg */
  924. if (total_mem + (ae - as) > mem_limit)
  925. ae -= total_mem + (ae - as) - mem_limit;
  926. if (ae <= as)
  927. continue;
  928. if (ae - as > space_needed)
  929. break;
  930. }
  931. if (p >= efi_map_end)
  932. panic("Can't allocate space for kernel memory descriptors");
  933. return __va(as);
  934. }
  935. /*
  936. * Walk the EFI memory map and gather all memory available for kernel
  937. * to use. We can allocate partial granules only if the unavailable
  938. * parts exist, and are WB.
  939. */
  940. unsigned long
  941. efi_memmap_init(u64 *s, u64 *e)
  942. {
  943. struct kern_memdesc *k, *prev = NULL;
  944. u64 contig_low=0, contig_high=0;
  945. u64 as, ae, lim;
  946. void *efi_map_start, *efi_map_end, *p, *q;
  947. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  948. u64 efi_desc_size;
  949. unsigned long total_mem = 0;
  950. k = kern_memmap = find_memmap_space();
  951. efi_map_start = __va(ia64_boot_param->efi_memmap);
  952. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  953. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  954. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  955. md = p;
  956. if (!efi_wb(md)) {
  957. if (efi_uc(md) &&
  958. (md->type == EFI_CONVENTIONAL_MEMORY ||
  959. md->type == EFI_BOOT_SERVICES_DATA)) {
  960. k->attribute = EFI_MEMORY_UC;
  961. k->start = md->phys_addr;
  962. k->num_pages = md->num_pages;
  963. k++;
  964. }
  965. continue;
  966. }
  967. if (pmd == NULL || !efi_wb(pmd) ||
  968. efi_md_end(pmd) != md->phys_addr) {
  969. contig_low = GRANULEROUNDUP(md->phys_addr);
  970. contig_high = efi_md_end(md);
  971. for (q = p + efi_desc_size; q < efi_map_end;
  972. q += efi_desc_size) {
  973. check_md = q;
  974. if (!efi_wb(check_md))
  975. break;
  976. if (contig_high != check_md->phys_addr)
  977. break;
  978. contig_high = efi_md_end(check_md);
  979. }
  980. contig_high = GRANULEROUNDDOWN(contig_high);
  981. }
  982. if (!is_memory_available(md))
  983. continue;
  984. #ifdef CONFIG_CRASH_DUMP
  985. /* saved_max_pfn should ignore max_addr= command line arg */
  986. if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
  987. saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
  988. #endif
  989. /*
  990. * Round ends inward to granule boundaries
  991. * Give trimmings to uncached allocator
  992. */
  993. if (md->phys_addr < contig_low) {
  994. lim = min(efi_md_end(md), contig_low);
  995. if (efi_uc(md)) {
  996. if (k > kern_memmap &&
  997. (k-1)->attribute == EFI_MEMORY_UC &&
  998. kmd_end(k-1) == md->phys_addr) {
  999. (k-1)->num_pages +=
  1000. (lim - md->phys_addr)
  1001. >> EFI_PAGE_SHIFT;
  1002. } else {
  1003. k->attribute = EFI_MEMORY_UC;
  1004. k->start = md->phys_addr;
  1005. k->num_pages = (lim - md->phys_addr)
  1006. >> EFI_PAGE_SHIFT;
  1007. k++;
  1008. }
  1009. }
  1010. as = contig_low;
  1011. } else
  1012. as = md->phys_addr;
  1013. if (efi_md_end(md) > contig_high) {
  1014. lim = max(md->phys_addr, contig_high);
  1015. if (efi_uc(md)) {
  1016. if (lim == md->phys_addr && k > kern_memmap &&
  1017. (k-1)->attribute == EFI_MEMORY_UC &&
  1018. kmd_end(k-1) == md->phys_addr) {
  1019. (k-1)->num_pages += md->num_pages;
  1020. } else {
  1021. k->attribute = EFI_MEMORY_UC;
  1022. k->start = lim;
  1023. k->num_pages = (efi_md_end(md) - lim)
  1024. >> EFI_PAGE_SHIFT;
  1025. k++;
  1026. }
  1027. }
  1028. ae = contig_high;
  1029. } else
  1030. ae = efi_md_end(md);
  1031. /* keep within max_addr= and min_addr= command line arg */
  1032. as = max(as, min_addr);
  1033. ae = min(ae, max_addr);
  1034. if (ae <= as)
  1035. continue;
  1036. /* avoid going over mem= command line arg */
  1037. if (total_mem + (ae - as) > mem_limit)
  1038. ae -= total_mem + (ae - as) - mem_limit;
  1039. if (ae <= as)
  1040. continue;
  1041. if (prev && kmd_end(prev) == md->phys_addr) {
  1042. prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
  1043. total_mem += ae - as;
  1044. continue;
  1045. }
  1046. k->attribute = EFI_MEMORY_WB;
  1047. k->start = as;
  1048. k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
  1049. total_mem += ae - as;
  1050. prev = k++;
  1051. }
  1052. k->start = ~0L; /* end-marker */
  1053. /* reserve the memory we are using for kern_memmap */
  1054. *s = (u64)kern_memmap;
  1055. *e = (u64)++k;
  1056. return total_mem;
  1057. }
  1058. void
  1059. efi_initialize_iomem_resources(struct resource *code_resource,
  1060. struct resource *data_resource,
  1061. struct resource *bss_resource)
  1062. {
  1063. struct resource *res;
  1064. void *efi_map_start, *efi_map_end, *p;
  1065. efi_memory_desc_t *md;
  1066. u64 efi_desc_size;
  1067. char *name;
  1068. unsigned long flags;
  1069. efi_map_start = __va(ia64_boot_param->efi_memmap);
  1070. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  1071. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  1072. res = NULL;
  1073. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  1074. md = p;
  1075. if (md->num_pages == 0) /* should not happen */
  1076. continue;
  1077. flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  1078. switch (md->type) {
  1079. case EFI_MEMORY_MAPPED_IO:
  1080. case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
  1081. continue;
  1082. case EFI_LOADER_CODE:
  1083. case EFI_LOADER_DATA:
  1084. case EFI_BOOT_SERVICES_DATA:
  1085. case EFI_BOOT_SERVICES_CODE:
  1086. case EFI_CONVENTIONAL_MEMORY:
  1087. if (md->attribute & EFI_MEMORY_WP) {
  1088. name = "System ROM";
  1089. flags |= IORESOURCE_READONLY;
  1090. } else if (md->attribute == EFI_MEMORY_UC)
  1091. name = "Uncached RAM";
  1092. else
  1093. name = "System RAM";
  1094. break;
  1095. case EFI_ACPI_MEMORY_NVS:
  1096. name = "ACPI Non-volatile Storage";
  1097. break;
  1098. case EFI_UNUSABLE_MEMORY:
  1099. name = "reserved";
  1100. flags |= IORESOURCE_DISABLED;
  1101. break;
  1102. case EFI_RESERVED_TYPE:
  1103. case EFI_RUNTIME_SERVICES_CODE:
  1104. case EFI_RUNTIME_SERVICES_DATA:
  1105. case EFI_ACPI_RECLAIM_MEMORY:
  1106. default:
  1107. name = "reserved";
  1108. break;
  1109. }
  1110. if ((res = kzalloc(sizeof(struct resource),
  1111. GFP_KERNEL)) == NULL) {
  1112. printk(KERN_ERR
  1113. "failed to allocate resource for iomem\n");
  1114. return;
  1115. }
  1116. res->name = name;
  1117. res->start = md->phys_addr;
  1118. res->end = md->phys_addr + efi_md_size(md) - 1;
  1119. res->flags = flags;
  1120. if (insert_resource(&iomem_resource, res) < 0)
  1121. kfree(res);
  1122. else {
  1123. /*
  1124. * We don't know which region contains
  1125. * kernel data so we try it repeatedly and
  1126. * let the resource manager test it.
  1127. */
  1128. insert_resource(res, code_resource);
  1129. insert_resource(res, data_resource);
  1130. insert_resource(res, bss_resource);
  1131. #ifdef CONFIG_KEXEC
  1132. insert_resource(res, &efi_memmap_res);
  1133. insert_resource(res, &boot_param_res);
  1134. if (crashk_res.end > crashk_res.start)
  1135. insert_resource(res, &crashk_res);
  1136. #endif
  1137. }
  1138. }
  1139. }
  1140. #ifdef CONFIG_KEXEC
  1141. /* find a block of memory aligned to 64M exclude reserved regions
  1142. rsvd_regions are sorted
  1143. */
  1144. unsigned long __init
  1145. kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
  1146. {
  1147. int i;
  1148. u64 start, end;
  1149. u64 alignment = 1UL << _PAGE_SIZE_64M;
  1150. void *efi_map_start, *efi_map_end, *p;
  1151. efi_memory_desc_t *md;
  1152. u64 efi_desc_size;
  1153. efi_map_start = __va(ia64_boot_param->efi_memmap);
  1154. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  1155. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  1156. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  1157. md = p;
  1158. if (!efi_wb(md))
  1159. continue;
  1160. start = ALIGN(md->phys_addr, alignment);
  1161. end = efi_md_end(md);
  1162. for (i = 0; i < n; i++) {
  1163. if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
  1164. if (__pa(r[i].start) > start + size)
  1165. return start;
  1166. start = ALIGN(__pa(r[i].end), alignment);
  1167. if (i < n-1 &&
  1168. __pa(r[i+1].start) < start + size)
  1169. continue;
  1170. else
  1171. break;
  1172. }
  1173. }
  1174. if (end > start + size)
  1175. return start;
  1176. }
  1177. printk(KERN_WARNING
  1178. "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
  1179. return ~0UL;
  1180. }
  1181. #endif
  1182. #ifdef CONFIG_CRASH_DUMP
  1183. /* locate the size find a the descriptor at a certain address */
  1184. unsigned long __init
  1185. vmcore_find_descriptor_size (unsigned long address)
  1186. {
  1187. void *efi_map_start, *efi_map_end, *p;
  1188. efi_memory_desc_t *md;
  1189. u64 efi_desc_size;
  1190. unsigned long ret = 0;
  1191. efi_map_start = __va(ia64_boot_param->efi_memmap);
  1192. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  1193. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  1194. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  1195. md = p;
  1196. if (efi_wb(md) && md->type == EFI_LOADER_DATA
  1197. && md->phys_addr == address) {
  1198. ret = efi_md_size(md);
  1199. break;
  1200. }
  1201. }
  1202. if (ret == 0)
  1203. printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
  1204. return ret;
  1205. }
  1206. #endif