uengine.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508
  1. /*
  2. * Generic library functions for the microengines found on the Intel
  3. * IXP2000 series of network processors.
  4. *
  5. * Copyright (C) 2004, 2005 Lennert Buytenhek <buytenh@wantstofly.org>
  6. * Dedicated to Marija Kulikova.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU Lesser General Public License as
  10. * published by the Free Software Foundation; either version 2.1 of the
  11. * License, or (at your option) any later version.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/init.h>
  15. #include <linux/slab.h>
  16. #include <linux/module.h>
  17. #include <linux/string.h>
  18. #include <linux/io.h>
  19. #include <mach/hardware.h>
  20. #include <asm/hardware/uengine.h>
  21. #if defined(CONFIG_ARCH_IXP2000)
  22. #define IXP_UENGINE_CSR_VIRT_BASE IXP2000_UENGINE_CSR_VIRT_BASE
  23. #define IXP_PRODUCT_ID IXP2000_PRODUCT_ID
  24. #define IXP_MISC_CONTROL IXP2000_MISC_CONTROL
  25. #define IXP_RESET1 IXP2000_RESET1
  26. #else
  27. #if defined(CONFIG_ARCH_IXP23XX)
  28. #define IXP_UENGINE_CSR_VIRT_BASE IXP23XX_UENGINE_CSR_VIRT_BASE
  29. #define IXP_PRODUCT_ID IXP23XX_PRODUCT_ID
  30. #define IXP_MISC_CONTROL IXP23XX_MISC_CONTROL
  31. #define IXP_RESET1 IXP23XX_RESET1
  32. #else
  33. #error unknown platform
  34. #endif
  35. #endif
  36. #define USTORE_ADDRESS 0x000
  37. #define USTORE_DATA_LOWER 0x004
  38. #define USTORE_DATA_UPPER 0x008
  39. #define CTX_ENABLES 0x018
  40. #define CC_ENABLE 0x01c
  41. #define CSR_CTX_POINTER 0x020
  42. #define INDIRECT_CTX_STS 0x040
  43. #define ACTIVE_CTX_STS 0x044
  44. #define INDIRECT_CTX_SIG_EVENTS 0x048
  45. #define INDIRECT_CTX_WAKEUP_EVENTS 0x050
  46. #define NN_PUT 0x080
  47. #define NN_GET 0x084
  48. #define TIMESTAMP_LOW 0x0c0
  49. #define TIMESTAMP_HIGH 0x0c4
  50. #define T_INDEX_BYTE_INDEX 0x0f4
  51. #define LOCAL_CSR_STATUS 0x180
  52. u32 ixp2000_uengine_mask;
  53. static void *ixp2000_uengine_csr_area(int uengine)
  54. {
  55. return ((void *)IXP_UENGINE_CSR_VIRT_BASE) + (uengine << 10);
  56. }
  57. /*
  58. * LOCAL_CSR_STATUS=1 after a read or write to a microengine's CSR
  59. * space means that the microengine we tried to access was also trying
  60. * to access its own CSR space on the same clock cycle as we did. When
  61. * this happens, we lose the arbitration process by default, and the
  62. * read or write we tried to do was not actually performed, so we try
  63. * again until it succeeds.
  64. */
  65. u32 ixp2000_uengine_csr_read(int uengine, int offset)
  66. {
  67. void *uebase;
  68. u32 *local_csr_status;
  69. u32 *reg;
  70. u32 value;
  71. uebase = ixp2000_uengine_csr_area(uengine);
  72. local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS);
  73. reg = (u32 *)(uebase + offset);
  74. do {
  75. value = ixp2000_reg_read(reg);
  76. } while (ixp2000_reg_read(local_csr_status) & 1);
  77. return value;
  78. }
  79. EXPORT_SYMBOL(ixp2000_uengine_csr_read);
  80. void ixp2000_uengine_csr_write(int uengine, int offset, u32 value)
  81. {
  82. void *uebase;
  83. u32 *local_csr_status;
  84. u32 *reg;
  85. uebase = ixp2000_uengine_csr_area(uengine);
  86. local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS);
  87. reg = (u32 *)(uebase + offset);
  88. do {
  89. ixp2000_reg_write(reg, value);
  90. } while (ixp2000_reg_read(local_csr_status) & 1);
  91. }
  92. EXPORT_SYMBOL(ixp2000_uengine_csr_write);
  93. void ixp2000_uengine_reset(u32 uengine_mask)
  94. {
  95. u32 value;
  96. value = ixp2000_reg_read(IXP_RESET1) & ~ixp2000_uengine_mask;
  97. uengine_mask &= ixp2000_uengine_mask;
  98. ixp2000_reg_wrb(IXP_RESET1, value | uengine_mask);
  99. ixp2000_reg_wrb(IXP_RESET1, value);
  100. }
  101. EXPORT_SYMBOL(ixp2000_uengine_reset);
  102. void ixp2000_uengine_set_mode(int uengine, u32 mode)
  103. {
  104. /*
  105. * CTL_STR_PAR_EN: unconditionally enable parity checking on
  106. * control store.
  107. */
  108. mode |= 0x10000000;
  109. ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mode);
  110. /*
  111. * Enable updating of condition codes.
  112. */
  113. ixp2000_uengine_csr_write(uengine, CC_ENABLE, 0x00002000);
  114. /*
  115. * Initialise other per-microengine registers.
  116. */
  117. ixp2000_uengine_csr_write(uengine, NN_PUT, 0x00);
  118. ixp2000_uengine_csr_write(uengine, NN_GET, 0x00);
  119. ixp2000_uengine_csr_write(uengine, T_INDEX_BYTE_INDEX, 0);
  120. }
  121. EXPORT_SYMBOL(ixp2000_uengine_set_mode);
  122. static int make_even_parity(u32 x)
  123. {
  124. return hweight32(x) & 1;
  125. }
  126. static void ustore_write(int uengine, u64 insn)
  127. {
  128. /*
  129. * Generate even parity for top and bottom 20 bits.
  130. */
  131. insn |= (u64)make_even_parity((insn >> 20) & 0x000fffff) << 41;
  132. insn |= (u64)make_even_parity(insn & 0x000fffff) << 40;
  133. /*
  134. * Write to microstore. The second write auto-increments
  135. * the USTORE_ADDRESS index register.
  136. */
  137. ixp2000_uengine_csr_write(uengine, USTORE_DATA_LOWER, (u32)insn);
  138. ixp2000_uengine_csr_write(uengine, USTORE_DATA_UPPER, (u32)(insn >> 32));
  139. }
  140. void ixp2000_uengine_load_microcode(int uengine, u8 *ucode, int insns)
  141. {
  142. int i;
  143. /*
  144. * Start writing to microstore at address 0.
  145. */
  146. ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x80000000);
  147. for (i = 0; i < insns; i++) {
  148. u64 insn;
  149. insn = (((u64)ucode[0]) << 32) |
  150. (((u64)ucode[1]) << 24) |
  151. (((u64)ucode[2]) << 16) |
  152. (((u64)ucode[3]) << 8) |
  153. ((u64)ucode[4]);
  154. ucode += 5;
  155. ustore_write(uengine, insn);
  156. }
  157. /*
  158. * Pad with a few NOPs at the end (to avoid the microengine
  159. * aborting as it prefetches beyond the last instruction), unless
  160. * we run off the end of the instruction store first, at which
  161. * point the address register will wrap back to zero.
  162. */
  163. for (i = 0; i < 4; i++) {
  164. u32 addr;
  165. addr = ixp2000_uengine_csr_read(uengine, USTORE_ADDRESS);
  166. if (addr == 0x80000000)
  167. break;
  168. ustore_write(uengine, 0xf0000c0300ULL);
  169. }
  170. /*
  171. * End programming.
  172. */
  173. ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x00000000);
  174. }
  175. EXPORT_SYMBOL(ixp2000_uengine_load_microcode);
  176. void ixp2000_uengine_init_context(int uengine, int context, int pc)
  177. {
  178. /*
  179. * Select the right context for indirect access.
  180. */
  181. ixp2000_uengine_csr_write(uengine, CSR_CTX_POINTER, context);
  182. /*
  183. * Initialise signal masks to immediately go to Ready state.
  184. */
  185. ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_SIG_EVENTS, 1);
  186. ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_WAKEUP_EVENTS, 1);
  187. /*
  188. * Set program counter.
  189. */
  190. ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_STS, pc);
  191. }
  192. EXPORT_SYMBOL(ixp2000_uengine_init_context);
  193. void ixp2000_uengine_start_contexts(int uengine, u8 ctx_mask)
  194. {
  195. u32 mask;
  196. /*
  197. * Enable the specified context to go to Executing state.
  198. */
  199. mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES);
  200. mask |= ctx_mask << 8;
  201. ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask);
  202. }
  203. EXPORT_SYMBOL(ixp2000_uengine_start_contexts);
  204. void ixp2000_uengine_stop_contexts(int uengine, u8 ctx_mask)
  205. {
  206. u32 mask;
  207. /*
  208. * Disable the Ready->Executing transition. Note that this
  209. * does not stop the context until it voluntarily yields.
  210. */
  211. mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES);
  212. mask &= ~(ctx_mask << 8);
  213. ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask);
  214. }
  215. EXPORT_SYMBOL(ixp2000_uengine_stop_contexts);
  216. static int check_ixp_type(struct ixp2000_uengine_code *c)
  217. {
  218. u32 product_id;
  219. u32 rev;
  220. product_id = ixp2000_reg_read(IXP_PRODUCT_ID);
  221. if (((product_id >> 16) & 0x1f) != 0)
  222. return 0;
  223. switch ((product_id >> 8) & 0xff) {
  224. #ifdef CONFIG_ARCH_IXP2000
  225. case 0: /* IXP2800 */
  226. if (!(c->cpu_model_bitmask & 4))
  227. return 0;
  228. break;
  229. case 1: /* IXP2850 */
  230. if (!(c->cpu_model_bitmask & 8))
  231. return 0;
  232. break;
  233. case 2: /* IXP2400 */
  234. if (!(c->cpu_model_bitmask & 2))
  235. return 0;
  236. break;
  237. #endif
  238. #ifdef CONFIG_ARCH_IXP23XX
  239. case 4: /* IXP23xx */
  240. if (!(c->cpu_model_bitmask & 0x3f0))
  241. return 0;
  242. break;
  243. #endif
  244. default:
  245. return 0;
  246. }
  247. rev = product_id & 0xff;
  248. if (rev < c->cpu_min_revision || rev > c->cpu_max_revision)
  249. return 0;
  250. return 1;
  251. }
  252. static void generate_ucode(u8 *ucode, u32 *gpr_a, u32 *gpr_b)
  253. {
  254. int offset;
  255. int i;
  256. offset = 0;
  257. for (i = 0; i < 128; i++) {
  258. u8 b3;
  259. u8 b2;
  260. u8 b1;
  261. u8 b0;
  262. b3 = (gpr_a[i] >> 24) & 0xff;
  263. b2 = (gpr_a[i] >> 16) & 0xff;
  264. b1 = (gpr_a[i] >> 8) & 0xff;
  265. b0 = gpr_a[i] & 0xff;
  266. /* immed[@ai, (b1 << 8) | b0] */
  267. /* 11110000 0000VVVV VVVV11VV VVVVVV00 1IIIIIII */
  268. ucode[offset++] = 0xf0;
  269. ucode[offset++] = (b1 >> 4);
  270. ucode[offset++] = (b1 << 4) | 0x0c | (b0 >> 6);
  271. ucode[offset++] = (b0 << 2);
  272. ucode[offset++] = 0x80 | i;
  273. /* immed_w1[@ai, (b3 << 8) | b2] */
  274. /* 11110100 0100VVVV VVVV11VV VVVVVV00 1IIIIIII */
  275. ucode[offset++] = 0xf4;
  276. ucode[offset++] = 0x40 | (b3 >> 4);
  277. ucode[offset++] = (b3 << 4) | 0x0c | (b2 >> 6);
  278. ucode[offset++] = (b2 << 2);
  279. ucode[offset++] = 0x80 | i;
  280. }
  281. for (i = 0; i < 128; i++) {
  282. u8 b3;
  283. u8 b2;
  284. u8 b1;
  285. u8 b0;
  286. b3 = (gpr_b[i] >> 24) & 0xff;
  287. b2 = (gpr_b[i] >> 16) & 0xff;
  288. b1 = (gpr_b[i] >> 8) & 0xff;
  289. b0 = gpr_b[i] & 0xff;
  290. /* immed[@bi, (b1 << 8) | b0] */
  291. /* 11110000 0000VVVV VVVV001I IIIIII11 VVVVVVVV */
  292. ucode[offset++] = 0xf0;
  293. ucode[offset++] = (b1 >> 4);
  294. ucode[offset++] = (b1 << 4) | 0x02 | (i >> 6);
  295. ucode[offset++] = (i << 2) | 0x03;
  296. ucode[offset++] = b0;
  297. /* immed_w1[@bi, (b3 << 8) | b2] */
  298. /* 11110100 0100VVVV VVVV001I IIIIII11 VVVVVVVV */
  299. ucode[offset++] = 0xf4;
  300. ucode[offset++] = 0x40 | (b3 >> 4);
  301. ucode[offset++] = (b3 << 4) | 0x02 | (i >> 6);
  302. ucode[offset++] = (i << 2) | 0x03;
  303. ucode[offset++] = b2;
  304. }
  305. /* ctx_arb[kill] */
  306. ucode[offset++] = 0xe0;
  307. ucode[offset++] = 0x00;
  308. ucode[offset++] = 0x01;
  309. ucode[offset++] = 0x00;
  310. ucode[offset++] = 0x00;
  311. }
  312. static int set_initial_registers(int uengine, struct ixp2000_uengine_code *c)
  313. {
  314. int per_ctx_regs;
  315. u32 *gpr_a;
  316. u32 *gpr_b;
  317. u8 *ucode;
  318. int i;
  319. gpr_a = kzalloc(128 * sizeof(u32), GFP_KERNEL);
  320. gpr_b = kzalloc(128 * sizeof(u32), GFP_KERNEL);
  321. ucode = kmalloc(513 * 5, GFP_KERNEL);
  322. if (gpr_a == NULL || gpr_b == NULL || ucode == NULL) {
  323. kfree(ucode);
  324. kfree(gpr_b);
  325. kfree(gpr_a);
  326. return 1;
  327. }
  328. per_ctx_regs = 16;
  329. if (c->uengine_parameters & IXP2000_UENGINE_4_CONTEXTS)
  330. per_ctx_regs = 32;
  331. for (i = 0; i < 256; i++) {
  332. struct ixp2000_reg_value *r = c->initial_reg_values + i;
  333. u32 *bank;
  334. int inc;
  335. int j;
  336. if (r->reg == -1)
  337. break;
  338. bank = (r->reg & 0x400) ? gpr_b : gpr_a;
  339. inc = (r->reg & 0x80) ? 128 : per_ctx_regs;
  340. j = r->reg & 0x7f;
  341. while (j < 128) {
  342. bank[j] = r->value;
  343. j += inc;
  344. }
  345. }
  346. generate_ucode(ucode, gpr_a, gpr_b);
  347. ixp2000_uengine_load_microcode(uengine, ucode, 513);
  348. ixp2000_uengine_init_context(uengine, 0, 0);
  349. ixp2000_uengine_start_contexts(uengine, 0x01);
  350. for (i = 0; i < 100; i++) {
  351. u32 status;
  352. status = ixp2000_uengine_csr_read(uengine, ACTIVE_CTX_STS);
  353. if (!(status & 0x80000000))
  354. break;
  355. }
  356. ixp2000_uengine_stop_contexts(uengine, 0x01);
  357. kfree(ucode);
  358. kfree(gpr_b);
  359. kfree(gpr_a);
  360. return !!(i == 100);
  361. }
  362. int ixp2000_uengine_load(int uengine, struct ixp2000_uengine_code *c)
  363. {
  364. int ctx;
  365. if (!check_ixp_type(c))
  366. return 1;
  367. if (!(ixp2000_uengine_mask & (1 << uengine)))
  368. return 1;
  369. ixp2000_uengine_reset(1 << uengine);
  370. ixp2000_uengine_set_mode(uengine, c->uengine_parameters);
  371. if (set_initial_registers(uengine, c))
  372. return 1;
  373. ixp2000_uengine_load_microcode(uengine, c->insns, c->num_insns);
  374. for (ctx = 0; ctx < 8; ctx++)
  375. ixp2000_uengine_init_context(uengine, ctx, 0);
  376. return 0;
  377. }
  378. EXPORT_SYMBOL(ixp2000_uengine_load);
  379. static int __init ixp2000_uengine_init(void)
  380. {
  381. int uengine;
  382. u32 value;
  383. /*
  384. * Determine number of microengines present.
  385. */
  386. switch ((ixp2000_reg_read(IXP_PRODUCT_ID) >> 8) & 0x1fff) {
  387. #ifdef CONFIG_ARCH_IXP2000
  388. case 0: /* IXP2800 */
  389. case 1: /* IXP2850 */
  390. ixp2000_uengine_mask = 0x00ff00ff;
  391. break;
  392. case 2: /* IXP2400 */
  393. ixp2000_uengine_mask = 0x000f000f;
  394. break;
  395. #endif
  396. #ifdef CONFIG_ARCH_IXP23XX
  397. case 4: /* IXP23xx */
  398. ixp2000_uengine_mask = (*IXP23XX_EXP_CFG_FUSE >> 8) & 0xf;
  399. break;
  400. #endif
  401. default:
  402. printk(KERN_INFO "Detected unknown IXP2000 model (%.8x)\n",
  403. (unsigned int)ixp2000_reg_read(IXP_PRODUCT_ID));
  404. ixp2000_uengine_mask = 0x00000000;
  405. break;
  406. }
  407. /*
  408. * Reset microengines.
  409. */
  410. ixp2000_uengine_reset(ixp2000_uengine_mask);
  411. /*
  412. * Synchronise timestamp counters across all microengines.
  413. */
  414. value = ixp2000_reg_read(IXP_MISC_CONTROL);
  415. ixp2000_reg_wrb(IXP_MISC_CONTROL, value & ~0x80);
  416. for (uengine = 0; uengine < 32; uengine++) {
  417. if (ixp2000_uengine_mask & (1 << uengine)) {
  418. ixp2000_uengine_csr_write(uengine, TIMESTAMP_LOW, 0);
  419. ixp2000_uengine_csr_write(uengine, TIMESTAMP_HIGH, 0);
  420. }
  421. }
  422. ixp2000_reg_wrb(IXP_MISC_CONTROL, value | 0x80);
  423. return 0;
  424. }
  425. subsys_initcall(ixp2000_uengine_init);