nobootmem.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413
  1. /*
  2. * bootmem - A boot-time physical memory allocator and configurator
  3. *
  4. * Copyright (C) 1999 Ingo Molnar
  5. * 1999 Kanoj Sarcar, SGI
  6. * 2008 Johannes Weiner
  7. *
  8. * Access to this subsystem has to be serialized externally (which is true
  9. * for the boot process anyway).
  10. */
  11. #include <linux/init.h>
  12. #include <linux/pfn.h>
  13. #include <linux/slab.h>
  14. #include <linux/bootmem.h>
  15. #include <linux/export.h>
  16. #include <linux/kmemleak.h>
  17. #include <linux/range.h>
  18. #include <linux/memblock.h>
  19. #include <asm/bug.h>
  20. #include <asm/io.h>
  21. #include <asm/processor.h>
  22. #include "internal.h"
  23. #ifndef CONFIG_NEED_MULTIPLE_NODES
  24. struct pglist_data __refdata contig_page_data;
  25. EXPORT_SYMBOL(contig_page_data);
  26. #endif
  27. unsigned long max_low_pfn;
  28. unsigned long min_low_pfn;
  29. unsigned long max_pfn;
  30. static void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
  31. u64 goal, u64 limit)
  32. {
  33. void *ptr;
  34. u64 addr;
  35. if (limit > memblock.current_limit)
  36. limit = memblock.current_limit;
  37. addr = memblock_find_in_range_node(goal, limit, size, align, nid);
  38. if (!addr)
  39. return NULL;
  40. ptr = phys_to_virt(addr);
  41. memset(ptr, 0, size);
  42. memblock_reserve(addr, size);
  43. /*
  44. * The min_count is set to 0 so that bootmem allocated blocks
  45. * are never reported as leaks.
  46. */
  47. kmemleak_alloc(ptr, size, 0, 0);
  48. return ptr;
  49. }
  50. /*
  51. * free_bootmem_late - free bootmem pages directly to page allocator
  52. * @addr: starting address of the range
  53. * @size: size of the range in bytes
  54. *
  55. * This is only useful when the bootmem allocator has already been torn
  56. * down, but we are still initializing the system. Pages are given directly
  57. * to the page allocator, no bootmem metadata is updated because it is gone.
  58. */
  59. void __init free_bootmem_late(unsigned long addr, unsigned long size)
  60. {
  61. unsigned long cursor, end;
  62. kmemleak_free_part(__va(addr), size);
  63. cursor = PFN_UP(addr);
  64. end = PFN_DOWN(addr + size);
  65. for (; cursor < end; cursor++) {
  66. __free_pages_bootmem(pfn_to_page(cursor), 0);
  67. totalram_pages++;
  68. }
  69. }
  70. static void __init __free_pages_memory(unsigned long start, unsigned long end)
  71. {
  72. unsigned long i, start_aligned, end_aligned;
  73. int order = ilog2(BITS_PER_LONG);
  74. start_aligned = (start + (BITS_PER_LONG - 1)) & ~(BITS_PER_LONG - 1);
  75. end_aligned = end & ~(BITS_PER_LONG - 1);
  76. if (end_aligned <= start_aligned) {
  77. for (i = start; i < end; i++)
  78. __free_pages_bootmem(pfn_to_page(i), 0);
  79. return;
  80. }
  81. for (i = start; i < start_aligned; i++)
  82. __free_pages_bootmem(pfn_to_page(i), 0);
  83. for (i = start_aligned; i < end_aligned; i += BITS_PER_LONG)
  84. __free_pages_bootmem(pfn_to_page(i), order);
  85. for (i = end_aligned; i < end; i++)
  86. __free_pages_bootmem(pfn_to_page(i), 0);
  87. }
  88. static unsigned long __init __free_memory_core(phys_addr_t start,
  89. phys_addr_t end)
  90. {
  91. unsigned long start_pfn = PFN_UP(start);
  92. unsigned long end_pfn = min_t(unsigned long,
  93. PFN_DOWN(end), max_low_pfn);
  94. if (start_pfn > end_pfn)
  95. return 0;
  96. __free_pages_memory(start_pfn, end_pfn);
  97. return end_pfn - start_pfn;
  98. }
  99. unsigned long __init free_low_memory_core_early(int nodeid)
  100. {
  101. unsigned long count = 0;
  102. phys_addr_t start, end, size;
  103. u64 i;
  104. for_each_free_mem_range(i, MAX_NUMNODES, &start, &end, NULL)
  105. count += __free_memory_core(start, end);
  106. /* free range that is used for reserved array if we allocate it */
  107. size = get_allocated_memblock_reserved_regions_info(&start);
  108. if (size)
  109. count += __free_memory_core(start, start + size);
  110. return count;
  111. }
  112. /**
  113. * free_all_bootmem_node - release a node's free pages to the buddy allocator
  114. * @pgdat: node to be released
  115. *
  116. * Returns the number of pages actually released.
  117. */
  118. unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
  119. {
  120. register_page_bootmem_info_node(pgdat);
  121. /* free_low_memory_core_early(MAX_NUMNODES) will be called later */
  122. return 0;
  123. }
  124. /**
  125. * free_all_bootmem - release free pages to the buddy allocator
  126. *
  127. * Returns the number of pages actually released.
  128. */
  129. unsigned long __init free_all_bootmem(void)
  130. {
  131. /*
  132. * We need to use MAX_NUMNODES instead of NODE_DATA(0)->node_id
  133. * because in some case like Node0 doesn't have RAM installed
  134. * low ram will be on Node1
  135. * Use MAX_NUMNODES will make sure all ranges in early_node_map[]
  136. * will be used instead of only Node0 related
  137. */
  138. return free_low_memory_core_early(MAX_NUMNODES);
  139. }
  140. /**
  141. * free_bootmem_node - mark a page range as usable
  142. * @pgdat: node the range resides on
  143. * @physaddr: starting address of the range
  144. * @size: size of the range in bytes
  145. *
  146. * Partial pages will be considered reserved and left as they are.
  147. *
  148. * The range must reside completely on the specified node.
  149. */
  150. void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
  151. unsigned long size)
  152. {
  153. kmemleak_free_part(__va(physaddr), size);
  154. memblock_free(physaddr, size);
  155. }
  156. /**
  157. * free_bootmem - mark a page range as usable
  158. * @addr: starting address of the range
  159. * @size: size of the range in bytes
  160. *
  161. * Partial pages will be considered reserved and left as they are.
  162. *
  163. * The range must be contiguous but may span node boundaries.
  164. */
  165. void __init free_bootmem(unsigned long addr, unsigned long size)
  166. {
  167. kmemleak_free_part(__va(addr), size);
  168. memblock_free(addr, size);
  169. }
  170. static void * __init ___alloc_bootmem_nopanic(unsigned long size,
  171. unsigned long align,
  172. unsigned long goal,
  173. unsigned long limit)
  174. {
  175. void *ptr;
  176. if (WARN_ON_ONCE(slab_is_available()))
  177. return kzalloc(size, GFP_NOWAIT);
  178. restart:
  179. ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align, goal, limit);
  180. if (ptr)
  181. return ptr;
  182. if (goal != 0) {
  183. goal = 0;
  184. goto restart;
  185. }
  186. return NULL;
  187. }
  188. /**
  189. * __alloc_bootmem_nopanic - allocate boot memory without panicking
  190. * @size: size of the request in bytes
  191. * @align: alignment of the region
  192. * @goal: preferred starting address of the region
  193. *
  194. * The goal is dropped if it can not be satisfied and the allocation will
  195. * fall back to memory below @goal.
  196. *
  197. * Allocation may happen on any node in the system.
  198. *
  199. * Returns NULL on failure.
  200. */
  201. void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
  202. unsigned long goal)
  203. {
  204. unsigned long limit = -1UL;
  205. return ___alloc_bootmem_nopanic(size, align, goal, limit);
  206. }
  207. static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
  208. unsigned long goal, unsigned long limit)
  209. {
  210. void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
  211. if (mem)
  212. return mem;
  213. /*
  214. * Whoops, we cannot satisfy the allocation request.
  215. */
  216. printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
  217. panic("Out of memory");
  218. return NULL;
  219. }
  220. /**
  221. * __alloc_bootmem - allocate boot memory
  222. * @size: size of the request in bytes
  223. * @align: alignment of the region
  224. * @goal: preferred starting address of the region
  225. *
  226. * The goal is dropped if it can not be satisfied and the allocation will
  227. * fall back to memory below @goal.
  228. *
  229. * Allocation may happen on any node in the system.
  230. *
  231. * The function panics if the request can not be satisfied.
  232. */
  233. void * __init __alloc_bootmem(unsigned long size, unsigned long align,
  234. unsigned long goal)
  235. {
  236. unsigned long limit = -1UL;
  237. return ___alloc_bootmem(size, align, goal, limit);
  238. }
  239. static void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
  240. unsigned long size,
  241. unsigned long align,
  242. unsigned long goal,
  243. unsigned long limit)
  244. {
  245. void *ptr;
  246. again:
  247. ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
  248. goal, limit);
  249. if (ptr)
  250. return ptr;
  251. ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align,
  252. goal, limit);
  253. if (ptr)
  254. return ptr;
  255. if (goal) {
  256. goal = 0;
  257. goto again;
  258. }
  259. return NULL;
  260. }
  261. void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
  262. unsigned long align, unsigned long goal)
  263. {
  264. if (WARN_ON_ONCE(slab_is_available()))
  265. return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
  266. return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
  267. }
  268. void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
  269. unsigned long align, unsigned long goal,
  270. unsigned long limit)
  271. {
  272. void *ptr;
  273. ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, limit);
  274. if (ptr)
  275. return ptr;
  276. printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
  277. panic("Out of memory");
  278. return NULL;
  279. }
  280. /**
  281. * __alloc_bootmem_node - allocate boot memory from a specific node
  282. * @pgdat: node to allocate from
  283. * @size: size of the request in bytes
  284. * @align: alignment of the region
  285. * @goal: preferred starting address of the region
  286. *
  287. * The goal is dropped if it can not be satisfied and the allocation will
  288. * fall back to memory below @goal.
  289. *
  290. * Allocation may fall back to any node in the system if the specified node
  291. * can not hold the requested memory.
  292. *
  293. * The function panics if the request can not be satisfied.
  294. */
  295. void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
  296. unsigned long align, unsigned long goal)
  297. {
  298. if (WARN_ON_ONCE(slab_is_available()))
  299. return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
  300. return ___alloc_bootmem_node(pgdat, size, align, goal, 0);
  301. }
  302. void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
  303. unsigned long align, unsigned long goal)
  304. {
  305. return __alloc_bootmem_node(pgdat, size, align, goal);
  306. }
  307. #ifndef ARCH_LOW_ADDRESS_LIMIT
  308. #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
  309. #endif
  310. /**
  311. * __alloc_bootmem_low - allocate low boot memory
  312. * @size: size of the request in bytes
  313. * @align: alignment of the region
  314. * @goal: preferred starting address of the region
  315. *
  316. * The goal is dropped if it can not be satisfied and the allocation will
  317. * fall back to memory below @goal.
  318. *
  319. * Allocation may happen on any node in the system.
  320. *
  321. * The function panics if the request can not be satisfied.
  322. */
  323. void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
  324. unsigned long goal)
  325. {
  326. return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
  327. }
  328. /**
  329. * __alloc_bootmem_low_node - allocate low boot memory from a specific node
  330. * @pgdat: node to allocate from
  331. * @size: size of the request in bytes
  332. * @align: alignment of the region
  333. * @goal: preferred starting address of the region
  334. *
  335. * The goal is dropped if it can not be satisfied and the allocation will
  336. * fall back to memory below @goal.
  337. *
  338. * Allocation may fall back to any node in the system if the specified node
  339. * can not hold the requested memory.
  340. *
  341. * The function panics if the request can not be satisfied.
  342. */
  343. void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
  344. unsigned long align, unsigned long goal)
  345. {
  346. if (WARN_ON_ONCE(slab_is_available()))
  347. return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
  348. return ___alloc_bootmem_node(pgdat, size, align, goal,
  349. ARCH_LOW_ADDRESS_LIMIT);
  350. }