swiotlb.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929
  1. /*
  2. * Dynamic DMA mapping support.
  3. *
  4. * This implementation is a fallback for platforms that do not support
  5. * I/O TLBs (aka DMA address translation hardware).
  6. * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7. * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8. * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. *
  11. * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
  12. * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
  13. * unnecessary i-cache flushing.
  14. * 04/07/.. ak Better overflow handling. Assorted fixes.
  15. * 05/09/10 linville Add support for syncing ranges, support syncing for
  16. * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17. * 08/12/11 beckyb Add highmem support
  18. */
  19. #include <linux/cache.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/mm.h>
  22. #include <linux/export.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/string.h>
  25. #include <linux/swiotlb.h>
  26. #include <linux/pfn.h>
  27. #include <linux/types.h>
  28. #include <linux/ctype.h>
  29. #include <linux/highmem.h>
  30. #include <linux/gfp.h>
  31. #include <asm/io.h>
  32. #include <asm/dma.h>
  33. #include <asm/scatterlist.h>
  34. #include <linux/init.h>
  35. #include <linux/bootmem.h>
  36. #include <linux/iommu-helper.h>
  37. #define OFFSET(val,align) ((unsigned long) \
  38. ( (val) & ( (align) - 1)))
  39. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  40. /*
  41. * Minimum IO TLB size to bother booting with. Systems with mainly
  42. * 64bit capable cards will only lightly use the swiotlb. If we can't
  43. * allocate a contiguous 1MB, we're probably in trouble anyway.
  44. */
  45. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  46. int swiotlb_force;
  47. /*
  48. * Used to do a quick range check in swiotlb_tbl_unmap_single and
  49. * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  50. * API.
  51. */
  52. static char *io_tlb_start, *io_tlb_end;
  53. /*
  54. * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
  55. * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
  56. */
  57. static unsigned long io_tlb_nslabs;
  58. /*
  59. * When the IOMMU overflows we return a fallback buffer. This sets the size.
  60. */
  61. static unsigned long io_tlb_overflow = 32*1024;
  62. static void *io_tlb_overflow_buffer;
  63. /*
  64. * This is a free list describing the number of free entries available from
  65. * each index
  66. */
  67. static unsigned int *io_tlb_list;
  68. static unsigned int io_tlb_index;
  69. /*
  70. * We need to save away the original address corresponding to a mapped entry
  71. * for the sync operations.
  72. */
  73. static phys_addr_t *io_tlb_orig_addr;
  74. /*
  75. * Protect the above data structures in the map and unmap calls
  76. */
  77. static DEFINE_SPINLOCK(io_tlb_lock);
  78. static int late_alloc;
  79. static int __init
  80. setup_io_tlb_npages(char *str)
  81. {
  82. if (isdigit(*str)) {
  83. io_tlb_nslabs = simple_strtoul(str, &str, 0);
  84. /* avoid tail segment of size < IO_TLB_SEGSIZE */
  85. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  86. }
  87. if (*str == ',')
  88. ++str;
  89. if (!strcmp(str, "force"))
  90. swiotlb_force = 1;
  91. return 1;
  92. }
  93. __setup("swiotlb=", setup_io_tlb_npages);
  94. /* make io_tlb_overflow tunable too? */
  95. unsigned long swiotlb_nr_tbl(void)
  96. {
  97. return io_tlb_nslabs;
  98. }
  99. EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
  100. /* Note that this doesn't work with highmem page */
  101. static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
  102. volatile void *address)
  103. {
  104. return phys_to_dma(hwdev, virt_to_phys(address));
  105. }
  106. void swiotlb_print_info(void)
  107. {
  108. unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  109. phys_addr_t pstart, pend;
  110. pstart = virt_to_phys(io_tlb_start);
  111. pend = virt_to_phys(io_tlb_end);
  112. printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
  113. (unsigned long long)pstart, (unsigned long long)pend - 1,
  114. bytes >> 20, io_tlb_start, io_tlb_end - 1);
  115. }
  116. void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
  117. {
  118. unsigned long i, bytes;
  119. bytes = nslabs << IO_TLB_SHIFT;
  120. io_tlb_nslabs = nslabs;
  121. io_tlb_start = tlb;
  122. io_tlb_end = io_tlb_start + bytes;
  123. /*
  124. * Allocate and initialize the free list array. This array is used
  125. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  126. * between io_tlb_start and io_tlb_end.
  127. */
  128. io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
  129. for (i = 0; i < io_tlb_nslabs; i++)
  130. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  131. io_tlb_index = 0;
  132. io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
  133. /*
  134. * Get the overflow emergency buffer
  135. */
  136. io_tlb_overflow_buffer = alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow));
  137. if (!io_tlb_overflow_buffer)
  138. panic("Cannot allocate SWIOTLB overflow buffer!\n");
  139. if (verbose)
  140. swiotlb_print_info();
  141. }
  142. /*
  143. * Statically reserve bounce buffer space and initialize bounce buffer data
  144. * structures for the software IO TLB used to implement the DMA API.
  145. */
  146. void __init
  147. swiotlb_init_with_default_size(size_t default_size, int verbose)
  148. {
  149. unsigned long bytes;
  150. if (!io_tlb_nslabs) {
  151. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  152. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  153. }
  154. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  155. /*
  156. * Get IO TLB memory from the low pages
  157. */
  158. io_tlb_start = alloc_bootmem_low_pages(PAGE_ALIGN(bytes));
  159. if (!io_tlb_start)
  160. panic("Cannot allocate SWIOTLB buffer");
  161. swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose);
  162. }
  163. void __init
  164. swiotlb_init(int verbose)
  165. {
  166. swiotlb_init_with_default_size(64 * (1<<20), verbose); /* default to 64MB */
  167. }
  168. /*
  169. * Systems with larger DMA zones (those that don't support ISA) can
  170. * initialize the swiotlb later using the slab allocator if needed.
  171. * This should be just like above, but with some error catching.
  172. */
  173. int
  174. swiotlb_late_init_with_default_size(size_t default_size)
  175. {
  176. unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
  177. unsigned int order;
  178. if (!io_tlb_nslabs) {
  179. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  180. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  181. }
  182. /*
  183. * Get IO TLB memory from the low pages
  184. */
  185. order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
  186. io_tlb_nslabs = SLABS_PER_PAGE << order;
  187. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  188. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  189. io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
  190. order);
  191. if (io_tlb_start)
  192. break;
  193. order--;
  194. }
  195. if (!io_tlb_start)
  196. goto cleanup1;
  197. if (order != get_order(bytes)) {
  198. printk(KERN_WARNING "Warning: only able to allocate %ld MB "
  199. "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
  200. io_tlb_nslabs = SLABS_PER_PAGE << order;
  201. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  202. }
  203. io_tlb_end = io_tlb_start + bytes;
  204. memset(io_tlb_start, 0, bytes);
  205. /*
  206. * Allocate and initialize the free list array. This array is used
  207. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  208. * between io_tlb_start and io_tlb_end.
  209. */
  210. io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
  211. get_order(io_tlb_nslabs * sizeof(int)));
  212. if (!io_tlb_list)
  213. goto cleanup2;
  214. for (i = 0; i < io_tlb_nslabs; i++)
  215. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  216. io_tlb_index = 0;
  217. io_tlb_orig_addr = (phys_addr_t *)
  218. __get_free_pages(GFP_KERNEL,
  219. get_order(io_tlb_nslabs *
  220. sizeof(phys_addr_t)));
  221. if (!io_tlb_orig_addr)
  222. goto cleanup3;
  223. memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
  224. /*
  225. * Get the overflow emergency buffer
  226. */
  227. io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
  228. get_order(io_tlb_overflow));
  229. if (!io_tlb_overflow_buffer)
  230. goto cleanup4;
  231. swiotlb_print_info();
  232. late_alloc = 1;
  233. return 0;
  234. cleanup4:
  235. free_pages((unsigned long)io_tlb_orig_addr,
  236. get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
  237. io_tlb_orig_addr = NULL;
  238. cleanup3:
  239. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  240. sizeof(int)));
  241. io_tlb_list = NULL;
  242. cleanup2:
  243. io_tlb_end = NULL;
  244. free_pages((unsigned long)io_tlb_start, order);
  245. io_tlb_start = NULL;
  246. cleanup1:
  247. io_tlb_nslabs = req_nslabs;
  248. return -ENOMEM;
  249. }
  250. void __init swiotlb_free(void)
  251. {
  252. if (!io_tlb_overflow_buffer)
  253. return;
  254. if (late_alloc) {
  255. free_pages((unsigned long)io_tlb_overflow_buffer,
  256. get_order(io_tlb_overflow));
  257. free_pages((unsigned long)io_tlb_orig_addr,
  258. get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
  259. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  260. sizeof(int)));
  261. free_pages((unsigned long)io_tlb_start,
  262. get_order(io_tlb_nslabs << IO_TLB_SHIFT));
  263. } else {
  264. free_bootmem_late(__pa(io_tlb_overflow_buffer),
  265. PAGE_ALIGN(io_tlb_overflow));
  266. free_bootmem_late(__pa(io_tlb_orig_addr),
  267. PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
  268. free_bootmem_late(__pa(io_tlb_list),
  269. PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
  270. free_bootmem_late(__pa(io_tlb_start),
  271. PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
  272. }
  273. io_tlb_nslabs = 0;
  274. }
  275. static int is_swiotlb_buffer(phys_addr_t paddr)
  276. {
  277. return paddr >= virt_to_phys(io_tlb_start) &&
  278. paddr < virt_to_phys(io_tlb_end);
  279. }
  280. /*
  281. * Bounce: copy the swiotlb buffer back to the original dma location
  282. */
  283. void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
  284. enum dma_data_direction dir)
  285. {
  286. unsigned long pfn = PFN_DOWN(phys);
  287. if (PageHighMem(pfn_to_page(pfn))) {
  288. /* The buffer does not have a mapping. Map it in and copy */
  289. unsigned int offset = phys & ~PAGE_MASK;
  290. char *buffer;
  291. unsigned int sz = 0;
  292. unsigned long flags;
  293. while (size) {
  294. sz = min_t(size_t, PAGE_SIZE - offset, size);
  295. local_irq_save(flags);
  296. buffer = kmap_atomic(pfn_to_page(pfn));
  297. if (dir == DMA_TO_DEVICE)
  298. memcpy(dma_addr, buffer + offset, sz);
  299. else
  300. memcpy(buffer + offset, dma_addr, sz);
  301. kunmap_atomic(buffer);
  302. local_irq_restore(flags);
  303. size -= sz;
  304. pfn++;
  305. dma_addr += sz;
  306. offset = 0;
  307. }
  308. } else {
  309. if (dir == DMA_TO_DEVICE)
  310. memcpy(dma_addr, phys_to_virt(phys), size);
  311. else
  312. memcpy(phys_to_virt(phys), dma_addr, size);
  313. }
  314. }
  315. EXPORT_SYMBOL_GPL(swiotlb_bounce);
  316. void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
  317. phys_addr_t phys, size_t size,
  318. enum dma_data_direction dir)
  319. {
  320. unsigned long flags;
  321. char *dma_addr;
  322. unsigned int nslots, stride, index, wrap;
  323. int i;
  324. unsigned long mask;
  325. unsigned long offset_slots;
  326. unsigned long max_slots;
  327. mask = dma_get_seg_boundary(hwdev);
  328. tbl_dma_addr &= mask;
  329. offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  330. /*
  331. * Carefully handle integer overflow which can occur when mask == ~0UL.
  332. */
  333. max_slots = mask + 1
  334. ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
  335. : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
  336. /*
  337. * For mappings greater than a page, we limit the stride (and
  338. * hence alignment) to a page size.
  339. */
  340. nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  341. if (size > PAGE_SIZE)
  342. stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
  343. else
  344. stride = 1;
  345. BUG_ON(!nslots);
  346. /*
  347. * Find suitable number of IO TLB entries size that will fit this
  348. * request and allocate a buffer from that IO TLB pool.
  349. */
  350. spin_lock_irqsave(&io_tlb_lock, flags);
  351. index = ALIGN(io_tlb_index, stride);
  352. if (index >= io_tlb_nslabs)
  353. index = 0;
  354. wrap = index;
  355. do {
  356. while (iommu_is_span_boundary(index, nslots, offset_slots,
  357. max_slots)) {
  358. index += stride;
  359. if (index >= io_tlb_nslabs)
  360. index = 0;
  361. if (index == wrap)
  362. goto not_found;
  363. }
  364. /*
  365. * If we find a slot that indicates we have 'nslots' number of
  366. * contiguous buffers, we allocate the buffers from that slot
  367. * and mark the entries as '0' indicating unavailable.
  368. */
  369. if (io_tlb_list[index] >= nslots) {
  370. int count = 0;
  371. for (i = index; i < (int) (index + nslots); i++)
  372. io_tlb_list[i] = 0;
  373. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
  374. io_tlb_list[i] = ++count;
  375. dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
  376. /*
  377. * Update the indices to avoid searching in the next
  378. * round.
  379. */
  380. io_tlb_index = ((index + nslots) < io_tlb_nslabs
  381. ? (index + nslots) : 0);
  382. goto found;
  383. }
  384. index += stride;
  385. if (index >= io_tlb_nslabs)
  386. index = 0;
  387. } while (index != wrap);
  388. not_found:
  389. spin_unlock_irqrestore(&io_tlb_lock, flags);
  390. return NULL;
  391. found:
  392. spin_unlock_irqrestore(&io_tlb_lock, flags);
  393. /*
  394. * Save away the mapping from the original address to the DMA address.
  395. * This is needed when we sync the memory. Then we sync the buffer if
  396. * needed.
  397. */
  398. for (i = 0; i < nslots; i++)
  399. io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
  400. if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
  401. swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
  402. return dma_addr;
  403. }
  404. EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
  405. /*
  406. * Allocates bounce buffer and returns its kernel virtual address.
  407. */
  408. static void *
  409. map_single(struct device *hwdev, phys_addr_t phys, size_t size,
  410. enum dma_data_direction dir)
  411. {
  412. dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
  413. return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
  414. }
  415. /*
  416. * dma_addr is the kernel virtual address of the bounce buffer to unmap.
  417. */
  418. void
  419. swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size,
  420. enum dma_data_direction dir)
  421. {
  422. unsigned long flags;
  423. int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  424. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  425. phys_addr_t phys = io_tlb_orig_addr[index];
  426. /*
  427. * First, sync the memory before unmapping the entry
  428. */
  429. if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
  430. swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
  431. /*
  432. * Return the buffer to the free list by setting the corresponding
  433. * entries to indicate the number of contiguous entries available.
  434. * While returning the entries to the free list, we merge the entries
  435. * with slots below and above the pool being returned.
  436. */
  437. spin_lock_irqsave(&io_tlb_lock, flags);
  438. {
  439. count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
  440. io_tlb_list[index + nslots] : 0);
  441. /*
  442. * Step 1: return the slots to the free list, merging the
  443. * slots with superceeding slots
  444. */
  445. for (i = index + nslots - 1; i >= index; i--)
  446. io_tlb_list[i] = ++count;
  447. /*
  448. * Step 2: merge the returned slots with the preceding slots,
  449. * if available (non zero)
  450. */
  451. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
  452. io_tlb_list[i] = ++count;
  453. }
  454. spin_unlock_irqrestore(&io_tlb_lock, flags);
  455. }
  456. EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
  457. void
  458. swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size,
  459. enum dma_data_direction dir,
  460. enum dma_sync_target target)
  461. {
  462. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  463. phys_addr_t phys = io_tlb_orig_addr[index];
  464. phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
  465. switch (target) {
  466. case SYNC_FOR_CPU:
  467. if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
  468. swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
  469. else
  470. BUG_ON(dir != DMA_TO_DEVICE);
  471. break;
  472. case SYNC_FOR_DEVICE:
  473. if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
  474. swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
  475. else
  476. BUG_ON(dir != DMA_FROM_DEVICE);
  477. break;
  478. default:
  479. BUG();
  480. }
  481. }
  482. EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
  483. void *
  484. swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  485. dma_addr_t *dma_handle, gfp_t flags)
  486. {
  487. dma_addr_t dev_addr;
  488. void *ret;
  489. int order = get_order(size);
  490. u64 dma_mask = DMA_BIT_MASK(32);
  491. if (hwdev && hwdev->coherent_dma_mask)
  492. dma_mask = hwdev->coherent_dma_mask;
  493. ret = (void *)__get_free_pages(flags, order);
  494. if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
  495. /*
  496. * The allocated memory isn't reachable by the device.
  497. */
  498. free_pages((unsigned long) ret, order);
  499. ret = NULL;
  500. }
  501. if (!ret) {
  502. /*
  503. * We are either out of memory or the device can't DMA to
  504. * GFP_DMA memory; fall back on map_single(), which
  505. * will grab memory from the lowest available address range.
  506. */
  507. ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
  508. if (!ret)
  509. return NULL;
  510. }
  511. memset(ret, 0, size);
  512. dev_addr = swiotlb_virt_to_bus(hwdev, ret);
  513. /* Confirm address can be DMA'd by device */
  514. if (dev_addr + size - 1 > dma_mask) {
  515. printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
  516. (unsigned long long)dma_mask,
  517. (unsigned long long)dev_addr);
  518. /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
  519. swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
  520. return NULL;
  521. }
  522. *dma_handle = dev_addr;
  523. return ret;
  524. }
  525. EXPORT_SYMBOL(swiotlb_alloc_coherent);
  526. void
  527. swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  528. dma_addr_t dev_addr)
  529. {
  530. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  531. WARN_ON(irqs_disabled());
  532. if (!is_swiotlb_buffer(paddr))
  533. free_pages((unsigned long)vaddr, get_order(size));
  534. else
  535. /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
  536. swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
  537. }
  538. EXPORT_SYMBOL(swiotlb_free_coherent);
  539. static void
  540. swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
  541. int do_panic)
  542. {
  543. /*
  544. * Ran out of IOMMU space for this operation. This is very bad.
  545. * Unfortunately the drivers cannot handle this operation properly.
  546. * unless they check for dma_mapping_error (most don't)
  547. * When the mapping is small enough return a static buffer to limit
  548. * the damage, or panic when the transfer is too big.
  549. */
  550. printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
  551. "device %s\n", size, dev ? dev_name(dev) : "?");
  552. if (size <= io_tlb_overflow || !do_panic)
  553. return;
  554. if (dir == DMA_BIDIRECTIONAL)
  555. panic("DMA: Random memory could be DMA accessed\n");
  556. if (dir == DMA_FROM_DEVICE)
  557. panic("DMA: Random memory could be DMA written\n");
  558. if (dir == DMA_TO_DEVICE)
  559. panic("DMA: Random memory could be DMA read\n");
  560. }
  561. /*
  562. * Map a single buffer of the indicated size for DMA in streaming mode. The
  563. * physical address to use is returned.
  564. *
  565. * Once the device is given the dma address, the device owns this memory until
  566. * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
  567. */
  568. dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
  569. unsigned long offset, size_t size,
  570. enum dma_data_direction dir,
  571. struct dma_attrs *attrs)
  572. {
  573. phys_addr_t phys = page_to_phys(page) + offset;
  574. dma_addr_t dev_addr = phys_to_dma(dev, phys);
  575. void *map;
  576. BUG_ON(dir == DMA_NONE);
  577. /*
  578. * If the address happens to be in the device's DMA window,
  579. * we can safely return the device addr and not worry about bounce
  580. * buffering it.
  581. */
  582. if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
  583. return dev_addr;
  584. /*
  585. * Oh well, have to allocate and map a bounce buffer.
  586. */
  587. map = map_single(dev, phys, size, dir);
  588. if (!map) {
  589. swiotlb_full(dev, size, dir, 1);
  590. map = io_tlb_overflow_buffer;
  591. }
  592. dev_addr = swiotlb_virt_to_bus(dev, map);
  593. /*
  594. * Ensure that the address returned is DMA'ble
  595. */
  596. if (!dma_capable(dev, dev_addr, size)) {
  597. swiotlb_tbl_unmap_single(dev, map, size, dir);
  598. dev_addr = swiotlb_virt_to_bus(dev, io_tlb_overflow_buffer);
  599. }
  600. return dev_addr;
  601. }
  602. EXPORT_SYMBOL_GPL(swiotlb_map_page);
  603. /*
  604. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  605. * match what was provided for in a previous swiotlb_map_page call. All
  606. * other usages are undefined.
  607. *
  608. * After this call, reads by the cpu to the buffer are guaranteed to see
  609. * whatever the device wrote there.
  610. */
  611. static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  612. size_t size, enum dma_data_direction dir)
  613. {
  614. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  615. BUG_ON(dir == DMA_NONE);
  616. if (is_swiotlb_buffer(paddr)) {
  617. swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
  618. return;
  619. }
  620. if (dir != DMA_FROM_DEVICE)
  621. return;
  622. /*
  623. * phys_to_virt doesn't work with hihgmem page but we could
  624. * call dma_mark_clean() with hihgmem page here. However, we
  625. * are fine since dma_mark_clean() is null on POWERPC. We can
  626. * make dma_mark_clean() take a physical address if necessary.
  627. */
  628. dma_mark_clean(phys_to_virt(paddr), size);
  629. }
  630. void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  631. size_t size, enum dma_data_direction dir,
  632. struct dma_attrs *attrs)
  633. {
  634. unmap_single(hwdev, dev_addr, size, dir);
  635. }
  636. EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
  637. /*
  638. * Make physical memory consistent for a single streaming mode DMA translation
  639. * after a transfer.
  640. *
  641. * If you perform a swiotlb_map_page() but wish to interrogate the buffer
  642. * using the cpu, yet do not wish to teardown the dma mapping, you must
  643. * call this function before doing so. At the next point you give the dma
  644. * address back to the card, you must first perform a
  645. * swiotlb_dma_sync_for_device, and then the device again owns the buffer
  646. */
  647. static void
  648. swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  649. size_t size, enum dma_data_direction dir,
  650. enum dma_sync_target target)
  651. {
  652. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  653. BUG_ON(dir == DMA_NONE);
  654. if (is_swiotlb_buffer(paddr)) {
  655. swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
  656. target);
  657. return;
  658. }
  659. if (dir != DMA_FROM_DEVICE)
  660. return;
  661. dma_mark_clean(phys_to_virt(paddr), size);
  662. }
  663. void
  664. swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  665. size_t size, enum dma_data_direction dir)
  666. {
  667. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  668. }
  669. EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
  670. void
  671. swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  672. size_t size, enum dma_data_direction dir)
  673. {
  674. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  675. }
  676. EXPORT_SYMBOL(swiotlb_sync_single_for_device);
  677. /*
  678. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  679. * This is the scatter-gather version of the above swiotlb_map_page
  680. * interface. Here the scatter gather list elements are each tagged with the
  681. * appropriate dma address and length. They are obtained via
  682. * sg_dma_{address,length}(SG).
  683. *
  684. * NOTE: An implementation may be able to use a smaller number of
  685. * DMA address/length pairs than there are SG table elements.
  686. * (for example via virtual mapping capabilities)
  687. * The routine returns the number of addr/length pairs actually
  688. * used, at most nents.
  689. *
  690. * Device ownership issues as mentioned above for swiotlb_map_page are the
  691. * same here.
  692. */
  693. int
  694. swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
  695. enum dma_data_direction dir, struct dma_attrs *attrs)
  696. {
  697. struct scatterlist *sg;
  698. int i;
  699. BUG_ON(dir == DMA_NONE);
  700. for_each_sg(sgl, sg, nelems, i) {
  701. phys_addr_t paddr = sg_phys(sg);
  702. dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
  703. if (swiotlb_force ||
  704. !dma_capable(hwdev, dev_addr, sg->length)) {
  705. void *map = map_single(hwdev, sg_phys(sg),
  706. sg->length, dir);
  707. if (!map) {
  708. /* Don't panic here, we expect map_sg users
  709. to do proper error handling. */
  710. swiotlb_full(hwdev, sg->length, dir, 0);
  711. swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  712. attrs);
  713. sgl[0].dma_length = 0;
  714. return 0;
  715. }
  716. sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
  717. } else
  718. sg->dma_address = dev_addr;
  719. sg->dma_length = sg->length;
  720. }
  721. return nelems;
  722. }
  723. EXPORT_SYMBOL(swiotlb_map_sg_attrs);
  724. int
  725. swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  726. enum dma_data_direction dir)
  727. {
  728. return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  729. }
  730. EXPORT_SYMBOL(swiotlb_map_sg);
  731. /*
  732. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  733. * concerning calls here are the same as for swiotlb_unmap_page() above.
  734. */
  735. void
  736. swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  737. int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
  738. {
  739. struct scatterlist *sg;
  740. int i;
  741. BUG_ON(dir == DMA_NONE);
  742. for_each_sg(sgl, sg, nelems, i)
  743. unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
  744. }
  745. EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
  746. void
  747. swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  748. enum dma_data_direction dir)
  749. {
  750. return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  751. }
  752. EXPORT_SYMBOL(swiotlb_unmap_sg);
  753. /*
  754. * Make physical memory consistent for a set of streaming mode DMA translations
  755. * after a transfer.
  756. *
  757. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  758. * and usage.
  759. */
  760. static void
  761. swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  762. int nelems, enum dma_data_direction dir,
  763. enum dma_sync_target target)
  764. {
  765. struct scatterlist *sg;
  766. int i;
  767. for_each_sg(sgl, sg, nelems, i)
  768. swiotlb_sync_single(hwdev, sg->dma_address,
  769. sg->dma_length, dir, target);
  770. }
  771. void
  772. swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  773. int nelems, enum dma_data_direction dir)
  774. {
  775. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  776. }
  777. EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
  778. void
  779. swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  780. int nelems, enum dma_data_direction dir)
  781. {
  782. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  783. }
  784. EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
  785. int
  786. swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  787. {
  788. return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
  789. }
  790. EXPORT_SYMBOL(swiotlb_dma_mapping_error);
  791. /*
  792. * Return whether the given device DMA address mask can be supported
  793. * properly. For example, if your device can only drive the low 24-bits
  794. * during bus mastering, then you would pass 0x00ffffff as the mask to
  795. * this function.
  796. */
  797. int
  798. swiotlb_dma_supported(struct device *hwdev, u64 mask)
  799. {
  800. return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
  801. }
  802. EXPORT_SYMBOL(swiotlb_dma_supported);