reada.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962
  1. /*
  2. * Copyright (C) 2011 STRATO. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/rbtree.h>
  23. #include <linux/slab.h>
  24. #include <linux/workqueue.h>
  25. #include "ctree.h"
  26. #include "volumes.h"
  27. #include "disk-io.h"
  28. #include "transaction.h"
  29. #undef DEBUG
  30. /*
  31. * This is the implementation for the generic read ahead framework.
  32. *
  33. * To trigger a readahead, btrfs_reada_add must be called. It will start
  34. * a read ahead for the given range [start, end) on tree root. The returned
  35. * handle can either be used to wait on the readahead to finish
  36. * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
  37. *
  38. * The read ahead works as follows:
  39. * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
  40. * reada_start_machine will then search for extents to prefetch and trigger
  41. * some reads. When a read finishes for a node, all contained node/leaf
  42. * pointers that lie in the given range will also be enqueued. The reads will
  43. * be triggered in sequential order, thus giving a big win over a naive
  44. * enumeration. It will also make use of multi-device layouts. Each disk
  45. * will have its on read pointer and all disks will by utilized in parallel.
  46. * Also will no two disks read both sides of a mirror simultaneously, as this
  47. * would waste seeking capacity. Instead both disks will read different parts
  48. * of the filesystem.
  49. * Any number of readaheads can be started in parallel. The read order will be
  50. * determined globally, i.e. 2 parallel readaheads will normally finish faster
  51. * than the 2 started one after another.
  52. */
  53. #define MAX_IN_FLIGHT 6
  54. struct reada_extctl {
  55. struct list_head list;
  56. struct reada_control *rc;
  57. u64 generation;
  58. };
  59. struct reada_extent {
  60. u64 logical;
  61. struct btrfs_key top;
  62. u32 blocksize;
  63. int err;
  64. struct list_head extctl;
  65. struct kref refcnt;
  66. spinlock_t lock;
  67. struct reada_zone *zones[BTRFS_MAX_MIRRORS];
  68. int nzones;
  69. struct btrfs_device *scheduled_for;
  70. };
  71. struct reada_zone {
  72. u64 start;
  73. u64 end;
  74. u64 elems;
  75. struct list_head list;
  76. spinlock_t lock;
  77. int locked;
  78. struct btrfs_device *device;
  79. struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
  80. * self */
  81. int ndevs;
  82. struct kref refcnt;
  83. };
  84. struct reada_machine_work {
  85. struct btrfs_work work;
  86. struct btrfs_fs_info *fs_info;
  87. };
  88. static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
  89. static void reada_control_release(struct kref *kref);
  90. static void reada_zone_release(struct kref *kref);
  91. static void reada_start_machine(struct btrfs_fs_info *fs_info);
  92. static void __reada_start_machine(struct btrfs_fs_info *fs_info);
  93. static int reada_add_block(struct reada_control *rc, u64 logical,
  94. struct btrfs_key *top, int level, u64 generation);
  95. /* recurses */
  96. /* in case of err, eb might be NULL */
  97. static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
  98. u64 start, int err)
  99. {
  100. int level = 0;
  101. int nritems;
  102. int i;
  103. u64 bytenr;
  104. u64 generation;
  105. struct reada_extent *re;
  106. struct btrfs_fs_info *fs_info = root->fs_info;
  107. struct list_head list;
  108. unsigned long index = start >> PAGE_CACHE_SHIFT;
  109. struct btrfs_device *for_dev;
  110. if (eb)
  111. level = btrfs_header_level(eb);
  112. /* find extent */
  113. spin_lock(&fs_info->reada_lock);
  114. re = radix_tree_lookup(&fs_info->reada_tree, index);
  115. if (re)
  116. kref_get(&re->refcnt);
  117. spin_unlock(&fs_info->reada_lock);
  118. if (!re)
  119. return -1;
  120. spin_lock(&re->lock);
  121. /*
  122. * just take the full list from the extent. afterwards we
  123. * don't need the lock anymore
  124. */
  125. list_replace_init(&re->extctl, &list);
  126. for_dev = re->scheduled_for;
  127. re->scheduled_for = NULL;
  128. spin_unlock(&re->lock);
  129. if (err == 0) {
  130. nritems = level ? btrfs_header_nritems(eb) : 0;
  131. generation = btrfs_header_generation(eb);
  132. /*
  133. * FIXME: currently we just set nritems to 0 if this is a leaf,
  134. * effectively ignoring the content. In a next step we could
  135. * trigger more readahead depending from the content, e.g.
  136. * fetch the checksums for the extents in the leaf.
  137. */
  138. } else {
  139. /*
  140. * this is the error case, the extent buffer has not been
  141. * read correctly. We won't access anything from it and
  142. * just cleanup our data structures. Effectively this will
  143. * cut the branch below this node from read ahead.
  144. */
  145. nritems = 0;
  146. generation = 0;
  147. }
  148. for (i = 0; i < nritems; i++) {
  149. struct reada_extctl *rec;
  150. u64 n_gen;
  151. struct btrfs_key key;
  152. struct btrfs_key next_key;
  153. btrfs_node_key_to_cpu(eb, &key, i);
  154. if (i + 1 < nritems)
  155. btrfs_node_key_to_cpu(eb, &next_key, i + 1);
  156. else
  157. next_key = re->top;
  158. bytenr = btrfs_node_blockptr(eb, i);
  159. n_gen = btrfs_node_ptr_generation(eb, i);
  160. list_for_each_entry(rec, &list, list) {
  161. struct reada_control *rc = rec->rc;
  162. /*
  163. * if the generation doesn't match, just ignore this
  164. * extctl. This will probably cut off a branch from
  165. * prefetch. Alternatively one could start a new (sub-)
  166. * prefetch for this branch, starting again from root.
  167. * FIXME: move the generation check out of this loop
  168. */
  169. #ifdef DEBUG
  170. if (rec->generation != generation) {
  171. printk(KERN_DEBUG "generation mismatch for "
  172. "(%llu,%d,%llu) %llu != %llu\n",
  173. key.objectid, key.type, key.offset,
  174. rec->generation, generation);
  175. }
  176. #endif
  177. if (rec->generation == generation &&
  178. btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
  179. btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
  180. reada_add_block(rc, bytenr, &next_key,
  181. level - 1, n_gen);
  182. }
  183. }
  184. /*
  185. * free extctl records
  186. */
  187. while (!list_empty(&list)) {
  188. struct reada_control *rc;
  189. struct reada_extctl *rec;
  190. rec = list_first_entry(&list, struct reada_extctl, list);
  191. list_del(&rec->list);
  192. rc = rec->rc;
  193. kfree(rec);
  194. kref_get(&rc->refcnt);
  195. if (atomic_dec_and_test(&rc->elems)) {
  196. kref_put(&rc->refcnt, reada_control_release);
  197. wake_up(&rc->wait);
  198. }
  199. kref_put(&rc->refcnt, reada_control_release);
  200. reada_extent_put(fs_info, re); /* one ref for each entry */
  201. }
  202. reada_extent_put(fs_info, re); /* our ref */
  203. if (for_dev)
  204. atomic_dec(&for_dev->reada_in_flight);
  205. return 0;
  206. }
  207. /*
  208. * start is passed separately in case eb in NULL, which may be the case with
  209. * failed I/O
  210. */
  211. int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
  212. u64 start, int err)
  213. {
  214. int ret;
  215. ret = __readahead_hook(root, eb, start, err);
  216. reada_start_machine(root->fs_info);
  217. return ret;
  218. }
  219. static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
  220. struct btrfs_device *dev, u64 logical,
  221. struct btrfs_bio *bbio)
  222. {
  223. int ret;
  224. struct reada_zone *zone;
  225. struct btrfs_block_group_cache *cache = NULL;
  226. u64 start;
  227. u64 end;
  228. int i;
  229. zone = NULL;
  230. spin_lock(&fs_info->reada_lock);
  231. ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
  232. logical >> PAGE_CACHE_SHIFT, 1);
  233. if (ret == 1)
  234. kref_get(&zone->refcnt);
  235. spin_unlock(&fs_info->reada_lock);
  236. if (ret == 1) {
  237. if (logical >= zone->start && logical < zone->end)
  238. return zone;
  239. spin_lock(&fs_info->reada_lock);
  240. kref_put(&zone->refcnt, reada_zone_release);
  241. spin_unlock(&fs_info->reada_lock);
  242. }
  243. cache = btrfs_lookup_block_group(fs_info, logical);
  244. if (!cache)
  245. return NULL;
  246. start = cache->key.objectid;
  247. end = start + cache->key.offset - 1;
  248. btrfs_put_block_group(cache);
  249. zone = kzalloc(sizeof(*zone), GFP_NOFS);
  250. if (!zone)
  251. return NULL;
  252. zone->start = start;
  253. zone->end = end;
  254. INIT_LIST_HEAD(&zone->list);
  255. spin_lock_init(&zone->lock);
  256. zone->locked = 0;
  257. kref_init(&zone->refcnt);
  258. zone->elems = 0;
  259. zone->device = dev; /* our device always sits at index 0 */
  260. for (i = 0; i < bbio->num_stripes; ++i) {
  261. /* bounds have already been checked */
  262. zone->devs[i] = bbio->stripes[i].dev;
  263. }
  264. zone->ndevs = bbio->num_stripes;
  265. spin_lock(&fs_info->reada_lock);
  266. ret = radix_tree_insert(&dev->reada_zones,
  267. (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
  268. zone);
  269. if (ret == -EEXIST) {
  270. kfree(zone);
  271. ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
  272. logical >> PAGE_CACHE_SHIFT, 1);
  273. if (ret == 1)
  274. kref_get(&zone->refcnt);
  275. }
  276. spin_unlock(&fs_info->reada_lock);
  277. return zone;
  278. }
  279. static struct reada_extent *reada_find_extent(struct btrfs_root *root,
  280. u64 logical,
  281. struct btrfs_key *top, int level)
  282. {
  283. int ret;
  284. struct reada_extent *re = NULL;
  285. struct reada_extent *re_exist = NULL;
  286. struct btrfs_fs_info *fs_info = root->fs_info;
  287. struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
  288. struct btrfs_bio *bbio = NULL;
  289. struct btrfs_device *dev;
  290. struct btrfs_device *prev_dev;
  291. u32 blocksize;
  292. u64 length;
  293. int nzones = 0;
  294. int i;
  295. unsigned long index = logical >> PAGE_CACHE_SHIFT;
  296. spin_lock(&fs_info->reada_lock);
  297. re = radix_tree_lookup(&fs_info->reada_tree, index);
  298. if (re)
  299. kref_get(&re->refcnt);
  300. spin_unlock(&fs_info->reada_lock);
  301. if (re)
  302. return re;
  303. re = kzalloc(sizeof(*re), GFP_NOFS);
  304. if (!re)
  305. return NULL;
  306. blocksize = btrfs_level_size(root, level);
  307. re->logical = logical;
  308. re->blocksize = blocksize;
  309. re->top = *top;
  310. INIT_LIST_HEAD(&re->extctl);
  311. spin_lock_init(&re->lock);
  312. kref_init(&re->refcnt);
  313. /*
  314. * map block
  315. */
  316. length = blocksize;
  317. ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length, &bbio, 0);
  318. if (ret || !bbio || length < blocksize)
  319. goto error;
  320. if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
  321. printk(KERN_ERR "btrfs readahead: more than %d copies not "
  322. "supported", BTRFS_MAX_MIRRORS);
  323. goto error;
  324. }
  325. for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
  326. struct reada_zone *zone;
  327. dev = bbio->stripes[nzones].dev;
  328. zone = reada_find_zone(fs_info, dev, logical, bbio);
  329. if (!zone)
  330. break;
  331. re->zones[nzones] = zone;
  332. spin_lock(&zone->lock);
  333. if (!zone->elems)
  334. kref_get(&zone->refcnt);
  335. ++zone->elems;
  336. spin_unlock(&zone->lock);
  337. spin_lock(&fs_info->reada_lock);
  338. kref_put(&zone->refcnt, reada_zone_release);
  339. spin_unlock(&fs_info->reada_lock);
  340. }
  341. re->nzones = nzones;
  342. if (nzones == 0) {
  343. /* not a single zone found, error and out */
  344. goto error;
  345. }
  346. /* insert extent in reada_tree + all per-device trees, all or nothing */
  347. spin_lock(&fs_info->reada_lock);
  348. ret = radix_tree_insert(&fs_info->reada_tree, index, re);
  349. if (ret == -EEXIST) {
  350. re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
  351. BUG_ON(!re_exist);
  352. kref_get(&re_exist->refcnt);
  353. spin_unlock(&fs_info->reada_lock);
  354. goto error;
  355. }
  356. if (ret) {
  357. spin_unlock(&fs_info->reada_lock);
  358. goto error;
  359. }
  360. prev_dev = NULL;
  361. for (i = 0; i < nzones; ++i) {
  362. dev = bbio->stripes[i].dev;
  363. if (dev == prev_dev) {
  364. /*
  365. * in case of DUP, just add the first zone. As both
  366. * are on the same device, there's nothing to gain
  367. * from adding both.
  368. * Also, it wouldn't work, as the tree is per device
  369. * and adding would fail with EEXIST
  370. */
  371. continue;
  372. }
  373. prev_dev = dev;
  374. ret = radix_tree_insert(&dev->reada_extents, index, re);
  375. if (ret) {
  376. while (--i >= 0) {
  377. dev = bbio->stripes[i].dev;
  378. BUG_ON(dev == NULL);
  379. radix_tree_delete(&dev->reada_extents, index);
  380. }
  381. BUG_ON(fs_info == NULL);
  382. radix_tree_delete(&fs_info->reada_tree, index);
  383. spin_unlock(&fs_info->reada_lock);
  384. goto error;
  385. }
  386. }
  387. spin_unlock(&fs_info->reada_lock);
  388. kfree(bbio);
  389. return re;
  390. error:
  391. while (nzones) {
  392. struct reada_zone *zone;
  393. --nzones;
  394. zone = re->zones[nzones];
  395. kref_get(&zone->refcnt);
  396. spin_lock(&zone->lock);
  397. --zone->elems;
  398. if (zone->elems == 0) {
  399. /*
  400. * no fs_info->reada_lock needed, as this can't be
  401. * the last ref
  402. */
  403. kref_put(&zone->refcnt, reada_zone_release);
  404. }
  405. spin_unlock(&zone->lock);
  406. spin_lock(&fs_info->reada_lock);
  407. kref_put(&zone->refcnt, reada_zone_release);
  408. spin_unlock(&fs_info->reada_lock);
  409. }
  410. kfree(bbio);
  411. kfree(re);
  412. return re_exist;
  413. }
  414. static void reada_kref_dummy(struct kref *kr)
  415. {
  416. }
  417. static void reada_extent_put(struct btrfs_fs_info *fs_info,
  418. struct reada_extent *re)
  419. {
  420. int i;
  421. unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
  422. spin_lock(&fs_info->reada_lock);
  423. if (!kref_put(&re->refcnt, reada_kref_dummy)) {
  424. spin_unlock(&fs_info->reada_lock);
  425. return;
  426. }
  427. radix_tree_delete(&fs_info->reada_tree, index);
  428. for (i = 0; i < re->nzones; ++i) {
  429. struct reada_zone *zone = re->zones[i];
  430. radix_tree_delete(&zone->device->reada_extents, index);
  431. }
  432. spin_unlock(&fs_info->reada_lock);
  433. for (i = 0; i < re->nzones; ++i) {
  434. struct reada_zone *zone = re->zones[i];
  435. kref_get(&zone->refcnt);
  436. spin_lock(&zone->lock);
  437. --zone->elems;
  438. if (zone->elems == 0) {
  439. /* no fs_info->reada_lock needed, as this can't be
  440. * the last ref */
  441. kref_put(&zone->refcnt, reada_zone_release);
  442. }
  443. spin_unlock(&zone->lock);
  444. spin_lock(&fs_info->reada_lock);
  445. kref_put(&zone->refcnt, reada_zone_release);
  446. spin_unlock(&fs_info->reada_lock);
  447. }
  448. if (re->scheduled_for)
  449. atomic_dec(&re->scheduled_for->reada_in_flight);
  450. kfree(re);
  451. }
  452. static void reada_zone_release(struct kref *kref)
  453. {
  454. struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
  455. radix_tree_delete(&zone->device->reada_zones,
  456. zone->end >> PAGE_CACHE_SHIFT);
  457. kfree(zone);
  458. }
  459. static void reada_control_release(struct kref *kref)
  460. {
  461. struct reada_control *rc = container_of(kref, struct reada_control,
  462. refcnt);
  463. kfree(rc);
  464. }
  465. static int reada_add_block(struct reada_control *rc, u64 logical,
  466. struct btrfs_key *top, int level, u64 generation)
  467. {
  468. struct btrfs_root *root = rc->root;
  469. struct reada_extent *re;
  470. struct reada_extctl *rec;
  471. re = reada_find_extent(root, logical, top, level); /* takes one ref */
  472. if (!re)
  473. return -1;
  474. rec = kzalloc(sizeof(*rec), GFP_NOFS);
  475. if (!rec) {
  476. reada_extent_put(root->fs_info, re);
  477. return -1;
  478. }
  479. rec->rc = rc;
  480. rec->generation = generation;
  481. atomic_inc(&rc->elems);
  482. spin_lock(&re->lock);
  483. list_add_tail(&rec->list, &re->extctl);
  484. spin_unlock(&re->lock);
  485. /* leave the ref on the extent */
  486. return 0;
  487. }
  488. /*
  489. * called with fs_info->reada_lock held
  490. */
  491. static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
  492. {
  493. int i;
  494. unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
  495. for (i = 0; i < zone->ndevs; ++i) {
  496. struct reada_zone *peer;
  497. peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
  498. if (peer && peer->device != zone->device)
  499. peer->locked = lock;
  500. }
  501. }
  502. /*
  503. * called with fs_info->reada_lock held
  504. */
  505. static int reada_pick_zone(struct btrfs_device *dev)
  506. {
  507. struct reada_zone *top_zone = NULL;
  508. struct reada_zone *top_locked_zone = NULL;
  509. u64 top_elems = 0;
  510. u64 top_locked_elems = 0;
  511. unsigned long index = 0;
  512. int ret;
  513. if (dev->reada_curr_zone) {
  514. reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
  515. kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
  516. dev->reada_curr_zone = NULL;
  517. }
  518. /* pick the zone with the most elements */
  519. while (1) {
  520. struct reada_zone *zone;
  521. ret = radix_tree_gang_lookup(&dev->reada_zones,
  522. (void **)&zone, index, 1);
  523. if (ret == 0)
  524. break;
  525. index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
  526. if (zone->locked) {
  527. if (zone->elems > top_locked_elems) {
  528. top_locked_elems = zone->elems;
  529. top_locked_zone = zone;
  530. }
  531. } else {
  532. if (zone->elems > top_elems) {
  533. top_elems = zone->elems;
  534. top_zone = zone;
  535. }
  536. }
  537. }
  538. if (top_zone)
  539. dev->reada_curr_zone = top_zone;
  540. else if (top_locked_zone)
  541. dev->reada_curr_zone = top_locked_zone;
  542. else
  543. return 0;
  544. dev->reada_next = dev->reada_curr_zone->start;
  545. kref_get(&dev->reada_curr_zone->refcnt);
  546. reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
  547. return 1;
  548. }
  549. static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
  550. struct btrfs_device *dev)
  551. {
  552. struct reada_extent *re = NULL;
  553. int mirror_num = 0;
  554. struct extent_buffer *eb = NULL;
  555. u64 logical;
  556. u32 blocksize;
  557. int ret;
  558. int i;
  559. int need_kick = 0;
  560. spin_lock(&fs_info->reada_lock);
  561. if (dev->reada_curr_zone == NULL) {
  562. ret = reada_pick_zone(dev);
  563. if (!ret) {
  564. spin_unlock(&fs_info->reada_lock);
  565. return 0;
  566. }
  567. }
  568. /*
  569. * FIXME currently we issue the reads one extent at a time. If we have
  570. * a contiguous block of extents, we could also coagulate them or use
  571. * plugging to speed things up
  572. */
  573. ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
  574. dev->reada_next >> PAGE_CACHE_SHIFT, 1);
  575. if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
  576. ret = reada_pick_zone(dev);
  577. if (!ret) {
  578. spin_unlock(&fs_info->reada_lock);
  579. return 0;
  580. }
  581. re = NULL;
  582. ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
  583. dev->reada_next >> PAGE_CACHE_SHIFT, 1);
  584. }
  585. if (ret == 0) {
  586. spin_unlock(&fs_info->reada_lock);
  587. return 0;
  588. }
  589. dev->reada_next = re->logical + re->blocksize;
  590. kref_get(&re->refcnt);
  591. spin_unlock(&fs_info->reada_lock);
  592. /*
  593. * find mirror num
  594. */
  595. for (i = 0; i < re->nzones; ++i) {
  596. if (re->zones[i]->device == dev) {
  597. mirror_num = i + 1;
  598. break;
  599. }
  600. }
  601. logical = re->logical;
  602. blocksize = re->blocksize;
  603. spin_lock(&re->lock);
  604. if (re->scheduled_for == NULL) {
  605. re->scheduled_for = dev;
  606. need_kick = 1;
  607. }
  608. spin_unlock(&re->lock);
  609. reada_extent_put(fs_info, re);
  610. if (!need_kick)
  611. return 0;
  612. atomic_inc(&dev->reada_in_flight);
  613. ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize,
  614. mirror_num, &eb);
  615. if (ret)
  616. __readahead_hook(fs_info->extent_root, NULL, logical, ret);
  617. else if (eb)
  618. __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
  619. if (eb)
  620. free_extent_buffer(eb);
  621. return 1;
  622. }
  623. static void reada_start_machine_worker(struct btrfs_work *work)
  624. {
  625. struct reada_machine_work *rmw;
  626. struct btrfs_fs_info *fs_info;
  627. rmw = container_of(work, struct reada_machine_work, work);
  628. fs_info = rmw->fs_info;
  629. kfree(rmw);
  630. __reada_start_machine(fs_info);
  631. }
  632. static void __reada_start_machine(struct btrfs_fs_info *fs_info)
  633. {
  634. struct btrfs_device *device;
  635. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  636. u64 enqueued;
  637. u64 total = 0;
  638. int i;
  639. do {
  640. enqueued = 0;
  641. list_for_each_entry(device, &fs_devices->devices, dev_list) {
  642. if (atomic_read(&device->reada_in_flight) <
  643. MAX_IN_FLIGHT)
  644. enqueued += reada_start_machine_dev(fs_info,
  645. device);
  646. }
  647. total += enqueued;
  648. } while (enqueued && total < 10000);
  649. if (enqueued == 0)
  650. return;
  651. /*
  652. * If everything is already in the cache, this is effectively single
  653. * threaded. To a) not hold the caller for too long and b) to utilize
  654. * more cores, we broke the loop above after 10000 iterations and now
  655. * enqueue to workers to finish it. This will distribute the load to
  656. * the cores.
  657. */
  658. for (i = 0; i < 2; ++i)
  659. reada_start_machine(fs_info);
  660. }
  661. static void reada_start_machine(struct btrfs_fs_info *fs_info)
  662. {
  663. struct reada_machine_work *rmw;
  664. rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
  665. if (!rmw) {
  666. /* FIXME we cannot handle this properly right now */
  667. BUG();
  668. }
  669. rmw->work.func = reada_start_machine_worker;
  670. rmw->fs_info = fs_info;
  671. btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work);
  672. }
  673. #ifdef DEBUG
  674. static void dump_devs(struct btrfs_fs_info *fs_info, int all)
  675. {
  676. struct btrfs_device *device;
  677. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  678. unsigned long index;
  679. int ret;
  680. int i;
  681. int j;
  682. int cnt;
  683. spin_lock(&fs_info->reada_lock);
  684. list_for_each_entry(device, &fs_devices->devices, dev_list) {
  685. printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
  686. atomic_read(&device->reada_in_flight));
  687. index = 0;
  688. while (1) {
  689. struct reada_zone *zone;
  690. ret = radix_tree_gang_lookup(&device->reada_zones,
  691. (void **)&zone, index, 1);
  692. if (ret == 0)
  693. break;
  694. printk(KERN_DEBUG " zone %llu-%llu elems %llu locked "
  695. "%d devs", zone->start, zone->end, zone->elems,
  696. zone->locked);
  697. for (j = 0; j < zone->ndevs; ++j) {
  698. printk(KERN_CONT " %lld",
  699. zone->devs[j]->devid);
  700. }
  701. if (device->reada_curr_zone == zone)
  702. printk(KERN_CONT " curr off %llu",
  703. device->reada_next - zone->start);
  704. printk(KERN_CONT "\n");
  705. index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
  706. }
  707. cnt = 0;
  708. index = 0;
  709. while (all) {
  710. struct reada_extent *re = NULL;
  711. ret = radix_tree_gang_lookup(&device->reada_extents,
  712. (void **)&re, index, 1);
  713. if (ret == 0)
  714. break;
  715. printk(KERN_DEBUG
  716. " re: logical %llu size %u empty %d for %lld",
  717. re->logical, re->blocksize,
  718. list_empty(&re->extctl), re->scheduled_for ?
  719. re->scheduled_for->devid : -1);
  720. for (i = 0; i < re->nzones; ++i) {
  721. printk(KERN_CONT " zone %llu-%llu devs",
  722. re->zones[i]->start,
  723. re->zones[i]->end);
  724. for (j = 0; j < re->zones[i]->ndevs; ++j) {
  725. printk(KERN_CONT " %lld",
  726. re->zones[i]->devs[j]->devid);
  727. }
  728. }
  729. printk(KERN_CONT "\n");
  730. index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
  731. if (++cnt > 15)
  732. break;
  733. }
  734. }
  735. index = 0;
  736. cnt = 0;
  737. while (all) {
  738. struct reada_extent *re = NULL;
  739. ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
  740. index, 1);
  741. if (ret == 0)
  742. break;
  743. if (!re->scheduled_for) {
  744. index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
  745. continue;
  746. }
  747. printk(KERN_DEBUG
  748. "re: logical %llu size %u list empty %d for %lld",
  749. re->logical, re->blocksize, list_empty(&re->extctl),
  750. re->scheduled_for ? re->scheduled_for->devid : -1);
  751. for (i = 0; i < re->nzones; ++i) {
  752. printk(KERN_CONT " zone %llu-%llu devs",
  753. re->zones[i]->start,
  754. re->zones[i]->end);
  755. for (i = 0; i < re->nzones; ++i) {
  756. printk(KERN_CONT " zone %llu-%llu devs",
  757. re->zones[i]->start,
  758. re->zones[i]->end);
  759. for (j = 0; j < re->zones[i]->ndevs; ++j) {
  760. printk(KERN_CONT " %lld",
  761. re->zones[i]->devs[j]->devid);
  762. }
  763. }
  764. }
  765. printk(KERN_CONT "\n");
  766. index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
  767. }
  768. spin_unlock(&fs_info->reada_lock);
  769. }
  770. #endif
  771. /*
  772. * interface
  773. */
  774. struct reada_control *btrfs_reada_add(struct btrfs_root *root,
  775. struct btrfs_key *key_start, struct btrfs_key *key_end)
  776. {
  777. struct reada_control *rc;
  778. u64 start;
  779. u64 generation;
  780. int level;
  781. struct extent_buffer *node;
  782. static struct btrfs_key max_key = {
  783. .objectid = (u64)-1,
  784. .type = (u8)-1,
  785. .offset = (u64)-1
  786. };
  787. rc = kzalloc(sizeof(*rc), GFP_NOFS);
  788. if (!rc)
  789. return ERR_PTR(-ENOMEM);
  790. rc->root = root;
  791. rc->key_start = *key_start;
  792. rc->key_end = *key_end;
  793. atomic_set(&rc->elems, 0);
  794. init_waitqueue_head(&rc->wait);
  795. kref_init(&rc->refcnt);
  796. kref_get(&rc->refcnt); /* one ref for having elements */
  797. node = btrfs_root_node(root);
  798. start = node->start;
  799. level = btrfs_header_level(node);
  800. generation = btrfs_header_generation(node);
  801. free_extent_buffer(node);
  802. reada_add_block(rc, start, &max_key, level, generation);
  803. reada_start_machine(root->fs_info);
  804. return rc;
  805. }
  806. #ifdef DEBUG
  807. int btrfs_reada_wait(void *handle)
  808. {
  809. struct reada_control *rc = handle;
  810. while (atomic_read(&rc->elems)) {
  811. wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
  812. 5 * HZ);
  813. dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
  814. }
  815. dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
  816. kref_put(&rc->refcnt, reada_control_release);
  817. return 0;
  818. }
  819. #else
  820. int btrfs_reada_wait(void *handle)
  821. {
  822. struct reada_control *rc = handle;
  823. while (atomic_read(&rc->elems)) {
  824. wait_event(rc->wait, atomic_read(&rc->elems) == 0);
  825. }
  826. kref_put(&rc->refcnt, reada_control_release);
  827. return 0;
  828. }
  829. #endif
  830. void btrfs_reada_detach(void *handle)
  831. {
  832. struct reada_control *rc = handle;
  833. kref_put(&rc->refcnt, reada_control_release);
  834. }