delayed-inode.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #define BTRFS_DELAYED_WRITEBACK 400
  24. #define BTRFS_DELAYED_BACKGROUND 100
  25. static struct kmem_cache *delayed_node_cache;
  26. int __init btrfs_delayed_inode_init(void)
  27. {
  28. delayed_node_cache = kmem_cache_create("delayed_node",
  29. sizeof(struct btrfs_delayed_node),
  30. 0,
  31. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  32. NULL);
  33. if (!delayed_node_cache)
  34. return -ENOMEM;
  35. return 0;
  36. }
  37. void btrfs_delayed_inode_exit(void)
  38. {
  39. if (delayed_node_cache)
  40. kmem_cache_destroy(delayed_node_cache);
  41. }
  42. static inline void btrfs_init_delayed_node(
  43. struct btrfs_delayed_node *delayed_node,
  44. struct btrfs_root *root, u64 inode_id)
  45. {
  46. delayed_node->root = root;
  47. delayed_node->inode_id = inode_id;
  48. atomic_set(&delayed_node->refs, 0);
  49. delayed_node->count = 0;
  50. delayed_node->in_list = 0;
  51. delayed_node->inode_dirty = 0;
  52. delayed_node->ins_root = RB_ROOT;
  53. delayed_node->del_root = RB_ROOT;
  54. mutex_init(&delayed_node->mutex);
  55. delayed_node->index_cnt = 0;
  56. INIT_LIST_HEAD(&delayed_node->n_list);
  57. INIT_LIST_HEAD(&delayed_node->p_list);
  58. delayed_node->bytes_reserved = 0;
  59. }
  60. static inline int btrfs_is_continuous_delayed_item(
  61. struct btrfs_delayed_item *item1,
  62. struct btrfs_delayed_item *item2)
  63. {
  64. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  65. item1->key.objectid == item2->key.objectid &&
  66. item1->key.type == item2->key.type &&
  67. item1->key.offset + 1 == item2->key.offset)
  68. return 1;
  69. return 0;
  70. }
  71. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  72. struct btrfs_root *root)
  73. {
  74. return root->fs_info->delayed_root;
  75. }
  76. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  77. {
  78. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  79. struct btrfs_root *root = btrfs_inode->root;
  80. u64 ino = btrfs_ino(inode);
  81. struct btrfs_delayed_node *node;
  82. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  83. if (node) {
  84. atomic_inc(&node->refs);
  85. return node;
  86. }
  87. spin_lock(&root->inode_lock);
  88. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  89. if (node) {
  90. if (btrfs_inode->delayed_node) {
  91. atomic_inc(&node->refs); /* can be accessed */
  92. BUG_ON(btrfs_inode->delayed_node != node);
  93. spin_unlock(&root->inode_lock);
  94. return node;
  95. }
  96. btrfs_inode->delayed_node = node;
  97. atomic_inc(&node->refs); /* can be accessed */
  98. atomic_inc(&node->refs); /* cached in the inode */
  99. spin_unlock(&root->inode_lock);
  100. return node;
  101. }
  102. spin_unlock(&root->inode_lock);
  103. return NULL;
  104. }
  105. /* Will return either the node or PTR_ERR(-ENOMEM) */
  106. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  107. struct inode *inode)
  108. {
  109. struct btrfs_delayed_node *node;
  110. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  111. struct btrfs_root *root = btrfs_inode->root;
  112. u64 ino = btrfs_ino(inode);
  113. int ret;
  114. again:
  115. node = btrfs_get_delayed_node(inode);
  116. if (node)
  117. return node;
  118. node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
  119. if (!node)
  120. return ERR_PTR(-ENOMEM);
  121. btrfs_init_delayed_node(node, root, ino);
  122. atomic_inc(&node->refs); /* cached in the btrfs inode */
  123. atomic_inc(&node->refs); /* can be accessed */
  124. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  125. if (ret) {
  126. kmem_cache_free(delayed_node_cache, node);
  127. return ERR_PTR(ret);
  128. }
  129. spin_lock(&root->inode_lock);
  130. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  131. if (ret == -EEXIST) {
  132. kmem_cache_free(delayed_node_cache, node);
  133. spin_unlock(&root->inode_lock);
  134. radix_tree_preload_end();
  135. goto again;
  136. }
  137. btrfs_inode->delayed_node = node;
  138. spin_unlock(&root->inode_lock);
  139. radix_tree_preload_end();
  140. return node;
  141. }
  142. /*
  143. * Call it when holding delayed_node->mutex
  144. *
  145. * If mod = 1, add this node into the prepared list.
  146. */
  147. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  148. struct btrfs_delayed_node *node,
  149. int mod)
  150. {
  151. spin_lock(&root->lock);
  152. if (node->in_list) {
  153. if (!list_empty(&node->p_list))
  154. list_move_tail(&node->p_list, &root->prepare_list);
  155. else if (mod)
  156. list_add_tail(&node->p_list, &root->prepare_list);
  157. } else {
  158. list_add_tail(&node->n_list, &root->node_list);
  159. list_add_tail(&node->p_list, &root->prepare_list);
  160. atomic_inc(&node->refs); /* inserted into list */
  161. root->nodes++;
  162. node->in_list = 1;
  163. }
  164. spin_unlock(&root->lock);
  165. }
  166. /* Call it when holding delayed_node->mutex */
  167. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  168. struct btrfs_delayed_node *node)
  169. {
  170. spin_lock(&root->lock);
  171. if (node->in_list) {
  172. root->nodes--;
  173. atomic_dec(&node->refs); /* not in the list */
  174. list_del_init(&node->n_list);
  175. if (!list_empty(&node->p_list))
  176. list_del_init(&node->p_list);
  177. node->in_list = 0;
  178. }
  179. spin_unlock(&root->lock);
  180. }
  181. struct btrfs_delayed_node *btrfs_first_delayed_node(
  182. struct btrfs_delayed_root *delayed_root)
  183. {
  184. struct list_head *p;
  185. struct btrfs_delayed_node *node = NULL;
  186. spin_lock(&delayed_root->lock);
  187. if (list_empty(&delayed_root->node_list))
  188. goto out;
  189. p = delayed_root->node_list.next;
  190. node = list_entry(p, struct btrfs_delayed_node, n_list);
  191. atomic_inc(&node->refs);
  192. out:
  193. spin_unlock(&delayed_root->lock);
  194. return node;
  195. }
  196. struct btrfs_delayed_node *btrfs_next_delayed_node(
  197. struct btrfs_delayed_node *node)
  198. {
  199. struct btrfs_delayed_root *delayed_root;
  200. struct list_head *p;
  201. struct btrfs_delayed_node *next = NULL;
  202. delayed_root = node->root->fs_info->delayed_root;
  203. spin_lock(&delayed_root->lock);
  204. if (!node->in_list) { /* not in the list */
  205. if (list_empty(&delayed_root->node_list))
  206. goto out;
  207. p = delayed_root->node_list.next;
  208. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  209. goto out;
  210. else
  211. p = node->n_list.next;
  212. next = list_entry(p, struct btrfs_delayed_node, n_list);
  213. atomic_inc(&next->refs);
  214. out:
  215. spin_unlock(&delayed_root->lock);
  216. return next;
  217. }
  218. static void __btrfs_release_delayed_node(
  219. struct btrfs_delayed_node *delayed_node,
  220. int mod)
  221. {
  222. struct btrfs_delayed_root *delayed_root;
  223. if (!delayed_node)
  224. return;
  225. delayed_root = delayed_node->root->fs_info->delayed_root;
  226. mutex_lock(&delayed_node->mutex);
  227. if (delayed_node->count)
  228. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  229. else
  230. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  231. mutex_unlock(&delayed_node->mutex);
  232. if (atomic_dec_and_test(&delayed_node->refs)) {
  233. struct btrfs_root *root = delayed_node->root;
  234. spin_lock(&root->inode_lock);
  235. if (atomic_read(&delayed_node->refs) == 0) {
  236. radix_tree_delete(&root->delayed_nodes_tree,
  237. delayed_node->inode_id);
  238. kmem_cache_free(delayed_node_cache, delayed_node);
  239. }
  240. spin_unlock(&root->inode_lock);
  241. }
  242. }
  243. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  244. {
  245. __btrfs_release_delayed_node(node, 0);
  246. }
  247. struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  248. struct btrfs_delayed_root *delayed_root)
  249. {
  250. struct list_head *p;
  251. struct btrfs_delayed_node *node = NULL;
  252. spin_lock(&delayed_root->lock);
  253. if (list_empty(&delayed_root->prepare_list))
  254. goto out;
  255. p = delayed_root->prepare_list.next;
  256. list_del_init(p);
  257. node = list_entry(p, struct btrfs_delayed_node, p_list);
  258. atomic_inc(&node->refs);
  259. out:
  260. spin_unlock(&delayed_root->lock);
  261. return node;
  262. }
  263. static inline void btrfs_release_prepared_delayed_node(
  264. struct btrfs_delayed_node *node)
  265. {
  266. __btrfs_release_delayed_node(node, 1);
  267. }
  268. struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  269. {
  270. struct btrfs_delayed_item *item;
  271. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  272. if (item) {
  273. item->data_len = data_len;
  274. item->ins_or_del = 0;
  275. item->bytes_reserved = 0;
  276. item->delayed_node = NULL;
  277. atomic_set(&item->refs, 1);
  278. }
  279. return item;
  280. }
  281. /*
  282. * __btrfs_lookup_delayed_item - look up the delayed item by key
  283. * @delayed_node: pointer to the delayed node
  284. * @key: the key to look up
  285. * @prev: used to store the prev item if the right item isn't found
  286. * @next: used to store the next item if the right item isn't found
  287. *
  288. * Note: if we don't find the right item, we will return the prev item and
  289. * the next item.
  290. */
  291. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  292. struct rb_root *root,
  293. struct btrfs_key *key,
  294. struct btrfs_delayed_item **prev,
  295. struct btrfs_delayed_item **next)
  296. {
  297. struct rb_node *node, *prev_node = NULL;
  298. struct btrfs_delayed_item *delayed_item = NULL;
  299. int ret = 0;
  300. node = root->rb_node;
  301. while (node) {
  302. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  303. rb_node);
  304. prev_node = node;
  305. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  306. if (ret < 0)
  307. node = node->rb_right;
  308. else if (ret > 0)
  309. node = node->rb_left;
  310. else
  311. return delayed_item;
  312. }
  313. if (prev) {
  314. if (!prev_node)
  315. *prev = NULL;
  316. else if (ret < 0)
  317. *prev = delayed_item;
  318. else if ((node = rb_prev(prev_node)) != NULL) {
  319. *prev = rb_entry(node, struct btrfs_delayed_item,
  320. rb_node);
  321. } else
  322. *prev = NULL;
  323. }
  324. if (next) {
  325. if (!prev_node)
  326. *next = NULL;
  327. else if (ret > 0)
  328. *next = delayed_item;
  329. else if ((node = rb_next(prev_node)) != NULL) {
  330. *next = rb_entry(node, struct btrfs_delayed_item,
  331. rb_node);
  332. } else
  333. *next = NULL;
  334. }
  335. return NULL;
  336. }
  337. struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  338. struct btrfs_delayed_node *delayed_node,
  339. struct btrfs_key *key)
  340. {
  341. struct btrfs_delayed_item *item;
  342. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  343. NULL, NULL);
  344. return item;
  345. }
  346. struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
  347. struct btrfs_delayed_node *delayed_node,
  348. struct btrfs_key *key)
  349. {
  350. struct btrfs_delayed_item *item;
  351. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  352. NULL, NULL);
  353. return item;
  354. }
  355. struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
  356. struct btrfs_delayed_node *delayed_node,
  357. struct btrfs_key *key)
  358. {
  359. struct btrfs_delayed_item *item, *next;
  360. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  361. NULL, &next);
  362. if (!item)
  363. item = next;
  364. return item;
  365. }
  366. struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
  367. struct btrfs_delayed_node *delayed_node,
  368. struct btrfs_key *key)
  369. {
  370. struct btrfs_delayed_item *item, *next;
  371. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  372. NULL, &next);
  373. if (!item)
  374. item = next;
  375. return item;
  376. }
  377. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  378. struct btrfs_delayed_item *ins,
  379. int action)
  380. {
  381. struct rb_node **p, *node;
  382. struct rb_node *parent_node = NULL;
  383. struct rb_root *root;
  384. struct btrfs_delayed_item *item;
  385. int cmp;
  386. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  387. root = &delayed_node->ins_root;
  388. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  389. root = &delayed_node->del_root;
  390. else
  391. BUG();
  392. p = &root->rb_node;
  393. node = &ins->rb_node;
  394. while (*p) {
  395. parent_node = *p;
  396. item = rb_entry(parent_node, struct btrfs_delayed_item,
  397. rb_node);
  398. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  399. if (cmp < 0)
  400. p = &(*p)->rb_right;
  401. else if (cmp > 0)
  402. p = &(*p)->rb_left;
  403. else
  404. return -EEXIST;
  405. }
  406. rb_link_node(node, parent_node, p);
  407. rb_insert_color(node, root);
  408. ins->delayed_node = delayed_node;
  409. ins->ins_or_del = action;
  410. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  411. action == BTRFS_DELAYED_INSERTION_ITEM &&
  412. ins->key.offset >= delayed_node->index_cnt)
  413. delayed_node->index_cnt = ins->key.offset + 1;
  414. delayed_node->count++;
  415. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  416. return 0;
  417. }
  418. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  419. struct btrfs_delayed_item *item)
  420. {
  421. return __btrfs_add_delayed_item(node, item,
  422. BTRFS_DELAYED_INSERTION_ITEM);
  423. }
  424. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  425. struct btrfs_delayed_item *item)
  426. {
  427. return __btrfs_add_delayed_item(node, item,
  428. BTRFS_DELAYED_DELETION_ITEM);
  429. }
  430. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  431. {
  432. struct rb_root *root;
  433. struct btrfs_delayed_root *delayed_root;
  434. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  435. BUG_ON(!delayed_root);
  436. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  437. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  438. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  439. root = &delayed_item->delayed_node->ins_root;
  440. else
  441. root = &delayed_item->delayed_node->del_root;
  442. rb_erase(&delayed_item->rb_node, root);
  443. delayed_item->delayed_node->count--;
  444. atomic_dec(&delayed_root->items);
  445. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
  446. waitqueue_active(&delayed_root->wait))
  447. wake_up(&delayed_root->wait);
  448. }
  449. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  450. {
  451. if (item) {
  452. __btrfs_remove_delayed_item(item);
  453. if (atomic_dec_and_test(&item->refs))
  454. kfree(item);
  455. }
  456. }
  457. struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  458. struct btrfs_delayed_node *delayed_node)
  459. {
  460. struct rb_node *p;
  461. struct btrfs_delayed_item *item = NULL;
  462. p = rb_first(&delayed_node->ins_root);
  463. if (p)
  464. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  465. return item;
  466. }
  467. struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  468. struct btrfs_delayed_node *delayed_node)
  469. {
  470. struct rb_node *p;
  471. struct btrfs_delayed_item *item = NULL;
  472. p = rb_first(&delayed_node->del_root);
  473. if (p)
  474. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  475. return item;
  476. }
  477. struct btrfs_delayed_item *__btrfs_next_delayed_item(
  478. struct btrfs_delayed_item *item)
  479. {
  480. struct rb_node *p;
  481. struct btrfs_delayed_item *next = NULL;
  482. p = rb_next(&item->rb_node);
  483. if (p)
  484. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  485. return next;
  486. }
  487. static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
  488. u64 root_id)
  489. {
  490. struct btrfs_key root_key;
  491. if (root->objectid == root_id)
  492. return root;
  493. root_key.objectid = root_id;
  494. root_key.type = BTRFS_ROOT_ITEM_KEY;
  495. root_key.offset = (u64)-1;
  496. return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
  497. }
  498. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  499. struct btrfs_root *root,
  500. struct btrfs_delayed_item *item)
  501. {
  502. struct btrfs_block_rsv *src_rsv;
  503. struct btrfs_block_rsv *dst_rsv;
  504. u64 num_bytes;
  505. int ret;
  506. if (!trans->bytes_reserved)
  507. return 0;
  508. src_rsv = trans->block_rsv;
  509. dst_rsv = &root->fs_info->delayed_block_rsv;
  510. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  511. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  512. if (!ret) {
  513. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  514. item->key.objectid,
  515. num_bytes, 1);
  516. item->bytes_reserved = num_bytes;
  517. }
  518. return ret;
  519. }
  520. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  521. struct btrfs_delayed_item *item)
  522. {
  523. struct btrfs_block_rsv *rsv;
  524. if (!item->bytes_reserved)
  525. return;
  526. rsv = &root->fs_info->delayed_block_rsv;
  527. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  528. item->key.objectid, item->bytes_reserved,
  529. 0);
  530. btrfs_block_rsv_release(root, rsv,
  531. item->bytes_reserved);
  532. }
  533. static int btrfs_delayed_inode_reserve_metadata(
  534. struct btrfs_trans_handle *trans,
  535. struct btrfs_root *root,
  536. struct inode *inode,
  537. struct btrfs_delayed_node *node)
  538. {
  539. struct btrfs_block_rsv *src_rsv;
  540. struct btrfs_block_rsv *dst_rsv;
  541. u64 num_bytes;
  542. int ret;
  543. bool release = false;
  544. src_rsv = trans->block_rsv;
  545. dst_rsv = &root->fs_info->delayed_block_rsv;
  546. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  547. /*
  548. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  549. * which doesn't reserve space for speed. This is a problem since we
  550. * still need to reserve space for this update, so try to reserve the
  551. * space.
  552. *
  553. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  554. * we're accounted for.
  555. */
  556. if (!src_rsv || (!trans->bytes_reserved &&
  557. src_rsv != &root->fs_info->delalloc_block_rsv)) {
  558. ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
  559. /*
  560. * Since we're under a transaction reserve_metadata_bytes could
  561. * try to commit the transaction which will make it return
  562. * EAGAIN to make us stop the transaction we have, so return
  563. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  564. */
  565. if (ret == -EAGAIN)
  566. ret = -ENOSPC;
  567. if (!ret) {
  568. node->bytes_reserved = num_bytes;
  569. trace_btrfs_space_reservation(root->fs_info,
  570. "delayed_inode",
  571. btrfs_ino(inode),
  572. num_bytes, 1);
  573. }
  574. return ret;
  575. } else if (src_rsv == &root->fs_info->delalloc_block_rsv) {
  576. spin_lock(&BTRFS_I(inode)->lock);
  577. if (BTRFS_I(inode)->delalloc_meta_reserved) {
  578. BTRFS_I(inode)->delalloc_meta_reserved = 0;
  579. spin_unlock(&BTRFS_I(inode)->lock);
  580. release = true;
  581. goto migrate;
  582. }
  583. spin_unlock(&BTRFS_I(inode)->lock);
  584. /* Ok we didn't have space pre-reserved. This shouldn't happen
  585. * too often but it can happen if we do delalloc to an existing
  586. * inode which gets dirtied because of the time update, and then
  587. * isn't touched again until after the transaction commits and
  588. * then we try to write out the data. First try to be nice and
  589. * reserve something strictly for us. If not be a pain and try
  590. * to steal from the delalloc block rsv.
  591. */
  592. ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
  593. if (!ret)
  594. goto out;
  595. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  596. if (!ret)
  597. goto out;
  598. /*
  599. * Ok this is a problem, let's just steal from the global rsv
  600. * since this really shouldn't happen that often.
  601. */
  602. WARN_ON(1);
  603. ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
  604. dst_rsv, num_bytes);
  605. goto out;
  606. }
  607. migrate:
  608. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  609. out:
  610. /*
  611. * Migrate only takes a reservation, it doesn't touch the size of the
  612. * block_rsv. This is to simplify people who don't normally have things
  613. * migrated from their block rsv. If they go to release their
  614. * reservation, that will decrease the size as well, so if migrate
  615. * reduced size we'd end up with a negative size. But for the
  616. * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
  617. * but we could in fact do this reserve/migrate dance several times
  618. * between the time we did the original reservation and we'd clean it
  619. * up. So to take care of this, release the space for the meta
  620. * reservation here. I think it may be time for a documentation page on
  621. * how block rsvs. work.
  622. */
  623. if (!ret) {
  624. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  625. btrfs_ino(inode), num_bytes, 1);
  626. node->bytes_reserved = num_bytes;
  627. }
  628. if (release) {
  629. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  630. btrfs_ino(inode), num_bytes, 0);
  631. btrfs_block_rsv_release(root, src_rsv, num_bytes);
  632. }
  633. return ret;
  634. }
  635. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  636. struct btrfs_delayed_node *node)
  637. {
  638. struct btrfs_block_rsv *rsv;
  639. if (!node->bytes_reserved)
  640. return;
  641. rsv = &root->fs_info->delayed_block_rsv;
  642. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  643. node->inode_id, node->bytes_reserved, 0);
  644. btrfs_block_rsv_release(root, rsv,
  645. node->bytes_reserved);
  646. node->bytes_reserved = 0;
  647. }
  648. /*
  649. * This helper will insert some continuous items into the same leaf according
  650. * to the free space of the leaf.
  651. */
  652. static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
  653. struct btrfs_root *root,
  654. struct btrfs_path *path,
  655. struct btrfs_delayed_item *item)
  656. {
  657. struct btrfs_delayed_item *curr, *next;
  658. int free_space;
  659. int total_data_size = 0, total_size = 0;
  660. struct extent_buffer *leaf;
  661. char *data_ptr;
  662. struct btrfs_key *keys;
  663. u32 *data_size;
  664. struct list_head head;
  665. int slot;
  666. int nitems;
  667. int i;
  668. int ret = 0;
  669. BUG_ON(!path->nodes[0]);
  670. leaf = path->nodes[0];
  671. free_space = btrfs_leaf_free_space(root, leaf);
  672. INIT_LIST_HEAD(&head);
  673. next = item;
  674. nitems = 0;
  675. /*
  676. * count the number of the continuous items that we can insert in batch
  677. */
  678. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  679. free_space) {
  680. total_data_size += next->data_len;
  681. total_size += next->data_len + sizeof(struct btrfs_item);
  682. list_add_tail(&next->tree_list, &head);
  683. nitems++;
  684. curr = next;
  685. next = __btrfs_next_delayed_item(curr);
  686. if (!next)
  687. break;
  688. if (!btrfs_is_continuous_delayed_item(curr, next))
  689. break;
  690. }
  691. if (!nitems) {
  692. ret = 0;
  693. goto out;
  694. }
  695. /*
  696. * we need allocate some memory space, but it might cause the task
  697. * to sleep, so we set all locked nodes in the path to blocking locks
  698. * first.
  699. */
  700. btrfs_set_path_blocking(path);
  701. keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
  702. if (!keys) {
  703. ret = -ENOMEM;
  704. goto out;
  705. }
  706. data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
  707. if (!data_size) {
  708. ret = -ENOMEM;
  709. goto error;
  710. }
  711. /* get keys of all the delayed items */
  712. i = 0;
  713. list_for_each_entry(next, &head, tree_list) {
  714. keys[i] = next->key;
  715. data_size[i] = next->data_len;
  716. i++;
  717. }
  718. /* reset all the locked nodes in the patch to spinning locks. */
  719. btrfs_clear_path_blocking(path, NULL, 0);
  720. /* insert the keys of the items */
  721. setup_items_for_insert(trans, root, path, keys, data_size,
  722. total_data_size, total_size, nitems);
  723. /* insert the dir index items */
  724. slot = path->slots[0];
  725. list_for_each_entry_safe(curr, next, &head, tree_list) {
  726. data_ptr = btrfs_item_ptr(leaf, slot, char);
  727. write_extent_buffer(leaf, &curr->data,
  728. (unsigned long)data_ptr,
  729. curr->data_len);
  730. slot++;
  731. btrfs_delayed_item_release_metadata(root, curr);
  732. list_del(&curr->tree_list);
  733. btrfs_release_delayed_item(curr);
  734. }
  735. error:
  736. kfree(data_size);
  737. kfree(keys);
  738. out:
  739. return ret;
  740. }
  741. /*
  742. * This helper can just do simple insertion that needn't extend item for new
  743. * data, such as directory name index insertion, inode insertion.
  744. */
  745. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  746. struct btrfs_root *root,
  747. struct btrfs_path *path,
  748. struct btrfs_delayed_item *delayed_item)
  749. {
  750. struct extent_buffer *leaf;
  751. struct btrfs_item *item;
  752. char *ptr;
  753. int ret;
  754. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  755. delayed_item->data_len);
  756. if (ret < 0 && ret != -EEXIST)
  757. return ret;
  758. leaf = path->nodes[0];
  759. item = btrfs_item_nr(leaf, path->slots[0]);
  760. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  761. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  762. delayed_item->data_len);
  763. btrfs_mark_buffer_dirty(leaf);
  764. btrfs_delayed_item_release_metadata(root, delayed_item);
  765. return 0;
  766. }
  767. /*
  768. * we insert an item first, then if there are some continuous items, we try
  769. * to insert those items into the same leaf.
  770. */
  771. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  772. struct btrfs_path *path,
  773. struct btrfs_root *root,
  774. struct btrfs_delayed_node *node)
  775. {
  776. struct btrfs_delayed_item *curr, *prev;
  777. int ret = 0;
  778. do_again:
  779. mutex_lock(&node->mutex);
  780. curr = __btrfs_first_delayed_insertion_item(node);
  781. if (!curr)
  782. goto insert_end;
  783. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  784. if (ret < 0) {
  785. btrfs_release_path(path);
  786. goto insert_end;
  787. }
  788. prev = curr;
  789. curr = __btrfs_next_delayed_item(prev);
  790. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  791. /* insert the continuous items into the same leaf */
  792. path->slots[0]++;
  793. btrfs_batch_insert_items(trans, root, path, curr);
  794. }
  795. btrfs_release_delayed_item(prev);
  796. btrfs_mark_buffer_dirty(path->nodes[0]);
  797. btrfs_release_path(path);
  798. mutex_unlock(&node->mutex);
  799. goto do_again;
  800. insert_end:
  801. mutex_unlock(&node->mutex);
  802. return ret;
  803. }
  804. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  805. struct btrfs_root *root,
  806. struct btrfs_path *path,
  807. struct btrfs_delayed_item *item)
  808. {
  809. struct btrfs_delayed_item *curr, *next;
  810. struct extent_buffer *leaf;
  811. struct btrfs_key key;
  812. struct list_head head;
  813. int nitems, i, last_item;
  814. int ret = 0;
  815. BUG_ON(!path->nodes[0]);
  816. leaf = path->nodes[0];
  817. i = path->slots[0];
  818. last_item = btrfs_header_nritems(leaf) - 1;
  819. if (i > last_item)
  820. return -ENOENT; /* FIXME: Is errno suitable? */
  821. next = item;
  822. INIT_LIST_HEAD(&head);
  823. btrfs_item_key_to_cpu(leaf, &key, i);
  824. nitems = 0;
  825. /*
  826. * count the number of the dir index items that we can delete in batch
  827. */
  828. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  829. list_add_tail(&next->tree_list, &head);
  830. nitems++;
  831. curr = next;
  832. next = __btrfs_next_delayed_item(curr);
  833. if (!next)
  834. break;
  835. if (!btrfs_is_continuous_delayed_item(curr, next))
  836. break;
  837. i++;
  838. if (i > last_item)
  839. break;
  840. btrfs_item_key_to_cpu(leaf, &key, i);
  841. }
  842. if (!nitems)
  843. return 0;
  844. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  845. if (ret)
  846. goto out;
  847. list_for_each_entry_safe(curr, next, &head, tree_list) {
  848. btrfs_delayed_item_release_metadata(root, curr);
  849. list_del(&curr->tree_list);
  850. btrfs_release_delayed_item(curr);
  851. }
  852. out:
  853. return ret;
  854. }
  855. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  856. struct btrfs_path *path,
  857. struct btrfs_root *root,
  858. struct btrfs_delayed_node *node)
  859. {
  860. struct btrfs_delayed_item *curr, *prev;
  861. int ret = 0;
  862. do_again:
  863. mutex_lock(&node->mutex);
  864. curr = __btrfs_first_delayed_deletion_item(node);
  865. if (!curr)
  866. goto delete_fail;
  867. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  868. if (ret < 0)
  869. goto delete_fail;
  870. else if (ret > 0) {
  871. /*
  872. * can't find the item which the node points to, so this node
  873. * is invalid, just drop it.
  874. */
  875. prev = curr;
  876. curr = __btrfs_next_delayed_item(prev);
  877. btrfs_release_delayed_item(prev);
  878. ret = 0;
  879. btrfs_release_path(path);
  880. if (curr)
  881. goto do_again;
  882. else
  883. goto delete_fail;
  884. }
  885. btrfs_batch_delete_items(trans, root, path, curr);
  886. btrfs_release_path(path);
  887. mutex_unlock(&node->mutex);
  888. goto do_again;
  889. delete_fail:
  890. btrfs_release_path(path);
  891. mutex_unlock(&node->mutex);
  892. return ret;
  893. }
  894. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  895. {
  896. struct btrfs_delayed_root *delayed_root;
  897. if (delayed_node && delayed_node->inode_dirty) {
  898. BUG_ON(!delayed_node->root);
  899. delayed_node->inode_dirty = 0;
  900. delayed_node->count--;
  901. delayed_root = delayed_node->root->fs_info->delayed_root;
  902. atomic_dec(&delayed_root->items);
  903. if (atomic_read(&delayed_root->items) <
  904. BTRFS_DELAYED_BACKGROUND &&
  905. waitqueue_active(&delayed_root->wait))
  906. wake_up(&delayed_root->wait);
  907. }
  908. }
  909. static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  910. struct btrfs_root *root,
  911. struct btrfs_path *path,
  912. struct btrfs_delayed_node *node)
  913. {
  914. struct btrfs_key key;
  915. struct btrfs_inode_item *inode_item;
  916. struct extent_buffer *leaf;
  917. int ret;
  918. mutex_lock(&node->mutex);
  919. if (!node->inode_dirty) {
  920. mutex_unlock(&node->mutex);
  921. return 0;
  922. }
  923. key.objectid = node->inode_id;
  924. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  925. key.offset = 0;
  926. ret = btrfs_lookup_inode(trans, root, path, &key, 1);
  927. if (ret > 0) {
  928. btrfs_release_path(path);
  929. mutex_unlock(&node->mutex);
  930. return -ENOENT;
  931. } else if (ret < 0) {
  932. mutex_unlock(&node->mutex);
  933. return ret;
  934. }
  935. btrfs_unlock_up_safe(path, 1);
  936. leaf = path->nodes[0];
  937. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  938. struct btrfs_inode_item);
  939. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  940. sizeof(struct btrfs_inode_item));
  941. btrfs_mark_buffer_dirty(leaf);
  942. btrfs_release_path(path);
  943. btrfs_delayed_inode_release_metadata(root, node);
  944. btrfs_release_delayed_inode(node);
  945. mutex_unlock(&node->mutex);
  946. return 0;
  947. }
  948. /*
  949. * Called when committing the transaction.
  950. * Returns 0 on success.
  951. * Returns < 0 on error and returns with an aborted transaction with any
  952. * outstanding delayed items cleaned up.
  953. */
  954. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  955. struct btrfs_root *root)
  956. {
  957. struct btrfs_root *curr_root = root;
  958. struct btrfs_delayed_root *delayed_root;
  959. struct btrfs_delayed_node *curr_node, *prev_node;
  960. struct btrfs_path *path;
  961. struct btrfs_block_rsv *block_rsv;
  962. int ret = 0;
  963. if (trans->aborted)
  964. return -EIO;
  965. path = btrfs_alloc_path();
  966. if (!path)
  967. return -ENOMEM;
  968. path->leave_spinning = 1;
  969. block_rsv = trans->block_rsv;
  970. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  971. delayed_root = btrfs_get_delayed_root(root);
  972. curr_node = btrfs_first_delayed_node(delayed_root);
  973. while (curr_node) {
  974. curr_root = curr_node->root;
  975. ret = btrfs_insert_delayed_items(trans, path, curr_root,
  976. curr_node);
  977. if (!ret)
  978. ret = btrfs_delete_delayed_items(trans, path,
  979. curr_root, curr_node);
  980. if (!ret)
  981. ret = btrfs_update_delayed_inode(trans, curr_root,
  982. path, curr_node);
  983. if (ret) {
  984. btrfs_release_delayed_node(curr_node);
  985. btrfs_abort_transaction(trans, root, ret);
  986. break;
  987. }
  988. prev_node = curr_node;
  989. curr_node = btrfs_next_delayed_node(curr_node);
  990. btrfs_release_delayed_node(prev_node);
  991. }
  992. btrfs_free_path(path);
  993. trans->block_rsv = block_rsv;
  994. return ret;
  995. }
  996. static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  997. struct btrfs_delayed_node *node)
  998. {
  999. struct btrfs_path *path;
  1000. struct btrfs_block_rsv *block_rsv;
  1001. int ret;
  1002. path = btrfs_alloc_path();
  1003. if (!path)
  1004. return -ENOMEM;
  1005. path->leave_spinning = 1;
  1006. block_rsv = trans->block_rsv;
  1007. trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
  1008. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  1009. if (!ret)
  1010. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  1011. if (!ret)
  1012. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  1013. btrfs_free_path(path);
  1014. trans->block_rsv = block_rsv;
  1015. return ret;
  1016. }
  1017. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1018. struct inode *inode)
  1019. {
  1020. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1021. int ret;
  1022. if (!delayed_node)
  1023. return 0;
  1024. mutex_lock(&delayed_node->mutex);
  1025. if (!delayed_node->count) {
  1026. mutex_unlock(&delayed_node->mutex);
  1027. btrfs_release_delayed_node(delayed_node);
  1028. return 0;
  1029. }
  1030. mutex_unlock(&delayed_node->mutex);
  1031. ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
  1032. btrfs_release_delayed_node(delayed_node);
  1033. return ret;
  1034. }
  1035. void btrfs_remove_delayed_node(struct inode *inode)
  1036. {
  1037. struct btrfs_delayed_node *delayed_node;
  1038. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  1039. if (!delayed_node)
  1040. return;
  1041. BTRFS_I(inode)->delayed_node = NULL;
  1042. btrfs_release_delayed_node(delayed_node);
  1043. }
  1044. struct btrfs_async_delayed_node {
  1045. struct btrfs_root *root;
  1046. struct btrfs_delayed_node *delayed_node;
  1047. struct btrfs_work work;
  1048. };
  1049. static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
  1050. {
  1051. struct btrfs_async_delayed_node *async_node;
  1052. struct btrfs_trans_handle *trans;
  1053. struct btrfs_path *path;
  1054. struct btrfs_delayed_node *delayed_node = NULL;
  1055. struct btrfs_root *root;
  1056. struct btrfs_block_rsv *block_rsv;
  1057. unsigned long nr = 0;
  1058. int need_requeue = 0;
  1059. int ret;
  1060. async_node = container_of(work, struct btrfs_async_delayed_node, work);
  1061. path = btrfs_alloc_path();
  1062. if (!path)
  1063. goto out;
  1064. path->leave_spinning = 1;
  1065. delayed_node = async_node->delayed_node;
  1066. root = delayed_node->root;
  1067. trans = btrfs_join_transaction(root);
  1068. if (IS_ERR(trans))
  1069. goto free_path;
  1070. block_rsv = trans->block_rsv;
  1071. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1072. ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
  1073. if (!ret)
  1074. ret = btrfs_delete_delayed_items(trans, path, root,
  1075. delayed_node);
  1076. if (!ret)
  1077. btrfs_update_delayed_inode(trans, root, path, delayed_node);
  1078. /*
  1079. * Maybe new delayed items have been inserted, so we need requeue
  1080. * the work. Besides that, we must dequeue the empty delayed nodes
  1081. * to avoid the race between delayed items balance and the worker.
  1082. * The race like this:
  1083. * Task1 Worker thread
  1084. * count == 0, needn't requeue
  1085. * also needn't insert the
  1086. * delayed node into prepare
  1087. * list again.
  1088. * add lots of delayed items
  1089. * queue the delayed node
  1090. * already in the list,
  1091. * and not in the prepare
  1092. * list, it means the delayed
  1093. * node is being dealt with
  1094. * by the worker.
  1095. * do delayed items balance
  1096. * the delayed node is being
  1097. * dealt with by the worker
  1098. * now, just wait.
  1099. * the worker goto idle.
  1100. * Task1 will sleep until the transaction is commited.
  1101. */
  1102. mutex_lock(&delayed_node->mutex);
  1103. if (delayed_node->count)
  1104. need_requeue = 1;
  1105. else
  1106. btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
  1107. delayed_node);
  1108. mutex_unlock(&delayed_node->mutex);
  1109. nr = trans->blocks_used;
  1110. trans->block_rsv = block_rsv;
  1111. btrfs_end_transaction_dmeta(trans, root);
  1112. __btrfs_btree_balance_dirty(root, nr);
  1113. free_path:
  1114. btrfs_free_path(path);
  1115. out:
  1116. if (need_requeue)
  1117. btrfs_requeue_work(&async_node->work);
  1118. else {
  1119. btrfs_release_prepared_delayed_node(delayed_node);
  1120. kfree(async_node);
  1121. }
  1122. }
  1123. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1124. struct btrfs_root *root, int all)
  1125. {
  1126. struct btrfs_async_delayed_node *async_node;
  1127. struct btrfs_delayed_node *curr;
  1128. int count = 0;
  1129. again:
  1130. curr = btrfs_first_prepared_delayed_node(delayed_root);
  1131. if (!curr)
  1132. return 0;
  1133. async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
  1134. if (!async_node) {
  1135. btrfs_release_prepared_delayed_node(curr);
  1136. return -ENOMEM;
  1137. }
  1138. async_node->root = root;
  1139. async_node->delayed_node = curr;
  1140. async_node->work.func = btrfs_async_run_delayed_node_done;
  1141. async_node->work.flags = 0;
  1142. btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
  1143. count++;
  1144. if (all || count < 4)
  1145. goto again;
  1146. return 0;
  1147. }
  1148. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1149. {
  1150. struct btrfs_delayed_root *delayed_root;
  1151. delayed_root = btrfs_get_delayed_root(root);
  1152. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1153. }
  1154. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1155. {
  1156. struct btrfs_delayed_root *delayed_root;
  1157. delayed_root = btrfs_get_delayed_root(root);
  1158. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1159. return;
  1160. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1161. int ret;
  1162. ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
  1163. if (ret)
  1164. return;
  1165. wait_event_interruptible_timeout(
  1166. delayed_root->wait,
  1167. (atomic_read(&delayed_root->items) <
  1168. BTRFS_DELAYED_BACKGROUND),
  1169. HZ);
  1170. return;
  1171. }
  1172. btrfs_wq_run_delayed_node(delayed_root, root, 0);
  1173. }
  1174. /* Will return 0 or -ENOMEM */
  1175. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1176. struct btrfs_root *root, const char *name,
  1177. int name_len, struct inode *dir,
  1178. struct btrfs_disk_key *disk_key, u8 type,
  1179. u64 index)
  1180. {
  1181. struct btrfs_delayed_node *delayed_node;
  1182. struct btrfs_delayed_item *delayed_item;
  1183. struct btrfs_dir_item *dir_item;
  1184. int ret;
  1185. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1186. if (IS_ERR(delayed_node))
  1187. return PTR_ERR(delayed_node);
  1188. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1189. if (!delayed_item) {
  1190. ret = -ENOMEM;
  1191. goto release_node;
  1192. }
  1193. delayed_item->key.objectid = btrfs_ino(dir);
  1194. btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
  1195. delayed_item->key.offset = index;
  1196. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1197. dir_item->location = *disk_key;
  1198. dir_item->transid = cpu_to_le64(trans->transid);
  1199. dir_item->data_len = 0;
  1200. dir_item->name_len = cpu_to_le16(name_len);
  1201. dir_item->type = type;
  1202. memcpy((char *)(dir_item + 1), name, name_len);
  1203. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1204. /*
  1205. * we have reserved enough space when we start a new transaction,
  1206. * so reserving metadata failure is impossible
  1207. */
  1208. BUG_ON(ret);
  1209. mutex_lock(&delayed_node->mutex);
  1210. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1211. if (unlikely(ret)) {
  1212. printk(KERN_ERR "err add delayed dir index item(name: %s) into "
  1213. "the insertion tree of the delayed node"
  1214. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1215. name,
  1216. (unsigned long long)delayed_node->root->objectid,
  1217. (unsigned long long)delayed_node->inode_id,
  1218. ret);
  1219. BUG();
  1220. }
  1221. mutex_unlock(&delayed_node->mutex);
  1222. release_node:
  1223. btrfs_release_delayed_node(delayed_node);
  1224. return ret;
  1225. }
  1226. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1227. struct btrfs_delayed_node *node,
  1228. struct btrfs_key *key)
  1229. {
  1230. struct btrfs_delayed_item *item;
  1231. mutex_lock(&node->mutex);
  1232. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1233. if (!item) {
  1234. mutex_unlock(&node->mutex);
  1235. return 1;
  1236. }
  1237. btrfs_delayed_item_release_metadata(root, item);
  1238. btrfs_release_delayed_item(item);
  1239. mutex_unlock(&node->mutex);
  1240. return 0;
  1241. }
  1242. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1243. struct btrfs_root *root, struct inode *dir,
  1244. u64 index)
  1245. {
  1246. struct btrfs_delayed_node *node;
  1247. struct btrfs_delayed_item *item;
  1248. struct btrfs_key item_key;
  1249. int ret;
  1250. node = btrfs_get_or_create_delayed_node(dir);
  1251. if (IS_ERR(node))
  1252. return PTR_ERR(node);
  1253. item_key.objectid = btrfs_ino(dir);
  1254. btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
  1255. item_key.offset = index;
  1256. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1257. if (!ret)
  1258. goto end;
  1259. item = btrfs_alloc_delayed_item(0);
  1260. if (!item) {
  1261. ret = -ENOMEM;
  1262. goto end;
  1263. }
  1264. item->key = item_key;
  1265. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1266. /*
  1267. * we have reserved enough space when we start a new transaction,
  1268. * so reserving metadata failure is impossible.
  1269. */
  1270. BUG_ON(ret);
  1271. mutex_lock(&node->mutex);
  1272. ret = __btrfs_add_delayed_deletion_item(node, item);
  1273. if (unlikely(ret)) {
  1274. printk(KERN_ERR "err add delayed dir index item(index: %llu) "
  1275. "into the deletion tree of the delayed node"
  1276. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1277. (unsigned long long)index,
  1278. (unsigned long long)node->root->objectid,
  1279. (unsigned long long)node->inode_id,
  1280. ret);
  1281. BUG();
  1282. }
  1283. mutex_unlock(&node->mutex);
  1284. end:
  1285. btrfs_release_delayed_node(node);
  1286. return ret;
  1287. }
  1288. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1289. {
  1290. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1291. if (!delayed_node)
  1292. return -ENOENT;
  1293. /*
  1294. * Since we have held i_mutex of this directory, it is impossible that
  1295. * a new directory index is added into the delayed node and index_cnt
  1296. * is updated now. So we needn't lock the delayed node.
  1297. */
  1298. if (!delayed_node->index_cnt) {
  1299. btrfs_release_delayed_node(delayed_node);
  1300. return -EINVAL;
  1301. }
  1302. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1303. btrfs_release_delayed_node(delayed_node);
  1304. return 0;
  1305. }
  1306. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1307. struct list_head *del_list)
  1308. {
  1309. struct btrfs_delayed_node *delayed_node;
  1310. struct btrfs_delayed_item *item;
  1311. delayed_node = btrfs_get_delayed_node(inode);
  1312. if (!delayed_node)
  1313. return;
  1314. mutex_lock(&delayed_node->mutex);
  1315. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1316. while (item) {
  1317. atomic_inc(&item->refs);
  1318. list_add_tail(&item->readdir_list, ins_list);
  1319. item = __btrfs_next_delayed_item(item);
  1320. }
  1321. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1322. while (item) {
  1323. atomic_inc(&item->refs);
  1324. list_add_tail(&item->readdir_list, del_list);
  1325. item = __btrfs_next_delayed_item(item);
  1326. }
  1327. mutex_unlock(&delayed_node->mutex);
  1328. /*
  1329. * This delayed node is still cached in the btrfs inode, so refs
  1330. * must be > 1 now, and we needn't check it is going to be freed
  1331. * or not.
  1332. *
  1333. * Besides that, this function is used to read dir, we do not
  1334. * insert/delete delayed items in this period. So we also needn't
  1335. * requeue or dequeue this delayed node.
  1336. */
  1337. atomic_dec(&delayed_node->refs);
  1338. }
  1339. void btrfs_put_delayed_items(struct list_head *ins_list,
  1340. struct list_head *del_list)
  1341. {
  1342. struct btrfs_delayed_item *curr, *next;
  1343. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1344. list_del(&curr->readdir_list);
  1345. if (atomic_dec_and_test(&curr->refs))
  1346. kfree(curr);
  1347. }
  1348. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1349. list_del(&curr->readdir_list);
  1350. if (atomic_dec_and_test(&curr->refs))
  1351. kfree(curr);
  1352. }
  1353. }
  1354. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1355. u64 index)
  1356. {
  1357. struct btrfs_delayed_item *curr, *next;
  1358. int ret;
  1359. if (list_empty(del_list))
  1360. return 0;
  1361. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1362. if (curr->key.offset > index)
  1363. break;
  1364. list_del(&curr->readdir_list);
  1365. ret = (curr->key.offset == index);
  1366. if (atomic_dec_and_test(&curr->refs))
  1367. kfree(curr);
  1368. if (ret)
  1369. return 1;
  1370. else
  1371. continue;
  1372. }
  1373. return 0;
  1374. }
  1375. /*
  1376. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1377. *
  1378. */
  1379. int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
  1380. filldir_t filldir,
  1381. struct list_head *ins_list)
  1382. {
  1383. struct btrfs_dir_item *di;
  1384. struct btrfs_delayed_item *curr, *next;
  1385. struct btrfs_key location;
  1386. char *name;
  1387. int name_len;
  1388. int over = 0;
  1389. unsigned char d_type;
  1390. if (list_empty(ins_list))
  1391. return 0;
  1392. /*
  1393. * Changing the data of the delayed item is impossible. So
  1394. * we needn't lock them. And we have held i_mutex of the
  1395. * directory, nobody can delete any directory indexes now.
  1396. */
  1397. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1398. list_del(&curr->readdir_list);
  1399. if (curr->key.offset < filp->f_pos) {
  1400. if (atomic_dec_and_test(&curr->refs))
  1401. kfree(curr);
  1402. continue;
  1403. }
  1404. filp->f_pos = curr->key.offset;
  1405. di = (struct btrfs_dir_item *)curr->data;
  1406. name = (char *)(di + 1);
  1407. name_len = le16_to_cpu(di->name_len);
  1408. d_type = btrfs_filetype_table[di->type];
  1409. btrfs_disk_key_to_cpu(&location, &di->location);
  1410. over = filldir(dirent, name, name_len, curr->key.offset,
  1411. location.objectid, d_type);
  1412. if (atomic_dec_and_test(&curr->refs))
  1413. kfree(curr);
  1414. if (over)
  1415. return 1;
  1416. }
  1417. return 0;
  1418. }
  1419. BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
  1420. generation, 64);
  1421. BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
  1422. sequence, 64);
  1423. BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
  1424. transid, 64);
  1425. BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
  1426. BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
  1427. nbytes, 64);
  1428. BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
  1429. block_group, 64);
  1430. BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
  1431. BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
  1432. BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
  1433. BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
  1434. BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
  1435. BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
  1436. BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
  1437. BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
  1438. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1439. struct btrfs_inode_item *inode_item,
  1440. struct inode *inode)
  1441. {
  1442. btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
  1443. btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
  1444. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1445. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1446. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1447. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1448. btrfs_set_stack_inode_generation(inode_item,
  1449. BTRFS_I(inode)->generation);
  1450. btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
  1451. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1452. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1453. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1454. btrfs_set_stack_inode_block_group(inode_item, 0);
  1455. btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
  1456. inode->i_atime.tv_sec);
  1457. btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
  1458. inode->i_atime.tv_nsec);
  1459. btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
  1460. inode->i_mtime.tv_sec);
  1461. btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
  1462. inode->i_mtime.tv_nsec);
  1463. btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
  1464. inode->i_ctime.tv_sec);
  1465. btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
  1466. inode->i_ctime.tv_nsec);
  1467. }
  1468. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1469. {
  1470. struct btrfs_delayed_node *delayed_node;
  1471. struct btrfs_inode_item *inode_item;
  1472. struct btrfs_timespec *tspec;
  1473. delayed_node = btrfs_get_delayed_node(inode);
  1474. if (!delayed_node)
  1475. return -ENOENT;
  1476. mutex_lock(&delayed_node->mutex);
  1477. if (!delayed_node->inode_dirty) {
  1478. mutex_unlock(&delayed_node->mutex);
  1479. btrfs_release_delayed_node(delayed_node);
  1480. return -ENOENT;
  1481. }
  1482. inode_item = &delayed_node->inode_item;
  1483. inode->i_uid = btrfs_stack_inode_uid(inode_item);
  1484. inode->i_gid = btrfs_stack_inode_gid(inode_item);
  1485. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1486. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1487. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1488. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1489. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1490. BTRFS_I(inode)->sequence = btrfs_stack_inode_sequence(inode_item);
  1491. inode->i_rdev = 0;
  1492. *rdev = btrfs_stack_inode_rdev(inode_item);
  1493. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1494. tspec = btrfs_inode_atime(inode_item);
  1495. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1496. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1497. tspec = btrfs_inode_mtime(inode_item);
  1498. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1499. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1500. tspec = btrfs_inode_ctime(inode_item);
  1501. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1502. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1503. inode->i_generation = BTRFS_I(inode)->generation;
  1504. BTRFS_I(inode)->index_cnt = (u64)-1;
  1505. mutex_unlock(&delayed_node->mutex);
  1506. btrfs_release_delayed_node(delayed_node);
  1507. return 0;
  1508. }
  1509. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1510. struct btrfs_root *root, struct inode *inode)
  1511. {
  1512. struct btrfs_delayed_node *delayed_node;
  1513. int ret = 0;
  1514. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1515. if (IS_ERR(delayed_node))
  1516. return PTR_ERR(delayed_node);
  1517. mutex_lock(&delayed_node->mutex);
  1518. if (delayed_node->inode_dirty) {
  1519. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1520. goto release_node;
  1521. }
  1522. ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
  1523. delayed_node);
  1524. if (ret)
  1525. goto release_node;
  1526. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1527. delayed_node->inode_dirty = 1;
  1528. delayed_node->count++;
  1529. atomic_inc(&root->fs_info->delayed_root->items);
  1530. release_node:
  1531. mutex_unlock(&delayed_node->mutex);
  1532. btrfs_release_delayed_node(delayed_node);
  1533. return ret;
  1534. }
  1535. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1536. {
  1537. struct btrfs_root *root = delayed_node->root;
  1538. struct btrfs_delayed_item *curr_item, *prev_item;
  1539. mutex_lock(&delayed_node->mutex);
  1540. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1541. while (curr_item) {
  1542. btrfs_delayed_item_release_metadata(root, curr_item);
  1543. prev_item = curr_item;
  1544. curr_item = __btrfs_next_delayed_item(prev_item);
  1545. btrfs_release_delayed_item(prev_item);
  1546. }
  1547. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1548. while (curr_item) {
  1549. btrfs_delayed_item_release_metadata(root, curr_item);
  1550. prev_item = curr_item;
  1551. curr_item = __btrfs_next_delayed_item(prev_item);
  1552. btrfs_release_delayed_item(prev_item);
  1553. }
  1554. if (delayed_node->inode_dirty) {
  1555. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1556. btrfs_release_delayed_inode(delayed_node);
  1557. }
  1558. mutex_unlock(&delayed_node->mutex);
  1559. }
  1560. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1561. {
  1562. struct btrfs_delayed_node *delayed_node;
  1563. delayed_node = btrfs_get_delayed_node(inode);
  1564. if (!delayed_node)
  1565. return;
  1566. __btrfs_kill_delayed_node(delayed_node);
  1567. btrfs_release_delayed_node(delayed_node);
  1568. }
  1569. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1570. {
  1571. u64 inode_id = 0;
  1572. struct btrfs_delayed_node *delayed_nodes[8];
  1573. int i, n;
  1574. while (1) {
  1575. spin_lock(&root->inode_lock);
  1576. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1577. (void **)delayed_nodes, inode_id,
  1578. ARRAY_SIZE(delayed_nodes));
  1579. if (!n) {
  1580. spin_unlock(&root->inode_lock);
  1581. break;
  1582. }
  1583. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1584. for (i = 0; i < n; i++)
  1585. atomic_inc(&delayed_nodes[i]->refs);
  1586. spin_unlock(&root->inode_lock);
  1587. for (i = 0; i < n; i++) {
  1588. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1589. btrfs_release_delayed_node(delayed_nodes[i]);
  1590. }
  1591. }
  1592. }