power.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818
  1. /*
  2. * acpi_power.c - ACPI Bus Power Management ($Revision: 39 $)
  3. *
  4. * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5. * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6. *
  7. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or (at
  12. * your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License along
  20. * with this program; if not, write to the Free Software Foundation, Inc.,
  21. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  22. *
  23. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  24. */
  25. /*
  26. * ACPI power-managed devices may be controlled in two ways:
  27. * 1. via "Device Specific (D-State) Control"
  28. * 2. via "Power Resource Control".
  29. * This module is used to manage devices relying on Power Resource Control.
  30. *
  31. * An ACPI "power resource object" describes a software controllable power
  32. * plane, clock plane, or other resource used by a power managed device.
  33. * A device may rely on multiple power resources, and a power resource
  34. * may be shared by multiple devices.
  35. */
  36. #include <linux/kernel.h>
  37. #include <linux/module.h>
  38. #include <linux/init.h>
  39. #include <linux/types.h>
  40. #include <linux/slab.h>
  41. #include <linux/pm_runtime.h>
  42. #include <acpi/acpi_bus.h>
  43. #include <acpi/acpi_drivers.h>
  44. #include "sleep.h"
  45. #include "internal.h"
  46. #define PREFIX "ACPI: "
  47. #define _COMPONENT ACPI_POWER_COMPONENT
  48. ACPI_MODULE_NAME("power");
  49. #define ACPI_POWER_CLASS "power_resource"
  50. #define ACPI_POWER_DEVICE_NAME "Power Resource"
  51. #define ACPI_POWER_FILE_INFO "info"
  52. #define ACPI_POWER_FILE_STATUS "state"
  53. #define ACPI_POWER_RESOURCE_STATE_OFF 0x00
  54. #define ACPI_POWER_RESOURCE_STATE_ON 0x01
  55. #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
  56. static int acpi_power_add(struct acpi_device *device);
  57. static int acpi_power_remove(struct acpi_device *device, int type);
  58. static int acpi_power_resume(struct acpi_device *device);
  59. static const struct acpi_device_id power_device_ids[] = {
  60. {ACPI_POWER_HID, 0},
  61. {"", 0},
  62. };
  63. MODULE_DEVICE_TABLE(acpi, power_device_ids);
  64. static struct acpi_driver acpi_power_driver = {
  65. .name = "power",
  66. .class = ACPI_POWER_CLASS,
  67. .ids = power_device_ids,
  68. .ops = {
  69. .add = acpi_power_add,
  70. .remove = acpi_power_remove,
  71. .resume = acpi_power_resume,
  72. },
  73. };
  74. /*
  75. * A power managed device
  76. * A device may rely on multiple power resources.
  77. * */
  78. struct acpi_power_managed_device {
  79. struct device *dev; /* The physical device */
  80. acpi_handle *handle;
  81. };
  82. struct acpi_power_resource_device {
  83. struct acpi_power_managed_device *device;
  84. struct acpi_power_resource_device *next;
  85. };
  86. struct acpi_power_resource {
  87. struct acpi_device * device;
  88. acpi_bus_id name;
  89. u32 system_level;
  90. u32 order;
  91. unsigned int ref_count;
  92. struct mutex resource_lock;
  93. /* List of devices relying on this power resource */
  94. struct acpi_power_resource_device *devices;
  95. struct mutex devices_lock;
  96. };
  97. static struct list_head acpi_power_resource_list;
  98. /* --------------------------------------------------------------------------
  99. Power Resource Management
  100. -------------------------------------------------------------------------- */
  101. static int
  102. acpi_power_get_context(acpi_handle handle,
  103. struct acpi_power_resource **resource)
  104. {
  105. int result = 0;
  106. struct acpi_device *device = NULL;
  107. if (!resource)
  108. return -ENODEV;
  109. result = acpi_bus_get_device(handle, &device);
  110. if (result) {
  111. printk(KERN_WARNING PREFIX "Getting context [%p]\n", handle);
  112. return result;
  113. }
  114. *resource = acpi_driver_data(device);
  115. if (!*resource)
  116. return -ENODEV;
  117. return 0;
  118. }
  119. static int acpi_power_get_state(acpi_handle handle, int *state)
  120. {
  121. acpi_status status = AE_OK;
  122. unsigned long long sta = 0;
  123. char node_name[5];
  124. struct acpi_buffer buffer = { sizeof(node_name), node_name };
  125. if (!handle || !state)
  126. return -EINVAL;
  127. status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
  128. if (ACPI_FAILURE(status))
  129. return -ENODEV;
  130. *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
  131. ACPI_POWER_RESOURCE_STATE_OFF;
  132. acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
  133. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n",
  134. node_name,
  135. *state ? "on" : "off"));
  136. return 0;
  137. }
  138. static int acpi_power_get_list_state(struct acpi_handle_list *list, int *state)
  139. {
  140. int cur_state;
  141. int i = 0;
  142. if (!list || !state)
  143. return -EINVAL;
  144. /* The state of the list is 'on' IFF all resources are 'on'. */
  145. for (i = 0; i < list->count; i++) {
  146. struct acpi_power_resource *resource;
  147. acpi_handle handle = list->handles[i];
  148. int result;
  149. result = acpi_power_get_context(handle, &resource);
  150. if (result)
  151. return result;
  152. mutex_lock(&resource->resource_lock);
  153. result = acpi_power_get_state(handle, &cur_state);
  154. mutex_unlock(&resource->resource_lock);
  155. if (result)
  156. return result;
  157. if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
  158. break;
  159. }
  160. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n",
  161. cur_state ? "on" : "off"));
  162. *state = cur_state;
  163. return 0;
  164. }
  165. /* Resume the device when all power resources in _PR0 are on */
  166. static void acpi_power_on_device(struct acpi_power_managed_device *device)
  167. {
  168. struct acpi_device *acpi_dev;
  169. acpi_handle handle = device->handle;
  170. int state;
  171. if (acpi_bus_get_device(handle, &acpi_dev))
  172. return;
  173. if(acpi_power_get_inferred_state(acpi_dev, &state))
  174. return;
  175. if (state == ACPI_STATE_D0 && pm_runtime_suspended(device->dev))
  176. pm_request_resume(device->dev);
  177. }
  178. static int __acpi_power_on(struct acpi_power_resource *resource)
  179. {
  180. acpi_status status = AE_OK;
  181. status = acpi_evaluate_object(resource->device->handle, "_ON", NULL, NULL);
  182. if (ACPI_FAILURE(status))
  183. return -ENODEV;
  184. /* Update the power resource's _device_ power state */
  185. resource->device->power.state = ACPI_STATE_D0;
  186. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n",
  187. resource->name));
  188. return 0;
  189. }
  190. static int acpi_power_on(acpi_handle handle)
  191. {
  192. int result = 0;
  193. bool resume_device = false;
  194. struct acpi_power_resource *resource = NULL;
  195. struct acpi_power_resource_device *device_list;
  196. result = acpi_power_get_context(handle, &resource);
  197. if (result)
  198. return result;
  199. mutex_lock(&resource->resource_lock);
  200. if (resource->ref_count++) {
  201. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  202. "Power resource [%s] already on",
  203. resource->name));
  204. } else {
  205. result = __acpi_power_on(resource);
  206. if (result)
  207. resource->ref_count--;
  208. else
  209. resume_device = true;
  210. }
  211. mutex_unlock(&resource->resource_lock);
  212. if (!resume_device)
  213. return result;
  214. mutex_lock(&resource->devices_lock);
  215. device_list = resource->devices;
  216. while (device_list) {
  217. acpi_power_on_device(device_list->device);
  218. device_list = device_list->next;
  219. }
  220. mutex_unlock(&resource->devices_lock);
  221. return result;
  222. }
  223. static int acpi_power_off(acpi_handle handle)
  224. {
  225. int result = 0;
  226. acpi_status status = AE_OK;
  227. struct acpi_power_resource *resource = NULL;
  228. result = acpi_power_get_context(handle, &resource);
  229. if (result)
  230. return result;
  231. mutex_lock(&resource->resource_lock);
  232. if (!resource->ref_count) {
  233. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  234. "Power resource [%s] already off",
  235. resource->name));
  236. goto unlock;
  237. }
  238. if (--resource->ref_count) {
  239. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  240. "Power resource [%s] still in use\n",
  241. resource->name));
  242. goto unlock;
  243. }
  244. status = acpi_evaluate_object(resource->device->handle, "_OFF", NULL, NULL);
  245. if (ACPI_FAILURE(status)) {
  246. result = -ENODEV;
  247. } else {
  248. /* Update the power resource's _device_ power state */
  249. resource->device->power.state = ACPI_STATE_D3;
  250. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  251. "Power resource [%s] turned off\n",
  252. resource->name));
  253. }
  254. unlock:
  255. mutex_unlock(&resource->resource_lock);
  256. return result;
  257. }
  258. static void __acpi_power_off_list(struct acpi_handle_list *list, int num_res)
  259. {
  260. int i;
  261. for (i = num_res - 1; i >= 0 ; i--)
  262. acpi_power_off(list->handles[i]);
  263. }
  264. static void acpi_power_off_list(struct acpi_handle_list *list)
  265. {
  266. __acpi_power_off_list(list, list->count);
  267. }
  268. static int acpi_power_on_list(struct acpi_handle_list *list)
  269. {
  270. int result = 0;
  271. int i;
  272. for (i = 0; i < list->count; i++) {
  273. result = acpi_power_on(list->handles[i]);
  274. if (result) {
  275. __acpi_power_off_list(list, i);
  276. break;
  277. }
  278. }
  279. return result;
  280. }
  281. static void __acpi_power_resource_unregister_device(struct device *dev,
  282. acpi_handle res_handle)
  283. {
  284. struct acpi_power_resource *resource = NULL;
  285. struct acpi_power_resource_device *prev, *curr;
  286. if (acpi_power_get_context(res_handle, &resource))
  287. return;
  288. mutex_lock(&resource->devices_lock);
  289. prev = NULL;
  290. curr = resource->devices;
  291. while (curr) {
  292. if (curr->device->dev == dev) {
  293. if (!prev)
  294. resource->devices = curr->next;
  295. else
  296. prev->next = curr->next;
  297. kfree(curr);
  298. break;
  299. }
  300. prev = curr;
  301. curr = curr->next;
  302. }
  303. mutex_unlock(&resource->devices_lock);
  304. }
  305. /* Unlink dev from all power resources in _PR0 */
  306. void acpi_power_resource_unregister_device(struct device *dev, acpi_handle handle)
  307. {
  308. struct acpi_device *acpi_dev;
  309. struct acpi_handle_list *list;
  310. int i;
  311. if (!dev || !handle)
  312. return;
  313. if (acpi_bus_get_device(handle, &acpi_dev))
  314. return;
  315. list = &acpi_dev->power.states[ACPI_STATE_D0].resources;
  316. for (i = 0; i < list->count; i++)
  317. __acpi_power_resource_unregister_device(dev,
  318. list->handles[i]);
  319. }
  320. static int __acpi_power_resource_register_device(
  321. struct acpi_power_managed_device *powered_device, acpi_handle handle)
  322. {
  323. struct acpi_power_resource *resource = NULL;
  324. struct acpi_power_resource_device *power_resource_device;
  325. int result;
  326. result = acpi_power_get_context(handle, &resource);
  327. if (result)
  328. return result;
  329. power_resource_device = kzalloc(
  330. sizeof(*power_resource_device), GFP_KERNEL);
  331. if (!power_resource_device)
  332. return -ENOMEM;
  333. power_resource_device->device = powered_device;
  334. mutex_lock(&resource->devices_lock);
  335. power_resource_device->next = resource->devices;
  336. resource->devices = power_resource_device;
  337. mutex_unlock(&resource->devices_lock);
  338. return 0;
  339. }
  340. /* Link dev to all power resources in _PR0 */
  341. int acpi_power_resource_register_device(struct device *dev, acpi_handle handle)
  342. {
  343. struct acpi_device *acpi_dev;
  344. struct acpi_handle_list *list;
  345. struct acpi_power_managed_device *powered_device;
  346. int i, ret;
  347. if (!dev || !handle)
  348. return -ENODEV;
  349. ret = acpi_bus_get_device(handle, &acpi_dev);
  350. if (ret)
  351. goto no_power_resource;
  352. if (!acpi_dev->power.flags.power_resources)
  353. goto no_power_resource;
  354. powered_device = kzalloc(sizeof(*powered_device), GFP_KERNEL);
  355. if (!powered_device)
  356. return -ENOMEM;
  357. powered_device->dev = dev;
  358. powered_device->handle = handle;
  359. list = &acpi_dev->power.states[ACPI_STATE_D0].resources;
  360. for (i = 0; i < list->count; i++) {
  361. ret = __acpi_power_resource_register_device(powered_device,
  362. list->handles[i]);
  363. if (ret) {
  364. acpi_power_resource_unregister_device(dev, handle);
  365. break;
  366. }
  367. }
  368. return ret;
  369. no_power_resource:
  370. printk(KERN_DEBUG PREFIX "Invalid Power Resource to register!");
  371. return -ENODEV;
  372. }
  373. /**
  374. * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
  375. * ACPI 3.0) _PSW (Power State Wake)
  376. * @dev: Device to handle.
  377. * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
  378. * @sleep_state: Target sleep state of the system.
  379. * @dev_state: Target power state of the device.
  380. *
  381. * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
  382. * State Wake) for the device, if present. On failure reset the device's
  383. * wakeup.flags.valid flag.
  384. *
  385. * RETURN VALUE:
  386. * 0 if either _DSW or _PSW has been successfully executed
  387. * 0 if neither _DSW nor _PSW has been found
  388. * -ENODEV if the execution of either _DSW or _PSW has failed
  389. */
  390. int acpi_device_sleep_wake(struct acpi_device *dev,
  391. int enable, int sleep_state, int dev_state)
  392. {
  393. union acpi_object in_arg[3];
  394. struct acpi_object_list arg_list = { 3, in_arg };
  395. acpi_status status = AE_OK;
  396. /*
  397. * Try to execute _DSW first.
  398. *
  399. * Three agruments are needed for the _DSW object:
  400. * Argument 0: enable/disable the wake capabilities
  401. * Argument 1: target system state
  402. * Argument 2: target device state
  403. * When _DSW object is called to disable the wake capabilities, maybe
  404. * the first argument is filled. The values of the other two agruments
  405. * are meaningless.
  406. */
  407. in_arg[0].type = ACPI_TYPE_INTEGER;
  408. in_arg[0].integer.value = enable;
  409. in_arg[1].type = ACPI_TYPE_INTEGER;
  410. in_arg[1].integer.value = sleep_state;
  411. in_arg[2].type = ACPI_TYPE_INTEGER;
  412. in_arg[2].integer.value = dev_state;
  413. status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
  414. if (ACPI_SUCCESS(status)) {
  415. return 0;
  416. } else if (status != AE_NOT_FOUND) {
  417. printk(KERN_ERR PREFIX "_DSW execution failed\n");
  418. dev->wakeup.flags.valid = 0;
  419. return -ENODEV;
  420. }
  421. /* Execute _PSW */
  422. arg_list.count = 1;
  423. in_arg[0].integer.value = enable;
  424. status = acpi_evaluate_object(dev->handle, "_PSW", &arg_list, NULL);
  425. if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
  426. printk(KERN_ERR PREFIX "_PSW execution failed\n");
  427. dev->wakeup.flags.valid = 0;
  428. return -ENODEV;
  429. }
  430. return 0;
  431. }
  432. /*
  433. * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
  434. * 1. Power on the power resources required for the wakeup device
  435. * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
  436. * State Wake) for the device, if present
  437. */
  438. int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
  439. {
  440. int i, err = 0;
  441. if (!dev || !dev->wakeup.flags.valid)
  442. return -EINVAL;
  443. mutex_lock(&acpi_device_lock);
  444. if (dev->wakeup.prepare_count++)
  445. goto out;
  446. /* Open power resource */
  447. for (i = 0; i < dev->wakeup.resources.count; i++) {
  448. int ret = acpi_power_on(dev->wakeup.resources.handles[i]);
  449. if (ret) {
  450. printk(KERN_ERR PREFIX "Transition power state\n");
  451. dev->wakeup.flags.valid = 0;
  452. err = -ENODEV;
  453. goto err_out;
  454. }
  455. }
  456. /*
  457. * Passing 3 as the third argument below means the device may be placed
  458. * in arbitrary power state afterwards.
  459. */
  460. err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
  461. err_out:
  462. if (err)
  463. dev->wakeup.prepare_count = 0;
  464. out:
  465. mutex_unlock(&acpi_device_lock);
  466. return err;
  467. }
  468. /*
  469. * Shutdown a wakeup device, counterpart of above method
  470. * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
  471. * State Wake) for the device, if present
  472. * 2. Shutdown down the power resources
  473. */
  474. int acpi_disable_wakeup_device_power(struct acpi_device *dev)
  475. {
  476. int i, err = 0;
  477. if (!dev || !dev->wakeup.flags.valid)
  478. return -EINVAL;
  479. mutex_lock(&acpi_device_lock);
  480. if (--dev->wakeup.prepare_count > 0)
  481. goto out;
  482. /*
  483. * Executing the code below even if prepare_count is already zero when
  484. * the function is called may be useful, for example for initialisation.
  485. */
  486. if (dev->wakeup.prepare_count < 0)
  487. dev->wakeup.prepare_count = 0;
  488. err = acpi_device_sleep_wake(dev, 0, 0, 0);
  489. if (err)
  490. goto out;
  491. /* Close power resource */
  492. for (i = 0; i < dev->wakeup.resources.count; i++) {
  493. int ret = acpi_power_off(dev->wakeup.resources.handles[i]);
  494. if (ret) {
  495. printk(KERN_ERR PREFIX "Transition power state\n");
  496. dev->wakeup.flags.valid = 0;
  497. err = -ENODEV;
  498. goto out;
  499. }
  500. }
  501. out:
  502. mutex_unlock(&acpi_device_lock);
  503. return err;
  504. }
  505. /* --------------------------------------------------------------------------
  506. Device Power Management
  507. -------------------------------------------------------------------------- */
  508. int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
  509. {
  510. int result = 0;
  511. struct acpi_handle_list *list = NULL;
  512. int list_state = 0;
  513. int i = 0;
  514. if (!device || !state)
  515. return -EINVAL;
  516. /*
  517. * We know a device's inferred power state when all the resources
  518. * required for a given D-state are 'on'.
  519. */
  520. for (i = ACPI_STATE_D0; i < ACPI_STATE_D3_HOT; i++) {
  521. list = &device->power.states[i].resources;
  522. if (list->count < 1)
  523. continue;
  524. result = acpi_power_get_list_state(list, &list_state);
  525. if (result)
  526. return result;
  527. if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
  528. *state = i;
  529. return 0;
  530. }
  531. }
  532. *state = ACPI_STATE_D3;
  533. return 0;
  534. }
  535. int acpi_power_on_resources(struct acpi_device *device, int state)
  536. {
  537. if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3)
  538. return -EINVAL;
  539. return acpi_power_on_list(&device->power.states[state].resources);
  540. }
  541. int acpi_power_transition(struct acpi_device *device, int state)
  542. {
  543. int result = 0;
  544. if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
  545. return -EINVAL;
  546. if (device->power.state == state)
  547. return 0;
  548. if ((device->power.state < ACPI_STATE_D0)
  549. || (device->power.state > ACPI_STATE_D3_COLD))
  550. return -ENODEV;
  551. /* TBD: Resources must be ordered. */
  552. /*
  553. * First we reference all power resources required in the target list
  554. * (e.g. so the device doesn't lose power while transitioning). Then,
  555. * we dereference all power resources used in the current list.
  556. */
  557. if (state < ACPI_STATE_D3_COLD)
  558. result = acpi_power_on_list(
  559. &device->power.states[state].resources);
  560. if (!result && device->power.state < ACPI_STATE_D3_COLD)
  561. acpi_power_off_list(
  562. &device->power.states[device->power.state].resources);
  563. /* We shouldn't change the state unless the above operations succeed. */
  564. device->power.state = result ? ACPI_STATE_UNKNOWN : state;
  565. return result;
  566. }
  567. /* --------------------------------------------------------------------------
  568. Driver Interface
  569. -------------------------------------------------------------------------- */
  570. static int acpi_power_add(struct acpi_device *device)
  571. {
  572. int result = 0, state;
  573. acpi_status status = AE_OK;
  574. struct acpi_power_resource *resource = NULL;
  575. union acpi_object acpi_object;
  576. struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
  577. if (!device)
  578. return -EINVAL;
  579. resource = kzalloc(sizeof(struct acpi_power_resource), GFP_KERNEL);
  580. if (!resource)
  581. return -ENOMEM;
  582. resource->device = device;
  583. mutex_init(&resource->resource_lock);
  584. mutex_init(&resource->devices_lock);
  585. strcpy(resource->name, device->pnp.bus_id);
  586. strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
  587. strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
  588. device->driver_data = resource;
  589. /* Evalute the object to get the system level and resource order. */
  590. status = acpi_evaluate_object(device->handle, NULL, NULL, &buffer);
  591. if (ACPI_FAILURE(status)) {
  592. result = -ENODEV;
  593. goto end;
  594. }
  595. resource->system_level = acpi_object.power_resource.system_level;
  596. resource->order = acpi_object.power_resource.resource_order;
  597. result = acpi_power_get_state(device->handle, &state);
  598. if (result)
  599. goto end;
  600. switch (state) {
  601. case ACPI_POWER_RESOURCE_STATE_ON:
  602. device->power.state = ACPI_STATE_D0;
  603. break;
  604. case ACPI_POWER_RESOURCE_STATE_OFF:
  605. device->power.state = ACPI_STATE_D3;
  606. break;
  607. default:
  608. device->power.state = ACPI_STATE_UNKNOWN;
  609. break;
  610. }
  611. printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device),
  612. acpi_device_bid(device), state ? "on" : "off");
  613. end:
  614. if (result)
  615. kfree(resource);
  616. return result;
  617. }
  618. static int acpi_power_remove(struct acpi_device *device, int type)
  619. {
  620. struct acpi_power_resource *resource;
  621. if (!device)
  622. return -EINVAL;
  623. resource = acpi_driver_data(device);
  624. if (!resource)
  625. return -EINVAL;
  626. kfree(resource);
  627. return 0;
  628. }
  629. static int acpi_power_resume(struct acpi_device *device)
  630. {
  631. int result = 0, state;
  632. struct acpi_power_resource *resource;
  633. if (!device)
  634. return -EINVAL;
  635. resource = acpi_driver_data(device);
  636. if (!resource)
  637. return -EINVAL;
  638. mutex_lock(&resource->resource_lock);
  639. result = acpi_power_get_state(device->handle, &state);
  640. if (result)
  641. goto unlock;
  642. if (state == ACPI_POWER_RESOURCE_STATE_OFF && resource->ref_count)
  643. result = __acpi_power_on(resource);
  644. unlock:
  645. mutex_unlock(&resource->resource_lock);
  646. return result;
  647. }
  648. int __init acpi_power_init(void)
  649. {
  650. INIT_LIST_HEAD(&acpi_power_resource_list);
  651. return acpi_bus_register_driver(&acpi_power_driver);
  652. }