security.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. #include <linux/integrity.h>
  19. #include <linux/ima.h>
  20. #include <linux/evm.h>
  21. #include <linux/fsnotify.h>
  22. #include <net/flow.h>
  23. #define MAX_LSM_EVM_XATTR 2
  24. /* Boot-time LSM user choice */
  25. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  26. CONFIG_DEFAULT_SECURITY;
  27. static struct security_operations *security_ops;
  28. static struct security_operations default_security_ops = {
  29. .name = "default",
  30. };
  31. static inline int __init verify(struct security_operations *ops)
  32. {
  33. /* verify the security_operations structure exists */
  34. if (!ops)
  35. return -EINVAL;
  36. security_fixup_ops(ops);
  37. return 0;
  38. }
  39. static void __init do_security_initcalls(void)
  40. {
  41. initcall_t *call;
  42. call = __security_initcall_start;
  43. while (call < __security_initcall_end) {
  44. (*call) ();
  45. call++;
  46. }
  47. }
  48. /**
  49. * security_init - initializes the security framework
  50. *
  51. * This should be called early in the kernel initialization sequence.
  52. */
  53. int __init security_init(void)
  54. {
  55. printk(KERN_INFO "Security Framework initialized\n");
  56. security_fixup_ops(&default_security_ops);
  57. security_ops = &default_security_ops;
  58. do_security_initcalls();
  59. return 0;
  60. }
  61. void reset_security_ops(void)
  62. {
  63. security_ops = &default_security_ops;
  64. }
  65. /* Save user chosen LSM */
  66. static int __init choose_lsm(char *str)
  67. {
  68. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  69. return 1;
  70. }
  71. __setup("security=", choose_lsm);
  72. /**
  73. * security_module_enable - Load given security module on boot ?
  74. * @ops: a pointer to the struct security_operations that is to be checked.
  75. *
  76. * Each LSM must pass this method before registering its own operations
  77. * to avoid security registration races. This method may also be used
  78. * to check if your LSM is currently loaded during kernel initialization.
  79. *
  80. * Return true if:
  81. * -The passed LSM is the one chosen by user at boot time,
  82. * -or the passed LSM is configured as the default and the user did not
  83. * choose an alternate LSM at boot time.
  84. * Otherwise, return false.
  85. */
  86. int __init security_module_enable(struct security_operations *ops)
  87. {
  88. return !strcmp(ops->name, chosen_lsm);
  89. }
  90. /**
  91. * register_security - registers a security framework with the kernel
  92. * @ops: a pointer to the struct security_options that is to be registered
  93. *
  94. * This function allows a security module to register itself with the
  95. * kernel security subsystem. Some rudimentary checking is done on the @ops
  96. * value passed to this function. You'll need to check first if your LSM
  97. * is allowed to register its @ops by calling security_module_enable(@ops).
  98. *
  99. * If there is already a security module registered with the kernel,
  100. * an error will be returned. Otherwise %0 is returned on success.
  101. */
  102. int __init register_security(struct security_operations *ops)
  103. {
  104. if (verify(ops)) {
  105. printk(KERN_DEBUG "%s could not verify "
  106. "security_operations structure.\n", __func__);
  107. return -EINVAL;
  108. }
  109. if (security_ops != &default_security_ops)
  110. return -EAGAIN;
  111. security_ops = ops;
  112. return 0;
  113. }
  114. /* Security operations */
  115. int security_binder_set_context_mgr(struct task_struct *mgr)
  116. {
  117. return security_ops->binder_set_context_mgr(mgr);
  118. }
  119. int security_binder_transaction(struct task_struct *from, struct task_struct *to)
  120. {
  121. return security_ops->binder_transaction(from, to);
  122. }
  123. int security_binder_transfer_binder(struct task_struct *from, struct task_struct *to)
  124. {
  125. return security_ops->binder_transfer_binder(from, to);
  126. }
  127. int security_binder_transfer_file(struct task_struct *from, struct task_struct *to, struct file *file)
  128. {
  129. return security_ops->binder_transfer_file(from, to, file);
  130. }
  131. int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
  132. {
  133. return security_ops->ptrace_access_check(child, mode);
  134. }
  135. int security_ptrace_traceme(struct task_struct *parent)
  136. {
  137. return security_ops->ptrace_traceme(parent);
  138. }
  139. int security_capget(struct task_struct *target,
  140. kernel_cap_t *effective,
  141. kernel_cap_t *inheritable,
  142. kernel_cap_t *permitted)
  143. {
  144. return security_ops->capget(target, effective, inheritable, permitted);
  145. }
  146. int security_capset(struct cred *new, const struct cred *old,
  147. const kernel_cap_t *effective,
  148. const kernel_cap_t *inheritable,
  149. const kernel_cap_t *permitted)
  150. {
  151. return security_ops->capset(new, old,
  152. effective, inheritable, permitted);
  153. }
  154. int security_capable(const struct cred *cred, struct user_namespace *ns,
  155. int cap)
  156. {
  157. return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
  158. }
  159. int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
  160. int cap)
  161. {
  162. return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
  163. }
  164. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  165. {
  166. return security_ops->quotactl(cmds, type, id, sb);
  167. }
  168. int security_quota_on(struct dentry *dentry)
  169. {
  170. return security_ops->quota_on(dentry);
  171. }
  172. int security_syslog(int type)
  173. {
  174. return security_ops->syslog(type);
  175. }
  176. int security_settime(const struct timespec *ts, const struct timezone *tz)
  177. {
  178. return security_ops->settime(ts, tz);
  179. }
  180. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  181. {
  182. return security_ops->vm_enough_memory(mm, pages);
  183. }
  184. int security_bprm_set_creds(struct linux_binprm *bprm)
  185. {
  186. return security_ops->bprm_set_creds(bprm);
  187. }
  188. int security_bprm_check(struct linux_binprm *bprm)
  189. {
  190. int ret;
  191. ret = security_ops->bprm_check_security(bprm);
  192. if (ret)
  193. return ret;
  194. return ima_bprm_check(bprm);
  195. }
  196. void security_bprm_committing_creds(struct linux_binprm *bprm)
  197. {
  198. security_ops->bprm_committing_creds(bprm);
  199. }
  200. void security_bprm_committed_creds(struct linux_binprm *bprm)
  201. {
  202. security_ops->bprm_committed_creds(bprm);
  203. }
  204. int security_bprm_secureexec(struct linux_binprm *bprm)
  205. {
  206. return security_ops->bprm_secureexec(bprm);
  207. }
  208. int security_sb_alloc(struct super_block *sb)
  209. {
  210. return security_ops->sb_alloc_security(sb);
  211. }
  212. void security_sb_free(struct super_block *sb)
  213. {
  214. security_ops->sb_free_security(sb);
  215. }
  216. int security_sb_copy_data(char *orig, char *copy)
  217. {
  218. return security_ops->sb_copy_data(orig, copy);
  219. }
  220. EXPORT_SYMBOL(security_sb_copy_data);
  221. int security_sb_remount(struct super_block *sb, void *data)
  222. {
  223. return security_ops->sb_remount(sb, data);
  224. }
  225. int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
  226. {
  227. return security_ops->sb_kern_mount(sb, flags, data);
  228. }
  229. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  230. {
  231. return security_ops->sb_show_options(m, sb);
  232. }
  233. int security_sb_statfs(struct dentry *dentry)
  234. {
  235. return security_ops->sb_statfs(dentry);
  236. }
  237. int security_sb_mount(const char *dev_name, struct path *path,
  238. const char *type, unsigned long flags, void *data)
  239. {
  240. return security_ops->sb_mount(dev_name, path, type, flags, data);
  241. }
  242. int security_sb_umount(struct vfsmount *mnt, int flags)
  243. {
  244. return security_ops->sb_umount(mnt, flags);
  245. }
  246. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  247. {
  248. return security_ops->sb_pivotroot(old_path, new_path);
  249. }
  250. int security_sb_set_mnt_opts(struct super_block *sb,
  251. struct security_mnt_opts *opts)
  252. {
  253. return security_ops->sb_set_mnt_opts(sb, opts);
  254. }
  255. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  256. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  257. struct super_block *newsb)
  258. {
  259. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  260. }
  261. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  262. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  263. {
  264. return security_ops->sb_parse_opts_str(options, opts);
  265. }
  266. EXPORT_SYMBOL(security_sb_parse_opts_str);
  267. int security_inode_alloc(struct inode *inode)
  268. {
  269. inode->i_security = NULL;
  270. return security_ops->inode_alloc_security(inode);
  271. }
  272. void security_inode_free(struct inode *inode)
  273. {
  274. integrity_inode_free(inode);
  275. security_ops->inode_free_security(inode);
  276. }
  277. int security_inode_init_security(struct inode *inode, struct inode *dir,
  278. const struct qstr *qstr,
  279. const initxattrs initxattrs, void *fs_data)
  280. {
  281. struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
  282. struct xattr *lsm_xattr, *evm_xattr, *xattr;
  283. int ret;
  284. if (unlikely(IS_PRIVATE(inode)))
  285. return 0;
  286. memset(new_xattrs, 0, sizeof new_xattrs);
  287. if (!initxattrs)
  288. return security_ops->inode_init_security(inode, dir, qstr,
  289. NULL, NULL, NULL);
  290. lsm_xattr = new_xattrs;
  291. ret = security_ops->inode_init_security(inode, dir, qstr,
  292. &lsm_xattr->name,
  293. &lsm_xattr->value,
  294. &lsm_xattr->value_len);
  295. if (ret)
  296. goto out;
  297. evm_xattr = lsm_xattr + 1;
  298. ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
  299. if (ret)
  300. goto out;
  301. ret = initxattrs(inode, new_xattrs, fs_data);
  302. out:
  303. for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
  304. kfree(xattr->name);
  305. kfree(xattr->value);
  306. }
  307. return (ret == -EOPNOTSUPP) ? 0 : ret;
  308. }
  309. EXPORT_SYMBOL(security_inode_init_security);
  310. int security_old_inode_init_security(struct inode *inode, struct inode *dir,
  311. const struct qstr *qstr, char **name,
  312. void **value, size_t *len)
  313. {
  314. if (unlikely(IS_PRIVATE(inode)))
  315. return -EOPNOTSUPP;
  316. return security_ops->inode_init_security(inode, dir, qstr, name, value,
  317. len);
  318. }
  319. EXPORT_SYMBOL(security_old_inode_init_security);
  320. #ifdef CONFIG_SECURITY_PATH
  321. int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
  322. unsigned int dev)
  323. {
  324. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  325. return 0;
  326. return security_ops->path_mknod(dir, dentry, mode, dev);
  327. }
  328. EXPORT_SYMBOL(security_path_mknod);
  329. int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
  330. {
  331. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  332. return 0;
  333. return security_ops->path_mkdir(dir, dentry, mode);
  334. }
  335. EXPORT_SYMBOL(security_path_mkdir);
  336. int security_path_rmdir(struct path *dir, struct dentry *dentry)
  337. {
  338. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  339. return 0;
  340. return security_ops->path_rmdir(dir, dentry);
  341. }
  342. int security_path_unlink(struct path *dir, struct dentry *dentry)
  343. {
  344. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  345. return 0;
  346. return security_ops->path_unlink(dir, dentry);
  347. }
  348. EXPORT_SYMBOL(security_path_unlink);
  349. int security_path_symlink(struct path *dir, struct dentry *dentry,
  350. const char *old_name)
  351. {
  352. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  353. return 0;
  354. return security_ops->path_symlink(dir, dentry, old_name);
  355. }
  356. int security_path_link(struct dentry *old_dentry, struct path *new_dir,
  357. struct dentry *new_dentry)
  358. {
  359. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  360. return 0;
  361. return security_ops->path_link(old_dentry, new_dir, new_dentry);
  362. }
  363. int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
  364. struct path *new_dir, struct dentry *new_dentry)
  365. {
  366. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  367. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  368. return 0;
  369. return security_ops->path_rename(old_dir, old_dentry, new_dir,
  370. new_dentry);
  371. }
  372. EXPORT_SYMBOL(security_path_rename);
  373. int security_path_truncate(struct path *path)
  374. {
  375. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  376. return 0;
  377. return security_ops->path_truncate(path);
  378. }
  379. int security_path_chmod(struct path *path, umode_t mode)
  380. {
  381. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  382. return 0;
  383. return security_ops->path_chmod(path, mode);
  384. }
  385. int security_path_chown(struct path *path, uid_t uid, gid_t gid)
  386. {
  387. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  388. return 0;
  389. return security_ops->path_chown(path, uid, gid);
  390. }
  391. int security_path_chroot(struct path *path)
  392. {
  393. return security_ops->path_chroot(path);
  394. }
  395. #endif
  396. int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
  397. {
  398. if (unlikely(IS_PRIVATE(dir)))
  399. return 0;
  400. return security_ops->inode_create(dir, dentry, mode);
  401. }
  402. EXPORT_SYMBOL_GPL(security_inode_create);
  403. int security_inode_post_create(struct inode *dir, struct dentry *dentry,
  404. umode_t mode)
  405. {
  406. if (unlikely(IS_PRIVATE(dir)))
  407. return 0;
  408. if (security_ops->inode_post_create == NULL)
  409. return 0;
  410. return security_ops->inode_post_create(dir, dentry, mode);
  411. }
  412. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  413. struct dentry *new_dentry)
  414. {
  415. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  416. return 0;
  417. return security_ops->inode_link(old_dentry, dir, new_dentry);
  418. }
  419. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  420. {
  421. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  422. return 0;
  423. return security_ops->inode_unlink(dir, dentry);
  424. }
  425. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  426. const char *old_name)
  427. {
  428. if (unlikely(IS_PRIVATE(dir)))
  429. return 0;
  430. return security_ops->inode_symlink(dir, dentry, old_name);
  431. }
  432. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  433. {
  434. if (unlikely(IS_PRIVATE(dir)))
  435. return 0;
  436. return security_ops->inode_mkdir(dir, dentry, mode);
  437. }
  438. EXPORT_SYMBOL_GPL(security_inode_mkdir);
  439. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  440. {
  441. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  442. return 0;
  443. return security_ops->inode_rmdir(dir, dentry);
  444. }
  445. int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
  446. {
  447. if (unlikely(IS_PRIVATE(dir)))
  448. return 0;
  449. return security_ops->inode_mknod(dir, dentry, mode, dev);
  450. }
  451. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  452. struct inode *new_dir, struct dentry *new_dentry)
  453. {
  454. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  455. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  456. return 0;
  457. return security_ops->inode_rename(old_dir, old_dentry,
  458. new_dir, new_dentry);
  459. }
  460. int security_inode_readlink(struct dentry *dentry)
  461. {
  462. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  463. return 0;
  464. return security_ops->inode_readlink(dentry);
  465. }
  466. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  467. {
  468. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  469. return 0;
  470. return security_ops->inode_follow_link(dentry, nd);
  471. }
  472. int security_inode_permission(struct inode *inode, int mask)
  473. {
  474. if (unlikely(IS_PRIVATE(inode)))
  475. return 0;
  476. return security_ops->inode_permission(inode, mask);
  477. }
  478. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  479. {
  480. int ret;
  481. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  482. return 0;
  483. ret = security_ops->inode_setattr(dentry, attr);
  484. if (ret)
  485. return ret;
  486. return evm_inode_setattr(dentry, attr);
  487. }
  488. EXPORT_SYMBOL_GPL(security_inode_setattr);
  489. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  490. {
  491. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  492. return 0;
  493. return security_ops->inode_getattr(mnt, dentry);
  494. }
  495. int security_inode_setxattr(struct dentry *dentry, const char *name,
  496. const void *value, size_t size, int flags)
  497. {
  498. int ret;
  499. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  500. return 0;
  501. ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
  502. if (ret)
  503. return ret;
  504. return evm_inode_setxattr(dentry, name, value, size);
  505. }
  506. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  507. const void *value, size_t size, int flags)
  508. {
  509. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  510. return;
  511. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  512. evm_inode_post_setxattr(dentry, name, value, size);
  513. }
  514. int security_inode_getxattr(struct dentry *dentry, const char *name)
  515. {
  516. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  517. return 0;
  518. return security_ops->inode_getxattr(dentry, name);
  519. }
  520. int security_inode_listxattr(struct dentry *dentry)
  521. {
  522. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  523. return 0;
  524. return security_ops->inode_listxattr(dentry);
  525. }
  526. int security_inode_removexattr(struct dentry *dentry, const char *name)
  527. {
  528. int ret;
  529. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  530. return 0;
  531. ret = security_ops->inode_removexattr(dentry, name);
  532. if (ret)
  533. return ret;
  534. return evm_inode_removexattr(dentry, name);
  535. }
  536. int security_inode_need_killpriv(struct dentry *dentry)
  537. {
  538. return security_ops->inode_need_killpriv(dentry);
  539. }
  540. int security_inode_killpriv(struct dentry *dentry)
  541. {
  542. return security_ops->inode_killpriv(dentry);
  543. }
  544. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  545. {
  546. if (unlikely(IS_PRIVATE(inode)))
  547. return -EOPNOTSUPP;
  548. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  549. }
  550. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  551. {
  552. if (unlikely(IS_PRIVATE(inode)))
  553. return -EOPNOTSUPP;
  554. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  555. }
  556. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  557. {
  558. if (unlikely(IS_PRIVATE(inode)))
  559. return 0;
  560. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  561. }
  562. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  563. {
  564. security_ops->inode_getsecid(inode, secid);
  565. }
  566. int security_file_permission(struct file *file, int mask)
  567. {
  568. int ret;
  569. ret = security_ops->file_permission(file, mask);
  570. if (ret)
  571. return ret;
  572. return fsnotify_perm(file, mask);
  573. }
  574. #if defined(CONFIG_VMWARE_MVP)
  575. EXPORT_SYMBOL_GPL(security_file_permission);
  576. #endif
  577. int security_file_alloc(struct file *file)
  578. {
  579. return security_ops->file_alloc_security(file);
  580. }
  581. void security_file_free(struct file *file)
  582. {
  583. security_ops->file_free_security(file);
  584. }
  585. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  586. {
  587. return security_ops->file_ioctl(file, cmd, arg);
  588. }
  589. int security_file_mmap(struct file *file, unsigned long reqprot,
  590. unsigned long prot, unsigned long flags,
  591. unsigned long addr, unsigned long addr_only)
  592. {
  593. int ret;
  594. ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  595. if (ret)
  596. return ret;
  597. return ima_file_mmap(file, prot);
  598. }
  599. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  600. unsigned long prot)
  601. {
  602. return security_ops->file_mprotect(vma, reqprot, prot);
  603. }
  604. int security_file_lock(struct file *file, unsigned int cmd)
  605. {
  606. return security_ops->file_lock(file, cmd);
  607. }
  608. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  609. {
  610. return security_ops->file_fcntl(file, cmd, arg);
  611. }
  612. int security_file_set_fowner(struct file *file)
  613. {
  614. return security_ops->file_set_fowner(file);
  615. }
  616. int security_file_send_sigiotask(struct task_struct *tsk,
  617. struct fown_struct *fown, int sig)
  618. {
  619. return security_ops->file_send_sigiotask(tsk, fown, sig);
  620. }
  621. int security_file_receive(struct file *file)
  622. {
  623. return security_ops->file_receive(file);
  624. }
  625. int security_dentry_open(struct file *file, const struct cred *cred)
  626. {
  627. int ret;
  628. ret = security_ops->dentry_open(file, cred);
  629. if (ret)
  630. return ret;
  631. return fsnotify_perm(file, MAY_OPEN);
  632. }
  633. int security_file_close(struct file *file)
  634. {
  635. if (security_ops->file_close)
  636. return security_ops->file_close(file);
  637. return 0;
  638. }
  639. bool security_allow_merge_bio(struct bio *bio1, struct bio *bio2)
  640. {
  641. if (security_ops->allow_merge_bio)
  642. return security_ops->allow_merge_bio(bio1, bio2);
  643. return true;
  644. }
  645. int security_task_create(unsigned long clone_flags)
  646. {
  647. return security_ops->task_create(clone_flags);
  648. }
  649. void security_task_free(struct task_struct *task)
  650. {
  651. security_ops->task_free(task);
  652. }
  653. int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
  654. {
  655. return security_ops->cred_alloc_blank(cred, gfp);
  656. }
  657. void security_cred_free(struct cred *cred)
  658. {
  659. security_ops->cred_free(cred);
  660. }
  661. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  662. {
  663. return security_ops->cred_prepare(new, old, gfp);
  664. }
  665. void security_transfer_creds(struct cred *new, const struct cred *old)
  666. {
  667. security_ops->cred_transfer(new, old);
  668. }
  669. int security_kernel_act_as(struct cred *new, u32 secid)
  670. {
  671. return security_ops->kernel_act_as(new, secid);
  672. }
  673. int security_kernel_create_files_as(struct cred *new, struct inode *inode)
  674. {
  675. return security_ops->kernel_create_files_as(new, inode);
  676. }
  677. int security_kernel_module_request(char *kmod_name)
  678. {
  679. return security_ops->kernel_module_request(kmod_name);
  680. }
  681. int security_kernel_module_from_file(struct file *file)
  682. {
  683. return security_ops->kernel_module_from_file(file);
  684. }
  685. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  686. int flags)
  687. {
  688. return security_ops->task_fix_setuid(new, old, flags);
  689. }
  690. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  691. {
  692. return security_ops->task_setpgid(p, pgid);
  693. }
  694. int security_task_getpgid(struct task_struct *p)
  695. {
  696. return security_ops->task_getpgid(p);
  697. }
  698. int security_task_getsid(struct task_struct *p)
  699. {
  700. return security_ops->task_getsid(p);
  701. }
  702. void security_task_getsecid(struct task_struct *p, u32 *secid)
  703. {
  704. security_ops->task_getsecid(p, secid);
  705. }
  706. EXPORT_SYMBOL(security_task_getsecid);
  707. int security_task_setnice(struct task_struct *p, int nice)
  708. {
  709. return security_ops->task_setnice(p, nice);
  710. }
  711. int security_task_setioprio(struct task_struct *p, int ioprio)
  712. {
  713. return security_ops->task_setioprio(p, ioprio);
  714. }
  715. int security_task_getioprio(struct task_struct *p)
  716. {
  717. return security_ops->task_getioprio(p);
  718. }
  719. int security_task_setrlimit(struct task_struct *p, unsigned int resource,
  720. struct rlimit *new_rlim)
  721. {
  722. return security_ops->task_setrlimit(p, resource, new_rlim);
  723. }
  724. int security_task_setscheduler(struct task_struct *p)
  725. {
  726. return security_ops->task_setscheduler(p);
  727. }
  728. int security_task_getscheduler(struct task_struct *p)
  729. {
  730. return security_ops->task_getscheduler(p);
  731. }
  732. int security_task_movememory(struct task_struct *p)
  733. {
  734. return security_ops->task_movememory(p);
  735. }
  736. int security_task_kill(struct task_struct *p, struct siginfo *info,
  737. int sig, u32 secid)
  738. {
  739. return security_ops->task_kill(p, info, sig, secid);
  740. }
  741. int security_task_wait(struct task_struct *p)
  742. {
  743. return security_ops->task_wait(p);
  744. }
  745. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  746. unsigned long arg4, unsigned long arg5)
  747. {
  748. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  749. }
  750. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  751. {
  752. security_ops->task_to_inode(p, inode);
  753. }
  754. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  755. {
  756. return security_ops->ipc_permission(ipcp, flag);
  757. }
  758. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  759. {
  760. security_ops->ipc_getsecid(ipcp, secid);
  761. }
  762. int security_msg_msg_alloc(struct msg_msg *msg)
  763. {
  764. return security_ops->msg_msg_alloc_security(msg);
  765. }
  766. void security_msg_msg_free(struct msg_msg *msg)
  767. {
  768. security_ops->msg_msg_free_security(msg);
  769. }
  770. int security_msg_queue_alloc(struct msg_queue *msq)
  771. {
  772. return security_ops->msg_queue_alloc_security(msq);
  773. }
  774. void security_msg_queue_free(struct msg_queue *msq)
  775. {
  776. security_ops->msg_queue_free_security(msq);
  777. }
  778. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  779. {
  780. return security_ops->msg_queue_associate(msq, msqflg);
  781. }
  782. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  783. {
  784. return security_ops->msg_queue_msgctl(msq, cmd);
  785. }
  786. int security_msg_queue_msgsnd(struct msg_queue *msq,
  787. struct msg_msg *msg, int msqflg)
  788. {
  789. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  790. }
  791. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  792. struct task_struct *target, long type, int mode)
  793. {
  794. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  795. }
  796. int security_shm_alloc(struct shmid_kernel *shp)
  797. {
  798. return security_ops->shm_alloc_security(shp);
  799. }
  800. void security_shm_free(struct shmid_kernel *shp)
  801. {
  802. security_ops->shm_free_security(shp);
  803. }
  804. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  805. {
  806. return security_ops->shm_associate(shp, shmflg);
  807. }
  808. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  809. {
  810. return security_ops->shm_shmctl(shp, cmd);
  811. }
  812. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  813. {
  814. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  815. }
  816. int security_sem_alloc(struct sem_array *sma)
  817. {
  818. return security_ops->sem_alloc_security(sma);
  819. }
  820. void security_sem_free(struct sem_array *sma)
  821. {
  822. security_ops->sem_free_security(sma);
  823. }
  824. int security_sem_associate(struct sem_array *sma, int semflg)
  825. {
  826. return security_ops->sem_associate(sma, semflg);
  827. }
  828. int security_sem_semctl(struct sem_array *sma, int cmd)
  829. {
  830. return security_ops->sem_semctl(sma, cmd);
  831. }
  832. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  833. unsigned nsops, int alter)
  834. {
  835. return security_ops->sem_semop(sma, sops, nsops, alter);
  836. }
  837. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  838. {
  839. if (unlikely(inode && IS_PRIVATE(inode)))
  840. return;
  841. security_ops->d_instantiate(dentry, inode);
  842. }
  843. EXPORT_SYMBOL(security_d_instantiate);
  844. int security_getprocattr(struct task_struct *p, char *name, char **value)
  845. {
  846. return security_ops->getprocattr(p, name, value);
  847. }
  848. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  849. {
  850. return security_ops->setprocattr(p, name, value, size);
  851. }
  852. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  853. {
  854. return security_ops->netlink_send(sk, skb);
  855. }
  856. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  857. {
  858. return security_ops->secid_to_secctx(secid, secdata, seclen);
  859. }
  860. EXPORT_SYMBOL(security_secid_to_secctx);
  861. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  862. {
  863. return security_ops->secctx_to_secid(secdata, seclen, secid);
  864. }
  865. EXPORT_SYMBOL(security_secctx_to_secid);
  866. void security_release_secctx(char *secdata, u32 seclen)
  867. {
  868. security_ops->release_secctx(secdata, seclen);
  869. }
  870. EXPORT_SYMBOL(security_release_secctx);
  871. int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
  872. {
  873. return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
  874. }
  875. EXPORT_SYMBOL(security_inode_notifysecctx);
  876. int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
  877. {
  878. return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
  879. }
  880. EXPORT_SYMBOL(security_inode_setsecctx);
  881. int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
  882. {
  883. return security_ops->inode_getsecctx(inode, ctx, ctxlen);
  884. }
  885. EXPORT_SYMBOL(security_inode_getsecctx);
  886. #ifdef CONFIG_SECURITY_NETWORK
  887. int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
  888. {
  889. return security_ops->unix_stream_connect(sock, other, newsk);
  890. }
  891. EXPORT_SYMBOL(security_unix_stream_connect);
  892. int security_unix_may_send(struct socket *sock, struct socket *other)
  893. {
  894. return security_ops->unix_may_send(sock, other);
  895. }
  896. EXPORT_SYMBOL(security_unix_may_send);
  897. int security_socket_create(int family, int type, int protocol, int kern)
  898. {
  899. return security_ops->socket_create(family, type, protocol, kern);
  900. }
  901. int security_socket_post_create(struct socket *sock, int family,
  902. int type, int protocol, int kern)
  903. {
  904. return security_ops->socket_post_create(sock, family, type,
  905. protocol, kern);
  906. }
  907. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  908. {
  909. return security_ops->socket_bind(sock, address, addrlen);
  910. }
  911. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  912. {
  913. return security_ops->socket_connect(sock, address, addrlen);
  914. }
  915. int security_socket_listen(struct socket *sock, int backlog)
  916. {
  917. return security_ops->socket_listen(sock, backlog);
  918. }
  919. int security_socket_accept(struct socket *sock, struct socket *newsock)
  920. {
  921. return security_ops->socket_accept(sock, newsock);
  922. }
  923. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  924. {
  925. return security_ops->socket_sendmsg(sock, msg, size);
  926. }
  927. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  928. int size, int flags)
  929. {
  930. return security_ops->socket_recvmsg(sock, msg, size, flags);
  931. }
  932. int security_socket_getsockname(struct socket *sock)
  933. {
  934. return security_ops->socket_getsockname(sock);
  935. }
  936. int security_socket_getpeername(struct socket *sock)
  937. {
  938. return security_ops->socket_getpeername(sock);
  939. }
  940. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  941. {
  942. return security_ops->socket_getsockopt(sock, level, optname);
  943. }
  944. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  945. {
  946. return security_ops->socket_setsockopt(sock, level, optname);
  947. }
  948. int security_socket_shutdown(struct socket *sock, int how)
  949. {
  950. return security_ops->socket_shutdown(sock, how);
  951. }
  952. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  953. {
  954. return security_ops->socket_sock_rcv_skb(sk, skb);
  955. }
  956. EXPORT_SYMBOL(security_sock_rcv_skb);
  957. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  958. int __user *optlen, unsigned len)
  959. {
  960. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  961. }
  962. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  963. {
  964. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  965. }
  966. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  967. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  968. {
  969. return security_ops->sk_alloc_security(sk, family, priority);
  970. }
  971. void security_sk_free(struct sock *sk)
  972. {
  973. security_ops->sk_free_security(sk);
  974. }
  975. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  976. {
  977. security_ops->sk_clone_security(sk, newsk);
  978. }
  979. EXPORT_SYMBOL(security_sk_clone);
  980. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  981. {
  982. security_ops->sk_getsecid(sk, &fl->flowi_secid);
  983. }
  984. EXPORT_SYMBOL(security_sk_classify_flow);
  985. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  986. {
  987. security_ops->req_classify_flow(req, fl);
  988. }
  989. EXPORT_SYMBOL(security_req_classify_flow);
  990. void security_sock_graft(struct sock *sk, struct socket *parent)
  991. {
  992. security_ops->sock_graft(sk, parent);
  993. }
  994. EXPORT_SYMBOL(security_sock_graft);
  995. int security_inet_conn_request(struct sock *sk,
  996. struct sk_buff *skb, struct request_sock *req)
  997. {
  998. return security_ops->inet_conn_request(sk, skb, req);
  999. }
  1000. EXPORT_SYMBOL(security_inet_conn_request);
  1001. void security_inet_csk_clone(struct sock *newsk,
  1002. const struct request_sock *req)
  1003. {
  1004. security_ops->inet_csk_clone(newsk, req);
  1005. }
  1006. void security_inet_conn_established(struct sock *sk,
  1007. struct sk_buff *skb)
  1008. {
  1009. security_ops->inet_conn_established(sk, skb);
  1010. }
  1011. int security_secmark_relabel_packet(u32 secid)
  1012. {
  1013. return security_ops->secmark_relabel_packet(secid);
  1014. }
  1015. EXPORT_SYMBOL(security_secmark_relabel_packet);
  1016. void security_secmark_refcount_inc(void)
  1017. {
  1018. security_ops->secmark_refcount_inc();
  1019. }
  1020. EXPORT_SYMBOL(security_secmark_refcount_inc);
  1021. void security_secmark_refcount_dec(void)
  1022. {
  1023. security_ops->secmark_refcount_dec();
  1024. }
  1025. EXPORT_SYMBOL(security_secmark_refcount_dec);
  1026. int security_tun_dev_create(void)
  1027. {
  1028. return security_ops->tun_dev_create();
  1029. }
  1030. EXPORT_SYMBOL(security_tun_dev_create);
  1031. void security_tun_dev_post_create(struct sock *sk)
  1032. {
  1033. return security_ops->tun_dev_post_create(sk);
  1034. }
  1035. EXPORT_SYMBOL(security_tun_dev_post_create);
  1036. int security_tun_dev_attach(struct sock *sk)
  1037. {
  1038. return security_ops->tun_dev_attach(sk);
  1039. }
  1040. EXPORT_SYMBOL(security_tun_dev_attach);
  1041. #endif /* CONFIG_SECURITY_NETWORK */
  1042. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  1043. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  1044. {
  1045. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  1046. }
  1047. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  1048. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  1049. struct xfrm_sec_ctx **new_ctxp)
  1050. {
  1051. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  1052. }
  1053. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  1054. {
  1055. security_ops->xfrm_policy_free_security(ctx);
  1056. }
  1057. EXPORT_SYMBOL(security_xfrm_policy_free);
  1058. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  1059. {
  1060. return security_ops->xfrm_policy_delete_security(ctx);
  1061. }
  1062. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  1063. {
  1064. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  1065. }
  1066. EXPORT_SYMBOL(security_xfrm_state_alloc);
  1067. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  1068. struct xfrm_sec_ctx *polsec, u32 secid)
  1069. {
  1070. if (!polsec)
  1071. return 0;
  1072. /*
  1073. * We want the context to be taken from secid which is usually
  1074. * from the sock.
  1075. */
  1076. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  1077. }
  1078. int security_xfrm_state_delete(struct xfrm_state *x)
  1079. {
  1080. return security_ops->xfrm_state_delete_security(x);
  1081. }
  1082. EXPORT_SYMBOL(security_xfrm_state_delete);
  1083. void security_xfrm_state_free(struct xfrm_state *x)
  1084. {
  1085. security_ops->xfrm_state_free_security(x);
  1086. }
  1087. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  1088. {
  1089. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  1090. }
  1091. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  1092. struct xfrm_policy *xp,
  1093. const struct flowi *fl)
  1094. {
  1095. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  1096. }
  1097. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  1098. {
  1099. return security_ops->xfrm_decode_session(skb, secid, 1);
  1100. }
  1101. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  1102. {
  1103. int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
  1104. BUG_ON(rc);
  1105. }
  1106. EXPORT_SYMBOL(security_skb_classify_flow);
  1107. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  1108. #ifdef CONFIG_KEYS
  1109. int security_key_alloc(struct key *key, const struct cred *cred,
  1110. unsigned long flags)
  1111. {
  1112. return security_ops->key_alloc(key, cred, flags);
  1113. }
  1114. void security_key_free(struct key *key)
  1115. {
  1116. security_ops->key_free(key);
  1117. }
  1118. int security_key_permission(key_ref_t key_ref,
  1119. const struct cred *cred, key_perm_t perm)
  1120. {
  1121. return security_ops->key_permission(key_ref, cred, perm);
  1122. }
  1123. int security_key_getsecurity(struct key *key, char **_buffer)
  1124. {
  1125. return security_ops->key_getsecurity(key, _buffer);
  1126. }
  1127. #endif /* CONFIG_KEYS */
  1128. #ifdef CONFIG_AUDIT
  1129. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  1130. {
  1131. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  1132. }
  1133. int security_audit_rule_known(struct audit_krule *krule)
  1134. {
  1135. return security_ops->audit_rule_known(krule);
  1136. }
  1137. void security_audit_rule_free(void *lsmrule)
  1138. {
  1139. security_ops->audit_rule_free(lsmrule);
  1140. }
  1141. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  1142. struct audit_context *actx)
  1143. {
  1144. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  1145. }
  1146. #endif /* CONFIG_AUDIT */