imx-sdma.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461
  1. /*
  2. * drivers/dma/imx-sdma.c
  3. *
  4. * This file contains a driver for the Freescale Smart DMA engine
  5. *
  6. * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
  7. *
  8. * Based on code from Freescale:
  9. *
  10. * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
  11. *
  12. * The code contained herein is licensed under the GNU General Public
  13. * License. You may obtain a copy of the GNU General Public License
  14. * Version 2 or later at the following locations:
  15. *
  16. * http://www.opensource.org/licenses/gpl-license.html
  17. * http://www.gnu.org/copyleft/gpl.html
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/types.h>
  22. #include <linux/bitops.h>
  23. #include <linux/mm.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/clk.h>
  26. #include <linux/wait.h>
  27. #include <linux/sched.h>
  28. #include <linux/semaphore.h>
  29. #include <linux/spinlock.h>
  30. #include <linux/device.h>
  31. #include <linux/dma-mapping.h>
  32. #include <linux/firmware.h>
  33. #include <linux/slab.h>
  34. #include <linux/platform_device.h>
  35. #include <linux/dmaengine.h>
  36. #include <linux/of.h>
  37. #include <linux/of_device.h>
  38. #include <asm/irq.h>
  39. #include <mach/sdma.h>
  40. #include <mach/dma.h>
  41. #include <mach/hardware.h>
  42. #include "dmaengine.h"
  43. /* SDMA registers */
  44. #define SDMA_H_C0PTR 0x000
  45. #define SDMA_H_INTR 0x004
  46. #define SDMA_H_STATSTOP 0x008
  47. #define SDMA_H_START 0x00c
  48. #define SDMA_H_EVTOVR 0x010
  49. #define SDMA_H_DSPOVR 0x014
  50. #define SDMA_H_HOSTOVR 0x018
  51. #define SDMA_H_EVTPEND 0x01c
  52. #define SDMA_H_DSPENBL 0x020
  53. #define SDMA_H_RESET 0x024
  54. #define SDMA_H_EVTERR 0x028
  55. #define SDMA_H_INTRMSK 0x02c
  56. #define SDMA_H_PSW 0x030
  57. #define SDMA_H_EVTERRDBG 0x034
  58. #define SDMA_H_CONFIG 0x038
  59. #define SDMA_ONCE_ENB 0x040
  60. #define SDMA_ONCE_DATA 0x044
  61. #define SDMA_ONCE_INSTR 0x048
  62. #define SDMA_ONCE_STAT 0x04c
  63. #define SDMA_ONCE_CMD 0x050
  64. #define SDMA_EVT_MIRROR 0x054
  65. #define SDMA_ILLINSTADDR 0x058
  66. #define SDMA_CHN0ADDR 0x05c
  67. #define SDMA_ONCE_RTB 0x060
  68. #define SDMA_XTRIG_CONF1 0x070
  69. #define SDMA_XTRIG_CONF2 0x074
  70. #define SDMA_CHNENBL0_IMX35 0x200
  71. #define SDMA_CHNENBL0_IMX31 0x080
  72. #define SDMA_CHNPRI_0 0x100
  73. /*
  74. * Buffer descriptor status values.
  75. */
  76. #define BD_DONE 0x01
  77. #define BD_WRAP 0x02
  78. #define BD_CONT 0x04
  79. #define BD_INTR 0x08
  80. #define BD_RROR 0x10
  81. #define BD_LAST 0x20
  82. #define BD_EXTD 0x80
  83. /*
  84. * Data Node descriptor status values.
  85. */
  86. #define DND_END_OF_FRAME 0x80
  87. #define DND_END_OF_XFER 0x40
  88. #define DND_DONE 0x20
  89. #define DND_UNUSED 0x01
  90. /*
  91. * IPCV2 descriptor status values.
  92. */
  93. #define BD_IPCV2_END_OF_FRAME 0x40
  94. #define IPCV2_MAX_NODES 50
  95. /*
  96. * Error bit set in the CCB status field by the SDMA,
  97. * in setbd routine, in case of a transfer error
  98. */
  99. #define DATA_ERROR 0x10000000
  100. /*
  101. * Buffer descriptor commands.
  102. */
  103. #define C0_ADDR 0x01
  104. #define C0_LOAD 0x02
  105. #define C0_DUMP 0x03
  106. #define C0_SETCTX 0x07
  107. #define C0_GETCTX 0x03
  108. #define C0_SETDM 0x01
  109. #define C0_SETPM 0x04
  110. #define C0_GETDM 0x02
  111. #define C0_GETPM 0x08
  112. /*
  113. * Change endianness indicator in the BD command field
  114. */
  115. #define CHANGE_ENDIANNESS 0x80
  116. /*
  117. * Mode/Count of data node descriptors - IPCv2
  118. */
  119. struct sdma_mode_count {
  120. u32 count : 16; /* size of the buffer pointed by this BD */
  121. u32 status : 8; /* E,R,I,C,W,D status bits stored here */
  122. u32 command : 8; /* command mostlky used for channel 0 */
  123. };
  124. /*
  125. * Buffer descriptor
  126. */
  127. struct sdma_buffer_descriptor {
  128. struct sdma_mode_count mode;
  129. u32 buffer_addr; /* address of the buffer described */
  130. u32 ext_buffer_addr; /* extended buffer address */
  131. } __attribute__ ((packed));
  132. /**
  133. * struct sdma_channel_control - Channel control Block
  134. *
  135. * @current_bd_ptr current buffer descriptor processed
  136. * @base_bd_ptr first element of buffer descriptor array
  137. * @unused padding. The SDMA engine expects an array of 128 byte
  138. * control blocks
  139. */
  140. struct sdma_channel_control {
  141. u32 current_bd_ptr;
  142. u32 base_bd_ptr;
  143. u32 unused[2];
  144. } __attribute__ ((packed));
  145. /**
  146. * struct sdma_state_registers - SDMA context for a channel
  147. *
  148. * @pc: program counter
  149. * @t: test bit: status of arithmetic & test instruction
  150. * @rpc: return program counter
  151. * @sf: source fault while loading data
  152. * @spc: loop start program counter
  153. * @df: destination fault while storing data
  154. * @epc: loop end program counter
  155. * @lm: loop mode
  156. */
  157. struct sdma_state_registers {
  158. u32 pc :14;
  159. u32 unused1: 1;
  160. u32 t : 1;
  161. u32 rpc :14;
  162. u32 unused0: 1;
  163. u32 sf : 1;
  164. u32 spc :14;
  165. u32 unused2: 1;
  166. u32 df : 1;
  167. u32 epc :14;
  168. u32 lm : 2;
  169. } __attribute__ ((packed));
  170. /**
  171. * struct sdma_context_data - sdma context specific to a channel
  172. *
  173. * @channel_state: channel state bits
  174. * @gReg: general registers
  175. * @mda: burst dma destination address register
  176. * @msa: burst dma source address register
  177. * @ms: burst dma status register
  178. * @md: burst dma data register
  179. * @pda: peripheral dma destination address register
  180. * @psa: peripheral dma source address register
  181. * @ps: peripheral dma status register
  182. * @pd: peripheral dma data register
  183. * @ca: CRC polynomial register
  184. * @cs: CRC accumulator register
  185. * @dda: dedicated core destination address register
  186. * @dsa: dedicated core source address register
  187. * @ds: dedicated core status register
  188. * @dd: dedicated core data register
  189. */
  190. struct sdma_context_data {
  191. struct sdma_state_registers channel_state;
  192. u32 gReg[8];
  193. u32 mda;
  194. u32 msa;
  195. u32 ms;
  196. u32 md;
  197. u32 pda;
  198. u32 psa;
  199. u32 ps;
  200. u32 pd;
  201. u32 ca;
  202. u32 cs;
  203. u32 dda;
  204. u32 dsa;
  205. u32 ds;
  206. u32 dd;
  207. u32 scratch0;
  208. u32 scratch1;
  209. u32 scratch2;
  210. u32 scratch3;
  211. u32 scratch4;
  212. u32 scratch5;
  213. u32 scratch6;
  214. u32 scratch7;
  215. } __attribute__ ((packed));
  216. #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
  217. struct sdma_engine;
  218. /**
  219. * struct sdma_channel - housekeeping for a SDMA channel
  220. *
  221. * @sdma pointer to the SDMA engine for this channel
  222. * @channel the channel number, matches dmaengine chan_id + 1
  223. * @direction transfer type. Needed for setting SDMA script
  224. * @peripheral_type Peripheral type. Needed for setting SDMA script
  225. * @event_id0 aka dma request line
  226. * @event_id1 for channels that use 2 events
  227. * @word_size peripheral access size
  228. * @buf_tail ID of the buffer that was processed
  229. * @done channel completion
  230. * @num_bd max NUM_BD. number of descriptors currently handling
  231. */
  232. struct sdma_channel {
  233. struct sdma_engine *sdma;
  234. unsigned int channel;
  235. enum dma_transfer_direction direction;
  236. enum sdma_peripheral_type peripheral_type;
  237. unsigned int event_id0;
  238. unsigned int event_id1;
  239. enum dma_slave_buswidth word_size;
  240. unsigned int buf_tail;
  241. struct completion done;
  242. unsigned int num_bd;
  243. struct sdma_buffer_descriptor *bd;
  244. dma_addr_t bd_phys;
  245. unsigned int pc_from_device, pc_to_device;
  246. unsigned long flags;
  247. dma_addr_t per_address;
  248. unsigned long event_mask[2];
  249. unsigned long watermark_level;
  250. u32 shp_addr, per_addr;
  251. struct dma_chan chan;
  252. spinlock_t lock;
  253. struct dma_async_tx_descriptor desc;
  254. enum dma_status status;
  255. unsigned int chn_count;
  256. unsigned int chn_real_count;
  257. };
  258. #define IMX_DMA_SG_LOOP BIT(0)
  259. #define MAX_DMA_CHANNELS 32
  260. #define MXC_SDMA_DEFAULT_PRIORITY 1
  261. #define MXC_SDMA_MIN_PRIORITY 1
  262. #define MXC_SDMA_MAX_PRIORITY 7
  263. #define SDMA_FIRMWARE_MAGIC 0x414d4453
  264. /**
  265. * struct sdma_firmware_header - Layout of the firmware image
  266. *
  267. * @magic "SDMA"
  268. * @version_major increased whenever layout of struct sdma_script_start_addrs
  269. * changes.
  270. * @version_minor firmware minor version (for binary compatible changes)
  271. * @script_addrs_start offset of struct sdma_script_start_addrs in this image
  272. * @num_script_addrs Number of script addresses in this image
  273. * @ram_code_start offset of SDMA ram image in this firmware image
  274. * @ram_code_size size of SDMA ram image
  275. * @script_addrs Stores the start address of the SDMA scripts
  276. * (in SDMA memory space)
  277. */
  278. struct sdma_firmware_header {
  279. u32 magic;
  280. u32 version_major;
  281. u32 version_minor;
  282. u32 script_addrs_start;
  283. u32 num_script_addrs;
  284. u32 ram_code_start;
  285. u32 ram_code_size;
  286. };
  287. enum sdma_devtype {
  288. IMX31_SDMA, /* runs on i.mx31 */
  289. IMX35_SDMA, /* runs on i.mx35 and later */
  290. };
  291. struct sdma_engine {
  292. struct device *dev;
  293. struct device_dma_parameters dma_parms;
  294. struct sdma_channel channel[MAX_DMA_CHANNELS];
  295. struct sdma_channel_control *channel_control;
  296. void __iomem *regs;
  297. enum sdma_devtype devtype;
  298. unsigned int num_events;
  299. struct sdma_context_data *context;
  300. dma_addr_t context_phys;
  301. struct dma_device dma_device;
  302. struct clk *clk;
  303. struct mutex channel_0_lock;
  304. struct sdma_script_start_addrs *script_addrs;
  305. };
  306. static struct platform_device_id sdma_devtypes[] = {
  307. {
  308. .name = "imx31-sdma",
  309. .driver_data = IMX31_SDMA,
  310. }, {
  311. .name = "imx35-sdma",
  312. .driver_data = IMX35_SDMA,
  313. }, {
  314. /* sentinel */
  315. }
  316. };
  317. MODULE_DEVICE_TABLE(platform, sdma_devtypes);
  318. static const struct of_device_id sdma_dt_ids[] = {
  319. { .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
  320. { .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
  321. { /* sentinel */ }
  322. };
  323. MODULE_DEVICE_TABLE(of, sdma_dt_ids);
  324. #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
  325. #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
  326. #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
  327. #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
  328. static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
  329. {
  330. u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
  331. SDMA_CHNENBL0_IMX35);
  332. return chnenbl0 + event * 4;
  333. }
  334. static int sdma_config_ownership(struct sdma_channel *sdmac,
  335. bool event_override, bool mcu_override, bool dsp_override)
  336. {
  337. struct sdma_engine *sdma = sdmac->sdma;
  338. int channel = sdmac->channel;
  339. unsigned long evt, mcu, dsp;
  340. if (event_override && mcu_override && dsp_override)
  341. return -EINVAL;
  342. evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
  343. mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
  344. dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
  345. if (dsp_override)
  346. __clear_bit(channel, &dsp);
  347. else
  348. __set_bit(channel, &dsp);
  349. if (event_override)
  350. __clear_bit(channel, &evt);
  351. else
  352. __set_bit(channel, &evt);
  353. if (mcu_override)
  354. __clear_bit(channel, &mcu);
  355. else
  356. __set_bit(channel, &mcu);
  357. writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
  358. writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
  359. writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
  360. return 0;
  361. }
  362. static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
  363. {
  364. writel(BIT(channel), sdma->regs + SDMA_H_START);
  365. }
  366. /*
  367. * sdma_run_channel - run a channel and wait till it's done
  368. */
  369. static int sdma_run_channel(struct sdma_channel *sdmac)
  370. {
  371. struct sdma_engine *sdma = sdmac->sdma;
  372. int channel = sdmac->channel;
  373. int ret;
  374. init_completion(&sdmac->done);
  375. sdma_enable_channel(sdma, channel);
  376. ret = wait_for_completion_timeout(&sdmac->done, HZ);
  377. return ret ? 0 : -ETIMEDOUT;
  378. }
  379. static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
  380. u32 address)
  381. {
  382. struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
  383. void *buf_virt;
  384. dma_addr_t buf_phys;
  385. int ret;
  386. mutex_lock(&sdma->channel_0_lock);
  387. buf_virt = dma_alloc_coherent(NULL,
  388. size,
  389. &buf_phys, GFP_KERNEL);
  390. if (!buf_virt) {
  391. ret = -ENOMEM;
  392. goto err_out;
  393. }
  394. bd0->mode.command = C0_SETPM;
  395. bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
  396. bd0->mode.count = size / 2;
  397. bd0->buffer_addr = buf_phys;
  398. bd0->ext_buffer_addr = address;
  399. memcpy(buf_virt, buf, size);
  400. ret = sdma_run_channel(&sdma->channel[0]);
  401. dma_free_coherent(NULL, size, buf_virt, buf_phys);
  402. err_out:
  403. mutex_unlock(&sdma->channel_0_lock);
  404. return ret;
  405. }
  406. static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
  407. {
  408. struct sdma_engine *sdma = sdmac->sdma;
  409. int channel = sdmac->channel;
  410. unsigned long val;
  411. u32 chnenbl = chnenbl_ofs(sdma, event);
  412. val = readl_relaxed(sdma->regs + chnenbl);
  413. __set_bit(channel, &val);
  414. writel_relaxed(val, sdma->regs + chnenbl);
  415. }
  416. static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
  417. {
  418. struct sdma_engine *sdma = sdmac->sdma;
  419. int channel = sdmac->channel;
  420. u32 chnenbl = chnenbl_ofs(sdma, event);
  421. unsigned long val;
  422. val = readl_relaxed(sdma->regs + chnenbl);
  423. __clear_bit(channel, &val);
  424. writel_relaxed(val, sdma->regs + chnenbl);
  425. }
  426. static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
  427. {
  428. struct sdma_buffer_descriptor *bd;
  429. /*
  430. * loop mode. Iterate over descriptors, re-setup them and
  431. * call callback function.
  432. */
  433. while (1) {
  434. bd = &sdmac->bd[sdmac->buf_tail];
  435. if (bd->mode.status & BD_DONE)
  436. break;
  437. if (bd->mode.status & BD_RROR)
  438. sdmac->status = DMA_ERROR;
  439. else
  440. sdmac->status = DMA_IN_PROGRESS;
  441. bd->mode.status |= BD_DONE;
  442. sdmac->buf_tail++;
  443. sdmac->buf_tail %= sdmac->num_bd;
  444. if (sdmac->desc.callback)
  445. sdmac->desc.callback(sdmac->desc.callback_param);
  446. }
  447. }
  448. static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
  449. {
  450. struct sdma_buffer_descriptor *bd;
  451. int i, error = 0;
  452. sdmac->chn_real_count = 0;
  453. /*
  454. * non loop mode. Iterate over all descriptors, collect
  455. * errors and call callback function
  456. */
  457. for (i = 0; i < sdmac->num_bd; i++) {
  458. bd = &sdmac->bd[i];
  459. if (bd->mode.status & (BD_DONE | BD_RROR))
  460. error = -EIO;
  461. sdmac->chn_real_count += bd->mode.count;
  462. }
  463. if (error)
  464. sdmac->status = DMA_ERROR;
  465. else
  466. sdmac->status = DMA_SUCCESS;
  467. dma_cookie_complete(&sdmac->desc);
  468. if (sdmac->desc.callback)
  469. sdmac->desc.callback(sdmac->desc.callback_param);
  470. }
  471. static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
  472. {
  473. complete(&sdmac->done);
  474. /* not interested in channel 0 interrupts */
  475. if (sdmac->channel == 0)
  476. return;
  477. if (sdmac->flags & IMX_DMA_SG_LOOP)
  478. sdma_handle_channel_loop(sdmac);
  479. else
  480. mxc_sdma_handle_channel_normal(sdmac);
  481. }
  482. static irqreturn_t sdma_int_handler(int irq, void *dev_id)
  483. {
  484. struct sdma_engine *sdma = dev_id;
  485. unsigned long stat;
  486. stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
  487. writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
  488. while (stat) {
  489. int channel = fls(stat) - 1;
  490. struct sdma_channel *sdmac = &sdma->channel[channel];
  491. mxc_sdma_handle_channel(sdmac);
  492. __clear_bit(channel, &stat);
  493. }
  494. return IRQ_HANDLED;
  495. }
  496. /*
  497. * sets the pc of SDMA script according to the peripheral type
  498. */
  499. static void sdma_get_pc(struct sdma_channel *sdmac,
  500. enum sdma_peripheral_type peripheral_type)
  501. {
  502. struct sdma_engine *sdma = sdmac->sdma;
  503. int per_2_emi = 0, emi_2_per = 0;
  504. /*
  505. * These are needed once we start to support transfers between
  506. * two peripherals or memory-to-memory transfers
  507. */
  508. int per_2_per = 0, emi_2_emi = 0;
  509. sdmac->pc_from_device = 0;
  510. sdmac->pc_to_device = 0;
  511. switch (peripheral_type) {
  512. case IMX_DMATYPE_MEMORY:
  513. emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
  514. break;
  515. case IMX_DMATYPE_DSP:
  516. emi_2_per = sdma->script_addrs->bp_2_ap_addr;
  517. per_2_emi = sdma->script_addrs->ap_2_bp_addr;
  518. break;
  519. case IMX_DMATYPE_FIRI:
  520. per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
  521. emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
  522. break;
  523. case IMX_DMATYPE_UART:
  524. per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
  525. emi_2_per = sdma->script_addrs->mcu_2_app_addr;
  526. break;
  527. case IMX_DMATYPE_UART_SP:
  528. per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
  529. emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
  530. break;
  531. case IMX_DMATYPE_ATA:
  532. per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
  533. emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
  534. break;
  535. case IMX_DMATYPE_CSPI:
  536. case IMX_DMATYPE_EXT:
  537. case IMX_DMATYPE_SSI:
  538. per_2_emi = sdma->script_addrs->app_2_mcu_addr;
  539. emi_2_per = sdma->script_addrs->mcu_2_app_addr;
  540. break;
  541. case IMX_DMATYPE_SSI_SP:
  542. case IMX_DMATYPE_MMC:
  543. case IMX_DMATYPE_SDHC:
  544. case IMX_DMATYPE_CSPI_SP:
  545. case IMX_DMATYPE_ESAI:
  546. case IMX_DMATYPE_MSHC_SP:
  547. per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
  548. emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
  549. break;
  550. case IMX_DMATYPE_ASRC:
  551. per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
  552. emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
  553. per_2_per = sdma->script_addrs->per_2_per_addr;
  554. break;
  555. case IMX_DMATYPE_MSHC:
  556. per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
  557. emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
  558. break;
  559. case IMX_DMATYPE_CCM:
  560. per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
  561. break;
  562. case IMX_DMATYPE_SPDIF:
  563. per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
  564. emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
  565. break;
  566. case IMX_DMATYPE_IPU_MEMORY:
  567. emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
  568. break;
  569. default:
  570. break;
  571. }
  572. sdmac->pc_from_device = per_2_emi;
  573. sdmac->pc_to_device = emi_2_per;
  574. }
  575. static int sdma_load_context(struct sdma_channel *sdmac)
  576. {
  577. struct sdma_engine *sdma = sdmac->sdma;
  578. int channel = sdmac->channel;
  579. int load_address;
  580. struct sdma_context_data *context = sdma->context;
  581. struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
  582. int ret;
  583. if (sdmac->direction == DMA_DEV_TO_MEM) {
  584. load_address = sdmac->pc_from_device;
  585. } else {
  586. load_address = sdmac->pc_to_device;
  587. }
  588. if (load_address < 0)
  589. return load_address;
  590. dev_dbg(sdma->dev, "load_address = %d\n", load_address);
  591. dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
  592. dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
  593. dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
  594. dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
  595. dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
  596. mutex_lock(&sdma->channel_0_lock);
  597. memset(context, 0, sizeof(*context));
  598. context->channel_state.pc = load_address;
  599. /* Send by context the event mask,base address for peripheral
  600. * and watermark level
  601. */
  602. context->gReg[0] = sdmac->event_mask[1];
  603. context->gReg[1] = sdmac->event_mask[0];
  604. context->gReg[2] = sdmac->per_addr;
  605. context->gReg[6] = sdmac->shp_addr;
  606. context->gReg[7] = sdmac->watermark_level;
  607. bd0->mode.command = C0_SETDM;
  608. bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
  609. bd0->mode.count = sizeof(*context) / 4;
  610. bd0->buffer_addr = sdma->context_phys;
  611. bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
  612. ret = sdma_run_channel(&sdma->channel[0]);
  613. mutex_unlock(&sdma->channel_0_lock);
  614. return ret;
  615. }
  616. static void sdma_disable_channel(struct sdma_channel *sdmac)
  617. {
  618. struct sdma_engine *sdma = sdmac->sdma;
  619. int channel = sdmac->channel;
  620. writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
  621. sdmac->status = DMA_ERROR;
  622. }
  623. static int sdma_config_channel(struct sdma_channel *sdmac)
  624. {
  625. int ret;
  626. sdma_disable_channel(sdmac);
  627. sdmac->event_mask[0] = 0;
  628. sdmac->event_mask[1] = 0;
  629. sdmac->shp_addr = 0;
  630. sdmac->per_addr = 0;
  631. if (sdmac->event_id0) {
  632. if (sdmac->event_id0 >= sdmac->sdma->num_events)
  633. return -EINVAL;
  634. sdma_event_enable(sdmac, sdmac->event_id0);
  635. }
  636. switch (sdmac->peripheral_type) {
  637. case IMX_DMATYPE_DSP:
  638. sdma_config_ownership(sdmac, false, true, true);
  639. break;
  640. case IMX_DMATYPE_MEMORY:
  641. sdma_config_ownership(sdmac, false, true, false);
  642. break;
  643. default:
  644. sdma_config_ownership(sdmac, true, true, false);
  645. break;
  646. }
  647. sdma_get_pc(sdmac, sdmac->peripheral_type);
  648. if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
  649. (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
  650. /* Handle multiple event channels differently */
  651. if (sdmac->event_id1) {
  652. sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
  653. if (sdmac->event_id1 > 31)
  654. __set_bit(31, &sdmac->watermark_level);
  655. sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
  656. if (sdmac->event_id0 > 31)
  657. __set_bit(30, &sdmac->watermark_level);
  658. } else {
  659. __set_bit(sdmac->event_id0, sdmac->event_mask);
  660. }
  661. /* Watermark Level */
  662. sdmac->watermark_level |= sdmac->watermark_level;
  663. /* Address */
  664. sdmac->shp_addr = sdmac->per_address;
  665. } else {
  666. sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
  667. }
  668. ret = sdma_load_context(sdmac);
  669. return ret;
  670. }
  671. static int sdma_set_channel_priority(struct sdma_channel *sdmac,
  672. unsigned int priority)
  673. {
  674. struct sdma_engine *sdma = sdmac->sdma;
  675. int channel = sdmac->channel;
  676. if (priority < MXC_SDMA_MIN_PRIORITY
  677. || priority > MXC_SDMA_MAX_PRIORITY) {
  678. return -EINVAL;
  679. }
  680. writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
  681. return 0;
  682. }
  683. static int sdma_request_channel(struct sdma_channel *sdmac)
  684. {
  685. struct sdma_engine *sdma = sdmac->sdma;
  686. int channel = sdmac->channel;
  687. int ret = -EBUSY;
  688. sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
  689. if (!sdmac->bd) {
  690. ret = -ENOMEM;
  691. goto out;
  692. }
  693. memset(sdmac->bd, 0, PAGE_SIZE);
  694. sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
  695. sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
  696. sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
  697. init_completion(&sdmac->done);
  698. sdmac->buf_tail = 0;
  699. return 0;
  700. out:
  701. return ret;
  702. }
  703. static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
  704. {
  705. return container_of(chan, struct sdma_channel, chan);
  706. }
  707. static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
  708. {
  709. unsigned long flags;
  710. struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
  711. dma_cookie_t cookie;
  712. spin_lock_irqsave(&sdmac->lock, flags);
  713. cookie = dma_cookie_assign(tx);
  714. spin_unlock_irqrestore(&sdmac->lock, flags);
  715. return cookie;
  716. }
  717. static int sdma_alloc_chan_resources(struct dma_chan *chan)
  718. {
  719. struct sdma_channel *sdmac = to_sdma_chan(chan);
  720. struct imx_dma_data *data = chan->private;
  721. int prio, ret;
  722. if (!data)
  723. return -EINVAL;
  724. switch (data->priority) {
  725. case DMA_PRIO_HIGH:
  726. prio = 3;
  727. break;
  728. case DMA_PRIO_MEDIUM:
  729. prio = 2;
  730. break;
  731. case DMA_PRIO_LOW:
  732. default:
  733. prio = 1;
  734. break;
  735. }
  736. sdmac->peripheral_type = data->peripheral_type;
  737. sdmac->event_id0 = data->dma_request;
  738. clk_enable(sdmac->sdma->clk);
  739. ret = sdma_request_channel(sdmac);
  740. if (ret)
  741. return ret;
  742. ret = sdma_set_channel_priority(sdmac, prio);
  743. if (ret)
  744. return ret;
  745. dma_async_tx_descriptor_init(&sdmac->desc, chan);
  746. sdmac->desc.tx_submit = sdma_tx_submit;
  747. /* txd.flags will be overwritten in prep funcs */
  748. sdmac->desc.flags = DMA_CTRL_ACK;
  749. return 0;
  750. }
  751. static void sdma_free_chan_resources(struct dma_chan *chan)
  752. {
  753. struct sdma_channel *sdmac = to_sdma_chan(chan);
  754. struct sdma_engine *sdma = sdmac->sdma;
  755. sdma_disable_channel(sdmac);
  756. if (sdmac->event_id0)
  757. sdma_event_disable(sdmac, sdmac->event_id0);
  758. if (sdmac->event_id1)
  759. sdma_event_disable(sdmac, sdmac->event_id1);
  760. sdmac->event_id0 = 0;
  761. sdmac->event_id1 = 0;
  762. sdma_set_channel_priority(sdmac, 0);
  763. dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
  764. clk_disable(sdma->clk);
  765. }
  766. static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
  767. struct dma_chan *chan, struct scatterlist *sgl,
  768. unsigned int sg_len, enum dma_transfer_direction direction,
  769. unsigned long flags, void *context)
  770. {
  771. struct sdma_channel *sdmac = to_sdma_chan(chan);
  772. struct sdma_engine *sdma = sdmac->sdma;
  773. int ret, i, count;
  774. int channel = sdmac->channel;
  775. struct scatterlist *sg;
  776. if (sdmac->status == DMA_IN_PROGRESS)
  777. return NULL;
  778. sdmac->status = DMA_IN_PROGRESS;
  779. sdmac->flags = 0;
  780. dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
  781. sg_len, channel);
  782. sdmac->direction = direction;
  783. ret = sdma_load_context(sdmac);
  784. if (ret)
  785. goto err_out;
  786. if (sg_len > NUM_BD) {
  787. dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
  788. channel, sg_len, NUM_BD);
  789. ret = -EINVAL;
  790. goto err_out;
  791. }
  792. sdmac->chn_count = 0;
  793. for_each_sg(sgl, sg, sg_len, i) {
  794. struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
  795. int param;
  796. bd->buffer_addr = sg->dma_address;
  797. count = sg->length;
  798. if (count > 0xffff) {
  799. dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
  800. channel, count, 0xffff);
  801. ret = -EINVAL;
  802. goto err_out;
  803. }
  804. bd->mode.count = count;
  805. sdmac->chn_count += count;
  806. if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
  807. ret = -EINVAL;
  808. goto err_out;
  809. }
  810. switch (sdmac->word_size) {
  811. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  812. bd->mode.command = 0;
  813. if (count & 3 || sg->dma_address & 3)
  814. return NULL;
  815. break;
  816. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  817. bd->mode.command = 2;
  818. if (count & 1 || sg->dma_address & 1)
  819. return NULL;
  820. break;
  821. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  822. bd->mode.command = 1;
  823. break;
  824. default:
  825. return NULL;
  826. }
  827. param = BD_DONE | BD_EXTD | BD_CONT;
  828. if (i + 1 == sg_len) {
  829. param |= BD_INTR;
  830. param |= BD_LAST;
  831. param &= ~BD_CONT;
  832. }
  833. dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
  834. i, count, sg->dma_address,
  835. param & BD_WRAP ? "wrap" : "",
  836. param & BD_INTR ? " intr" : "");
  837. bd->mode.status = param;
  838. }
  839. sdmac->num_bd = sg_len;
  840. sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
  841. return &sdmac->desc;
  842. err_out:
  843. sdmac->status = DMA_ERROR;
  844. return NULL;
  845. }
  846. static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
  847. struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
  848. size_t period_len, enum dma_transfer_direction direction,
  849. void *context)
  850. {
  851. struct sdma_channel *sdmac = to_sdma_chan(chan);
  852. struct sdma_engine *sdma = sdmac->sdma;
  853. int num_periods = buf_len / period_len;
  854. int channel = sdmac->channel;
  855. int ret, i = 0, buf = 0;
  856. dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
  857. if (sdmac->status == DMA_IN_PROGRESS)
  858. return NULL;
  859. sdmac->status = DMA_IN_PROGRESS;
  860. sdmac->flags |= IMX_DMA_SG_LOOP;
  861. sdmac->direction = direction;
  862. ret = sdma_load_context(sdmac);
  863. if (ret)
  864. goto err_out;
  865. if (num_periods > NUM_BD) {
  866. dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
  867. channel, num_periods, NUM_BD);
  868. goto err_out;
  869. }
  870. if (period_len > 0xffff) {
  871. dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
  872. channel, period_len, 0xffff);
  873. goto err_out;
  874. }
  875. while (buf < buf_len) {
  876. struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
  877. int param;
  878. bd->buffer_addr = dma_addr;
  879. bd->mode.count = period_len;
  880. if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
  881. goto err_out;
  882. if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
  883. bd->mode.command = 0;
  884. else
  885. bd->mode.command = sdmac->word_size;
  886. param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
  887. if (i + 1 == num_periods)
  888. param |= BD_WRAP;
  889. dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
  890. i, period_len, dma_addr,
  891. param & BD_WRAP ? "wrap" : "",
  892. param & BD_INTR ? " intr" : "");
  893. bd->mode.status = param;
  894. dma_addr += period_len;
  895. buf += period_len;
  896. i++;
  897. }
  898. sdmac->num_bd = num_periods;
  899. sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
  900. return &sdmac->desc;
  901. err_out:
  902. sdmac->status = DMA_ERROR;
  903. return NULL;
  904. }
  905. static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  906. unsigned long arg)
  907. {
  908. struct sdma_channel *sdmac = to_sdma_chan(chan);
  909. struct dma_slave_config *dmaengine_cfg = (void *)arg;
  910. switch (cmd) {
  911. case DMA_TERMINATE_ALL:
  912. sdma_disable_channel(sdmac);
  913. return 0;
  914. case DMA_SLAVE_CONFIG:
  915. if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
  916. sdmac->per_address = dmaengine_cfg->src_addr;
  917. sdmac->watermark_level = dmaengine_cfg->src_maxburst *
  918. dmaengine_cfg->src_addr_width;
  919. sdmac->word_size = dmaengine_cfg->src_addr_width;
  920. } else {
  921. sdmac->per_address = dmaengine_cfg->dst_addr;
  922. sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
  923. dmaengine_cfg->dst_addr_width;
  924. sdmac->word_size = dmaengine_cfg->dst_addr_width;
  925. }
  926. sdmac->direction = dmaengine_cfg->direction;
  927. return sdma_config_channel(sdmac);
  928. default:
  929. return -ENOSYS;
  930. }
  931. return -EINVAL;
  932. }
  933. static enum dma_status sdma_tx_status(struct dma_chan *chan,
  934. dma_cookie_t cookie,
  935. struct dma_tx_state *txstate)
  936. {
  937. struct sdma_channel *sdmac = to_sdma_chan(chan);
  938. dma_cookie_t last_used;
  939. last_used = chan->cookie;
  940. dma_set_tx_state(txstate, chan->completed_cookie, last_used,
  941. sdmac->chn_count - sdmac->chn_real_count);
  942. return sdmac->status;
  943. }
  944. static void sdma_issue_pending(struct dma_chan *chan)
  945. {
  946. struct sdma_channel *sdmac = to_sdma_chan(chan);
  947. struct sdma_engine *sdma = sdmac->sdma;
  948. if (sdmac->status == DMA_IN_PROGRESS)
  949. sdma_enable_channel(sdma, sdmac->channel);
  950. }
  951. #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
  952. static void sdma_add_scripts(struct sdma_engine *sdma,
  953. const struct sdma_script_start_addrs *addr)
  954. {
  955. s32 *addr_arr = (u32 *)addr;
  956. s32 *saddr_arr = (u32 *)sdma->script_addrs;
  957. int i;
  958. for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
  959. if (addr_arr[i] > 0)
  960. saddr_arr[i] = addr_arr[i];
  961. }
  962. static void sdma_load_firmware(const struct firmware *fw, void *context)
  963. {
  964. struct sdma_engine *sdma = context;
  965. const struct sdma_firmware_header *header;
  966. const struct sdma_script_start_addrs *addr;
  967. unsigned short *ram_code;
  968. if (!fw) {
  969. dev_err(sdma->dev, "firmware not found\n");
  970. return;
  971. }
  972. if (fw->size < sizeof(*header))
  973. goto err_firmware;
  974. header = (struct sdma_firmware_header *)fw->data;
  975. if (header->magic != SDMA_FIRMWARE_MAGIC)
  976. goto err_firmware;
  977. if (header->ram_code_start + header->ram_code_size > fw->size)
  978. goto err_firmware;
  979. addr = (void *)header + header->script_addrs_start;
  980. ram_code = (void *)header + header->ram_code_start;
  981. clk_enable(sdma->clk);
  982. /* download the RAM image for SDMA */
  983. sdma_load_script(sdma, ram_code,
  984. header->ram_code_size,
  985. addr->ram_code_start_addr);
  986. clk_disable(sdma->clk);
  987. sdma_add_scripts(sdma, addr);
  988. dev_info(sdma->dev, "loaded firmware %d.%d\n",
  989. header->version_major,
  990. header->version_minor);
  991. err_firmware:
  992. release_firmware(fw);
  993. }
  994. static int __init sdma_get_firmware(struct sdma_engine *sdma,
  995. const char *fw_name)
  996. {
  997. int ret;
  998. ret = request_firmware_nowait(THIS_MODULE,
  999. FW_ACTION_HOTPLUG, fw_name, sdma->dev,
  1000. GFP_KERNEL, sdma, sdma_load_firmware);
  1001. return ret;
  1002. }
  1003. static int __init sdma_init(struct sdma_engine *sdma)
  1004. {
  1005. int i, ret;
  1006. dma_addr_t ccb_phys;
  1007. switch (sdma->devtype) {
  1008. case IMX31_SDMA:
  1009. sdma->num_events = 32;
  1010. break;
  1011. case IMX35_SDMA:
  1012. sdma->num_events = 48;
  1013. break;
  1014. default:
  1015. dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
  1016. sdma->devtype);
  1017. return -ENODEV;
  1018. }
  1019. clk_enable(sdma->clk);
  1020. /* Be sure SDMA has not started yet */
  1021. writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
  1022. sdma->channel_control = dma_alloc_coherent(NULL,
  1023. MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
  1024. sizeof(struct sdma_context_data),
  1025. &ccb_phys, GFP_KERNEL);
  1026. if (!sdma->channel_control) {
  1027. ret = -ENOMEM;
  1028. goto err_dma_alloc;
  1029. }
  1030. sdma->context = (void *)sdma->channel_control +
  1031. MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
  1032. sdma->context_phys = ccb_phys +
  1033. MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
  1034. /* Zero-out the CCB structures array just allocated */
  1035. memset(sdma->channel_control, 0,
  1036. MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
  1037. /* disable all channels */
  1038. for (i = 0; i < sdma->num_events; i++)
  1039. writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
  1040. /* All channels have priority 0 */
  1041. for (i = 0; i < MAX_DMA_CHANNELS; i++)
  1042. writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
  1043. ret = sdma_request_channel(&sdma->channel[0]);
  1044. if (ret)
  1045. goto err_dma_alloc;
  1046. sdma_config_ownership(&sdma->channel[0], false, true, false);
  1047. /* Set Command Channel (Channel Zero) */
  1048. writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
  1049. /* Set bits of CONFIG register but with static context switching */
  1050. /* FIXME: Check whether to set ACR bit depending on clock ratios */
  1051. writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
  1052. writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
  1053. /* Set bits of CONFIG register with given context switching mode */
  1054. writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
  1055. /* Initializes channel's priorities */
  1056. sdma_set_channel_priority(&sdma->channel[0], 7);
  1057. clk_disable(sdma->clk);
  1058. return 0;
  1059. err_dma_alloc:
  1060. clk_disable(sdma->clk);
  1061. dev_err(sdma->dev, "initialisation failed with %d\n", ret);
  1062. return ret;
  1063. }
  1064. static int __init sdma_probe(struct platform_device *pdev)
  1065. {
  1066. const struct of_device_id *of_id =
  1067. of_match_device(sdma_dt_ids, &pdev->dev);
  1068. struct device_node *np = pdev->dev.of_node;
  1069. const char *fw_name;
  1070. int ret;
  1071. int irq;
  1072. struct resource *iores;
  1073. struct sdma_platform_data *pdata = pdev->dev.platform_data;
  1074. int i;
  1075. struct sdma_engine *sdma;
  1076. s32 *saddr_arr;
  1077. sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
  1078. if (!sdma)
  1079. return -ENOMEM;
  1080. mutex_init(&sdma->channel_0_lock);
  1081. sdma->dev = &pdev->dev;
  1082. iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1083. irq = platform_get_irq(pdev, 0);
  1084. if (!iores || irq < 0) {
  1085. ret = -EINVAL;
  1086. goto err_irq;
  1087. }
  1088. if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
  1089. ret = -EBUSY;
  1090. goto err_request_region;
  1091. }
  1092. sdma->clk = clk_get(&pdev->dev, NULL);
  1093. if (IS_ERR(sdma->clk)) {
  1094. ret = PTR_ERR(sdma->clk);
  1095. goto err_clk;
  1096. }
  1097. sdma->regs = ioremap(iores->start, resource_size(iores));
  1098. if (!sdma->regs) {
  1099. ret = -ENOMEM;
  1100. goto err_ioremap;
  1101. }
  1102. ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
  1103. if (ret)
  1104. goto err_request_irq;
  1105. sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
  1106. if (!sdma->script_addrs) {
  1107. ret = -ENOMEM;
  1108. goto err_alloc;
  1109. }
  1110. /* initially no scripts available */
  1111. saddr_arr = (s32 *)sdma->script_addrs;
  1112. for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
  1113. saddr_arr[i] = -EINVAL;
  1114. if (of_id)
  1115. pdev->id_entry = of_id->data;
  1116. sdma->devtype = pdev->id_entry->driver_data;
  1117. dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
  1118. dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
  1119. INIT_LIST_HEAD(&sdma->dma_device.channels);
  1120. /* Initialize channel parameters */
  1121. for (i = 0; i < MAX_DMA_CHANNELS; i++) {
  1122. struct sdma_channel *sdmac = &sdma->channel[i];
  1123. sdmac->sdma = sdma;
  1124. spin_lock_init(&sdmac->lock);
  1125. sdmac->chan.device = &sdma->dma_device;
  1126. dma_cookie_init(&sdmac->chan);
  1127. sdmac->channel = i;
  1128. /*
  1129. * Add the channel to the DMAC list. Do not add channel 0 though
  1130. * because we need it internally in the SDMA driver. This also means
  1131. * that channel 0 in dmaengine counting matches sdma channel 1.
  1132. */
  1133. if (i)
  1134. list_add_tail(&sdmac->chan.device_node,
  1135. &sdma->dma_device.channels);
  1136. }
  1137. ret = sdma_init(sdma);
  1138. if (ret)
  1139. goto err_init;
  1140. if (pdata && pdata->script_addrs)
  1141. sdma_add_scripts(sdma, pdata->script_addrs);
  1142. if (pdata) {
  1143. ret = sdma_get_firmware(sdma, pdata->fw_name);
  1144. if (ret)
  1145. dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
  1146. } else {
  1147. /*
  1148. * Because that device tree does not encode ROM script address,
  1149. * the RAM script in firmware is mandatory for device tree
  1150. * probe, otherwise it fails.
  1151. */
  1152. ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
  1153. &fw_name);
  1154. if (ret)
  1155. dev_warn(&pdev->dev, "failed to get firmware name\n");
  1156. else {
  1157. ret = sdma_get_firmware(sdma, fw_name);
  1158. if (ret)
  1159. dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
  1160. }
  1161. }
  1162. sdma->dma_device.dev = &pdev->dev;
  1163. sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
  1164. sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
  1165. sdma->dma_device.device_tx_status = sdma_tx_status;
  1166. sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
  1167. sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
  1168. sdma->dma_device.device_control = sdma_control;
  1169. sdma->dma_device.device_issue_pending = sdma_issue_pending;
  1170. sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
  1171. dma_set_max_seg_size(sdma->dma_device.dev, 65535);
  1172. ret = dma_async_device_register(&sdma->dma_device);
  1173. if (ret) {
  1174. dev_err(&pdev->dev, "unable to register\n");
  1175. goto err_init;
  1176. }
  1177. dev_info(sdma->dev, "initialized\n");
  1178. return 0;
  1179. err_init:
  1180. kfree(sdma->script_addrs);
  1181. err_alloc:
  1182. free_irq(irq, sdma);
  1183. err_request_irq:
  1184. iounmap(sdma->regs);
  1185. err_ioremap:
  1186. clk_put(sdma->clk);
  1187. err_clk:
  1188. release_mem_region(iores->start, resource_size(iores));
  1189. err_request_region:
  1190. err_irq:
  1191. kfree(sdma);
  1192. return ret;
  1193. }
  1194. static int __exit sdma_remove(struct platform_device *pdev)
  1195. {
  1196. return -EBUSY;
  1197. }
  1198. static struct platform_driver sdma_driver = {
  1199. .driver = {
  1200. .name = "imx-sdma",
  1201. .of_match_table = sdma_dt_ids,
  1202. },
  1203. .id_table = sdma_devtypes,
  1204. .remove = __exit_p(sdma_remove),
  1205. };
  1206. static int __init sdma_module_init(void)
  1207. {
  1208. return platform_driver_probe(&sdma_driver, sdma_probe);
  1209. }
  1210. module_init(sdma_module_init);
  1211. MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
  1212. MODULE_DESCRIPTION("i.MX SDMA driver");
  1213. MODULE_LICENSE("GPL");