s6000-pcm.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531
  1. /*
  2. * ALSA PCM interface for the Stetch s6000 family
  3. *
  4. * Author: Daniel Gloeckner, <dg@emlix.com>
  5. * Copyright: (C) 2009 emlix GmbH <info@emlix.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/init.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/slab.h>
  15. #include <linux/dma-mapping.h>
  16. #include <linux/interrupt.h>
  17. #include <sound/core.h>
  18. #include <sound/pcm.h>
  19. #include <sound/pcm_params.h>
  20. #include <sound/soc.h>
  21. #include <asm/dma.h>
  22. #include <variant/dmac.h>
  23. #include "s6000-pcm.h"
  24. #define S6_PCM_PREALLOCATE_SIZE (96 * 1024)
  25. #define S6_PCM_PREALLOCATE_MAX (2048 * 1024)
  26. static struct snd_pcm_hardware s6000_pcm_hardware = {
  27. .info = (SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER |
  28. SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID |
  29. SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_JOINT_DUPLEX),
  30. .formats = (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE),
  31. .rates = (SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_5512 | \
  32. SNDRV_PCM_RATE_8000_192000),
  33. .rate_min = 0,
  34. .rate_max = 1562500,
  35. .channels_min = 2,
  36. .channels_max = 8,
  37. .buffer_bytes_max = 0x7ffffff0,
  38. .period_bytes_min = 16,
  39. .period_bytes_max = 0xfffff0,
  40. .periods_min = 2,
  41. .periods_max = 1024, /* no limit */
  42. .fifo_size = 0,
  43. };
  44. struct s6000_runtime_data {
  45. spinlock_t lock;
  46. int period; /* current DMA period */
  47. };
  48. static void s6000_pcm_enqueue_dma(struct snd_pcm_substream *substream)
  49. {
  50. struct snd_pcm_runtime *runtime = substream->runtime;
  51. struct s6000_runtime_data *prtd = runtime->private_data;
  52. struct snd_soc_pcm_runtime *soc_runtime = substream->private_data;
  53. struct s6000_pcm_dma_params *par;
  54. int channel;
  55. unsigned int period_size;
  56. unsigned int dma_offset;
  57. dma_addr_t dma_pos;
  58. dma_addr_t src, dst;
  59. par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream);
  60. period_size = snd_pcm_lib_period_bytes(substream);
  61. dma_offset = prtd->period * period_size;
  62. dma_pos = runtime->dma_addr + dma_offset;
  63. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  64. src = dma_pos;
  65. dst = par->sif_out;
  66. channel = par->dma_out;
  67. } else {
  68. src = par->sif_in;
  69. dst = dma_pos;
  70. channel = par->dma_in;
  71. }
  72. if (!s6dmac_channel_enabled(DMA_MASK_DMAC(channel),
  73. DMA_INDEX_CHNL(channel)))
  74. return;
  75. if (s6dmac_fifo_full(DMA_MASK_DMAC(channel), DMA_INDEX_CHNL(channel))) {
  76. printk(KERN_ERR "s6000-pcm: fifo full\n");
  77. return;
  78. }
  79. BUG_ON(period_size & 15);
  80. s6dmac_put_fifo(DMA_MASK_DMAC(channel), DMA_INDEX_CHNL(channel),
  81. src, dst, period_size);
  82. prtd->period++;
  83. if (unlikely(prtd->period >= runtime->periods))
  84. prtd->period = 0;
  85. }
  86. static irqreturn_t s6000_pcm_irq(int irq, void *data)
  87. {
  88. struct snd_pcm *pcm = data;
  89. struct snd_soc_pcm_runtime *runtime = pcm->private_data;
  90. struct s6000_runtime_data *prtd;
  91. unsigned int has_xrun;
  92. int i, ret = IRQ_NONE;
  93. for (i = 0; i < 2; ++i) {
  94. struct snd_pcm_substream *substream = pcm->streams[i].substream;
  95. struct s6000_pcm_dma_params *params =
  96. snd_soc_dai_get_dma_data(runtime->cpu_dai, substream);
  97. u32 channel;
  98. unsigned int pending;
  99. if (substream == SNDRV_PCM_STREAM_PLAYBACK)
  100. channel = params->dma_out;
  101. else
  102. channel = params->dma_in;
  103. has_xrun = params->check_xrun(runtime->cpu_dai);
  104. if (!channel)
  105. continue;
  106. if (unlikely(has_xrun & (1 << i)) &&
  107. substream->runtime &&
  108. snd_pcm_running(substream)) {
  109. dev_dbg(pcm->dev, "xrun\n");
  110. snd_pcm_stream_lock(substream);
  111. snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
  112. snd_pcm_stream_unlock(substream);
  113. ret = IRQ_HANDLED;
  114. }
  115. pending = s6dmac_int_sources(DMA_MASK_DMAC(channel),
  116. DMA_INDEX_CHNL(channel));
  117. if (pending & 1) {
  118. ret = IRQ_HANDLED;
  119. if (likely(substream->runtime &&
  120. snd_pcm_running(substream))) {
  121. snd_pcm_period_elapsed(substream);
  122. dev_dbg(pcm->dev, "period elapsed %x %x\n",
  123. s6dmac_cur_src(DMA_MASK_DMAC(channel),
  124. DMA_INDEX_CHNL(channel)),
  125. s6dmac_cur_dst(DMA_MASK_DMAC(channel),
  126. DMA_INDEX_CHNL(channel)));
  127. prtd = substream->runtime->private_data;
  128. spin_lock(&prtd->lock);
  129. s6000_pcm_enqueue_dma(substream);
  130. spin_unlock(&prtd->lock);
  131. }
  132. }
  133. if (unlikely(pending & ~7)) {
  134. if (pending & (1 << 3))
  135. printk(KERN_WARNING
  136. "s6000-pcm: DMA %x Underflow\n",
  137. channel);
  138. if (pending & (1 << 4))
  139. printk(KERN_WARNING
  140. "s6000-pcm: DMA %x Overflow\n",
  141. channel);
  142. if (pending & 0x1e0)
  143. printk(KERN_WARNING
  144. "s6000-pcm: DMA %x Master Error "
  145. "(mask %x)\n",
  146. channel, pending >> 5);
  147. }
  148. }
  149. return ret;
  150. }
  151. static int s6000_pcm_start(struct snd_pcm_substream *substream)
  152. {
  153. struct s6000_runtime_data *prtd = substream->runtime->private_data;
  154. struct snd_soc_pcm_runtime *soc_runtime = substream->private_data;
  155. struct s6000_pcm_dma_params *par;
  156. unsigned long flags;
  157. int srcinc;
  158. u32 dma;
  159. par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream);
  160. spin_lock_irqsave(&prtd->lock, flags);
  161. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  162. srcinc = 1;
  163. dma = par->dma_out;
  164. } else {
  165. srcinc = 0;
  166. dma = par->dma_in;
  167. }
  168. s6dmac_enable_chan(DMA_MASK_DMAC(dma), DMA_INDEX_CHNL(dma),
  169. 1 /* priority 1 (0 is max) */,
  170. 0 /* peripheral requests w/o xfer length mode */,
  171. srcinc /* source address increment */,
  172. srcinc^1 /* destination address increment */,
  173. 0 /* chunksize 0 (skip impossible on this dma) */,
  174. 0 /* source skip after chunk (impossible) */,
  175. 0 /* destination skip after chunk (impossible) */,
  176. 4 /* 16 byte burst size */,
  177. -1 /* don't conserve bandwidth */,
  178. 0 /* low watermark irq descriptor threshold */,
  179. 0 /* disable hardware timestamps */,
  180. 1 /* enable channel */);
  181. s6000_pcm_enqueue_dma(substream);
  182. s6000_pcm_enqueue_dma(substream);
  183. spin_unlock_irqrestore(&prtd->lock, flags);
  184. return 0;
  185. }
  186. static int s6000_pcm_stop(struct snd_pcm_substream *substream)
  187. {
  188. struct s6000_runtime_data *prtd = substream->runtime->private_data;
  189. struct snd_soc_pcm_runtime *soc_runtime = substream->private_data;
  190. struct s6000_pcm_dma_params *par;
  191. unsigned long flags;
  192. u32 channel;
  193. par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream);
  194. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  195. channel = par->dma_out;
  196. else
  197. channel = par->dma_in;
  198. s6dmac_set_terminal_count(DMA_MASK_DMAC(channel),
  199. DMA_INDEX_CHNL(channel), 0);
  200. spin_lock_irqsave(&prtd->lock, flags);
  201. s6dmac_disable_chan(DMA_MASK_DMAC(channel), DMA_INDEX_CHNL(channel));
  202. spin_unlock_irqrestore(&prtd->lock, flags);
  203. return 0;
  204. }
  205. static int s6000_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
  206. {
  207. struct snd_soc_pcm_runtime *soc_runtime = substream->private_data;
  208. struct s6000_pcm_dma_params *par;
  209. int ret;
  210. par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream);
  211. ret = par->trigger(substream, cmd, 0);
  212. if (ret < 0)
  213. return ret;
  214. switch (cmd) {
  215. case SNDRV_PCM_TRIGGER_START:
  216. case SNDRV_PCM_TRIGGER_RESUME:
  217. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  218. ret = s6000_pcm_start(substream);
  219. break;
  220. case SNDRV_PCM_TRIGGER_STOP:
  221. case SNDRV_PCM_TRIGGER_SUSPEND:
  222. case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
  223. ret = s6000_pcm_stop(substream);
  224. break;
  225. default:
  226. ret = -EINVAL;
  227. }
  228. if (ret < 0)
  229. return ret;
  230. return par->trigger(substream, cmd, 1);
  231. }
  232. static int s6000_pcm_prepare(struct snd_pcm_substream *substream)
  233. {
  234. struct s6000_runtime_data *prtd = substream->runtime->private_data;
  235. prtd->period = 0;
  236. return 0;
  237. }
  238. static snd_pcm_uframes_t s6000_pcm_pointer(struct snd_pcm_substream *substream)
  239. {
  240. struct snd_soc_pcm_runtime *soc_runtime = substream->private_data;
  241. struct s6000_pcm_dma_params *par;
  242. struct snd_pcm_runtime *runtime = substream->runtime;
  243. struct s6000_runtime_data *prtd = runtime->private_data;
  244. unsigned long flags;
  245. unsigned int offset;
  246. dma_addr_t count;
  247. par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream);
  248. spin_lock_irqsave(&prtd->lock, flags);
  249. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  250. count = s6dmac_cur_src(DMA_MASK_DMAC(par->dma_out),
  251. DMA_INDEX_CHNL(par->dma_out));
  252. else
  253. count = s6dmac_cur_dst(DMA_MASK_DMAC(par->dma_in),
  254. DMA_INDEX_CHNL(par->dma_in));
  255. count -= runtime->dma_addr;
  256. spin_unlock_irqrestore(&prtd->lock, flags);
  257. offset = bytes_to_frames(runtime, count);
  258. if (unlikely(offset >= runtime->buffer_size))
  259. offset = 0;
  260. return offset;
  261. }
  262. static int s6000_pcm_open(struct snd_pcm_substream *substream)
  263. {
  264. struct snd_soc_pcm_runtime *soc_runtime = substream->private_data;
  265. struct s6000_pcm_dma_params *par;
  266. struct snd_pcm_runtime *runtime = substream->runtime;
  267. struct s6000_runtime_data *prtd;
  268. int ret;
  269. par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream);
  270. snd_soc_set_runtime_hwparams(substream, &s6000_pcm_hardware);
  271. ret = snd_pcm_hw_constraint_step(runtime, 0,
  272. SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 16);
  273. if (ret < 0)
  274. return ret;
  275. ret = snd_pcm_hw_constraint_step(runtime, 0,
  276. SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 16);
  277. if (ret < 0)
  278. return ret;
  279. ret = snd_pcm_hw_constraint_integer(runtime,
  280. SNDRV_PCM_HW_PARAM_PERIODS);
  281. if (ret < 0)
  282. return ret;
  283. if (par->same_rate) {
  284. int rate;
  285. spin_lock(&par->lock); /* needed? */
  286. rate = par->rate;
  287. spin_unlock(&par->lock);
  288. if (rate != -1) {
  289. ret = snd_pcm_hw_constraint_minmax(runtime,
  290. SNDRV_PCM_HW_PARAM_RATE,
  291. rate, rate);
  292. if (ret < 0)
  293. return ret;
  294. }
  295. }
  296. prtd = kzalloc(sizeof(struct s6000_runtime_data), GFP_KERNEL);
  297. if (prtd == NULL)
  298. return -ENOMEM;
  299. spin_lock_init(&prtd->lock);
  300. runtime->private_data = prtd;
  301. return 0;
  302. }
  303. static int s6000_pcm_close(struct snd_pcm_substream *substream)
  304. {
  305. struct snd_pcm_runtime *runtime = substream->runtime;
  306. struct s6000_runtime_data *prtd = runtime->private_data;
  307. kfree(prtd);
  308. return 0;
  309. }
  310. static int s6000_pcm_hw_params(struct snd_pcm_substream *substream,
  311. struct snd_pcm_hw_params *hw_params)
  312. {
  313. struct snd_soc_pcm_runtime *soc_runtime = substream->private_data;
  314. struct s6000_pcm_dma_params *par;
  315. int ret;
  316. ret = snd_pcm_lib_malloc_pages(substream,
  317. params_buffer_bytes(hw_params));
  318. if (ret < 0) {
  319. printk(KERN_WARNING "s6000-pcm: allocation of memory failed\n");
  320. return ret;
  321. }
  322. par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream);
  323. if (par->same_rate) {
  324. spin_lock(&par->lock);
  325. if (par->rate == -1 ||
  326. !(par->in_use & ~(1 << substream->stream))) {
  327. par->rate = params_rate(hw_params);
  328. par->in_use |= 1 << substream->stream;
  329. } else if (params_rate(hw_params) != par->rate) {
  330. snd_pcm_lib_free_pages(substream);
  331. par->in_use &= ~(1 << substream->stream);
  332. ret = -EBUSY;
  333. }
  334. spin_unlock(&par->lock);
  335. }
  336. return ret;
  337. }
  338. static int s6000_pcm_hw_free(struct snd_pcm_substream *substream)
  339. {
  340. struct snd_soc_pcm_runtime *soc_runtime = substream->private_data;
  341. struct s6000_pcm_dma_params *par =
  342. snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream);
  343. spin_lock(&par->lock);
  344. par->in_use &= ~(1 << substream->stream);
  345. if (!par->in_use)
  346. par->rate = -1;
  347. spin_unlock(&par->lock);
  348. return snd_pcm_lib_free_pages(substream);
  349. }
  350. static struct snd_pcm_ops s6000_pcm_ops = {
  351. .open = s6000_pcm_open,
  352. .close = s6000_pcm_close,
  353. .ioctl = snd_pcm_lib_ioctl,
  354. .hw_params = s6000_pcm_hw_params,
  355. .hw_free = s6000_pcm_hw_free,
  356. .trigger = s6000_pcm_trigger,
  357. .prepare = s6000_pcm_prepare,
  358. .pointer = s6000_pcm_pointer,
  359. };
  360. static void s6000_pcm_free(struct snd_pcm *pcm)
  361. {
  362. struct snd_soc_pcm_runtime *runtime = pcm->private_data;
  363. struct s6000_pcm_dma_params *params =
  364. snd_soc_dai_get_dma_data(runtime->cpu_dai,
  365. pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream);
  366. free_irq(params->irq, pcm);
  367. snd_pcm_lib_preallocate_free_for_all(pcm);
  368. }
  369. static u64 s6000_pcm_dmamask = DMA_BIT_MASK(32);
  370. static int s6000_pcm_new(struct snd_soc_pcm_runtime *runtime)
  371. {
  372. struct snd_card *card = runtime->card->snd_card;
  373. struct snd_pcm *pcm = runtime->pcm;
  374. struct s6000_pcm_dma_params *params;
  375. int res;
  376. params = snd_soc_dai_get_dma_data(runtime->cpu_dai,
  377. pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream);
  378. if (!card->dev->dma_mask)
  379. card->dev->dma_mask = &s6000_pcm_dmamask;
  380. if (!card->dev->coherent_dma_mask)
  381. card->dev->coherent_dma_mask = DMA_BIT_MASK(32);
  382. if (params->dma_in) {
  383. s6dmac_disable_chan(DMA_MASK_DMAC(params->dma_in),
  384. DMA_INDEX_CHNL(params->dma_in));
  385. s6dmac_int_sources(DMA_MASK_DMAC(params->dma_in),
  386. DMA_INDEX_CHNL(params->dma_in));
  387. }
  388. if (params->dma_out) {
  389. s6dmac_disable_chan(DMA_MASK_DMAC(params->dma_out),
  390. DMA_INDEX_CHNL(params->dma_out));
  391. s6dmac_int_sources(DMA_MASK_DMAC(params->dma_out),
  392. DMA_INDEX_CHNL(params->dma_out));
  393. }
  394. res = request_irq(params->irq, s6000_pcm_irq, IRQF_SHARED,
  395. "s6000-audio", pcm);
  396. if (res) {
  397. printk(KERN_ERR "s6000-pcm couldn't get IRQ\n");
  398. return res;
  399. }
  400. res = snd_pcm_lib_preallocate_pages_for_all(pcm,
  401. SNDRV_DMA_TYPE_DEV,
  402. card->dev,
  403. S6_PCM_PREALLOCATE_SIZE,
  404. S6_PCM_PREALLOCATE_MAX);
  405. if (res)
  406. printk(KERN_WARNING "s6000-pcm: preallocation failed\n");
  407. spin_lock_init(&params->lock);
  408. params->in_use = 0;
  409. params->rate = -1;
  410. return 0;
  411. }
  412. static struct snd_soc_platform_driver s6000_soc_platform = {
  413. .ops = &s6000_pcm_ops,
  414. .pcm_new = s6000_pcm_new,
  415. .pcm_free = s6000_pcm_free,
  416. };
  417. static int __devinit s6000_soc_platform_probe(struct platform_device *pdev)
  418. {
  419. return snd_soc_register_platform(&pdev->dev, &s6000_soc_platform);
  420. }
  421. static int __devexit s6000_soc_platform_remove(struct platform_device *pdev)
  422. {
  423. snd_soc_unregister_platform(&pdev->dev);
  424. return 0;
  425. }
  426. static struct platform_driver s6000_pcm_driver = {
  427. .driver = {
  428. .name = "s6000-pcm-audio",
  429. .owner = THIS_MODULE,
  430. },
  431. .probe = s6000_soc_platform_probe,
  432. .remove = __devexit_p(s6000_soc_platform_remove),
  433. };
  434. module_platform_driver(s6000_pcm_driver);
  435. MODULE_AUTHOR("Daniel Gloeckner");
  436. MODULE_DESCRIPTION("Stretch s6000 family PCM DMA module");
  437. MODULE_LICENSE("GPL");