12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907 |
- /*
- * mm/rmap.c - physical to virtual reverse mappings
- *
- * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
- * Released under the General Public License (GPL).
- *
- * Simple, low overhead reverse mapping scheme.
- * Please try to keep this thing as modular as possible.
- *
- * Provides methods for unmapping each kind of mapped page:
- * the anon methods track anonymous pages, and
- * the file methods track pages belonging to an inode.
- *
- * Original design by Rik van Riel <riel@conectiva.com.br> 2001
- * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
- * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
- * Contributions by Hugh Dickins 2003, 2004
- */
- /*
- * Lock ordering in mm:
- *
- * inode->i_mutex (while writing or truncating, not reading or faulting)
- * mm->mmap_sem
- * page->flags PG_locked (lock_page)
- * mapping->i_mmap_mutex
- * anon_vma->mutex
- * mm->page_table_lock or pte_lock
- * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
- * swap_lock (in swap_duplicate, swap_info_get)
- * mmlist_lock (in mmput, drain_mmlist and others)
- * mapping->private_lock (in __set_page_dirty_buffers)
- * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
- * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
- * sb_lock (within inode_lock in fs/fs-writeback.c)
- * mapping->tree_lock (widely used, in set_page_dirty,
- * in arch-dependent flush_dcache_mmap_lock,
- * within bdi.wb->list_lock in __sync_single_inode)
- *
- * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
- * ->tasklist_lock
- * pte map lock
- */
- #include <linux/mm.h>
- #include <linux/pagemap.h>
- #include <linux/swap.h>
- #include <linux/swapops.h>
- #include <linux/slab.h>
- #include <linux/init.h>
- #include <linux/ksm.h>
- #include <linux/rmap.h>
- #include <linux/rcupdate.h>
- #include <linux/export.h>
- #include <linux/memcontrol.h>
- #include <linux/mmu_notifier.h>
- #include <linux/migrate.h>
- #include <linux/hugetlb.h>
- #include <linux/backing-dev.h>
- #include <asm/tlbflush.h>
- #include "internal.h"
- static struct kmem_cache *anon_vma_cachep;
- static struct kmem_cache *anon_vma_chain_cachep;
- static inline struct anon_vma *anon_vma_alloc(void)
- {
- struct anon_vma *anon_vma;
- anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
- if (anon_vma) {
- atomic_set(&anon_vma->refcount, 1);
- anon_vma->degree = 1; /* Reference for first vma */
- anon_vma->parent = anon_vma;
- /*
- * Initialise the anon_vma root to point to itself. If called
- * from fork, the root will be reset to the parents anon_vma.
- */
- anon_vma->root = anon_vma;
- }
- return anon_vma;
- }
- static inline void anon_vma_free(struct anon_vma *anon_vma)
- {
- VM_BUG_ON(atomic_read(&anon_vma->refcount));
- /*
- * Synchronize against page_lock_anon_vma() such that
- * we can safely hold the lock without the anon_vma getting
- * freed.
- *
- * Relies on the full mb implied by the atomic_dec_and_test() from
- * put_anon_vma() against the acquire barrier implied by
- * mutex_trylock() from page_lock_anon_vma(). This orders:
- *
- * page_lock_anon_vma() VS put_anon_vma()
- * mutex_trylock() atomic_dec_and_test()
- * LOCK MB
- * atomic_read() mutex_is_locked()
- *
- * LOCK should suffice since the actual taking of the lock must
- * happen _before_ what follows.
- */
- might_sleep();
- if (mutex_is_locked(&anon_vma->root->mutex)) {
- anon_vma_lock(anon_vma);
- anon_vma_unlock(anon_vma);
- }
- kmem_cache_free(anon_vma_cachep, anon_vma);
- }
- static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
- {
- return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
- }
- static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
- {
- kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
- }
- static void anon_vma_chain_link(struct vm_area_struct *vma,
- struct anon_vma_chain *avc,
- struct anon_vma *anon_vma)
- {
- avc->vma = vma;
- avc->anon_vma = anon_vma;
- list_add(&avc->same_vma, &vma->anon_vma_chain);
- /*
- * It's critical to add new vmas to the tail of the anon_vma,
- * see comment in huge_memory.c:__split_huge_page().
- */
- list_add_tail(&avc->same_anon_vma, &anon_vma->head);
- }
- /**
- * anon_vma_prepare - attach an anon_vma to a memory region
- * @vma: the memory region in question
- *
- * This makes sure the memory mapping described by 'vma' has
- * an 'anon_vma' attached to it, so that we can associate the
- * anonymous pages mapped into it with that anon_vma.
- *
- * The common case will be that we already have one, but if
- * not we either need to find an adjacent mapping that we
- * can re-use the anon_vma from (very common when the only
- * reason for splitting a vma has been mprotect()), or we
- * allocate a new one.
- *
- * Anon-vma allocations are very subtle, because we may have
- * optimistically looked up an anon_vma in page_lock_anon_vma()
- * and that may actually touch the spinlock even in the newly
- * allocated vma (it depends on RCU to make sure that the
- * anon_vma isn't actually destroyed).
- *
- * As a result, we need to do proper anon_vma locking even
- * for the new allocation. At the same time, we do not want
- * to do any locking for the common case of already having
- * an anon_vma.
- *
- * This must be called with the mmap_sem held for reading.
- */
- int anon_vma_prepare(struct vm_area_struct *vma)
- {
- struct anon_vma *anon_vma = vma->anon_vma;
- struct anon_vma_chain *avc;
- might_sleep();
- if (unlikely(!anon_vma)) {
- struct mm_struct *mm = vma->vm_mm;
- struct anon_vma *allocated;
- avc = anon_vma_chain_alloc(GFP_KERNEL);
- if (!avc)
- goto out_enomem;
- anon_vma = find_mergeable_anon_vma(vma);
- allocated = NULL;
- if (!anon_vma) {
- anon_vma = anon_vma_alloc();
- if (unlikely(!anon_vma))
- goto out_enomem_free_avc;
- allocated = anon_vma;
- }
- anon_vma_lock(anon_vma);
- /* page_table_lock to protect against threads */
- spin_lock(&mm->page_table_lock);
- if (likely(!vma->anon_vma)) {
- vma->anon_vma = anon_vma;
- anon_vma_chain_link(vma, avc, anon_vma);
- /* vma reference or self-parent link for new root */
- anon_vma->degree++;
- allocated = NULL;
- avc = NULL;
- }
- spin_unlock(&mm->page_table_lock);
- anon_vma_unlock(anon_vma);
- if (unlikely(allocated))
- put_anon_vma(allocated);
- if (unlikely(avc))
- anon_vma_chain_free(avc);
- }
- return 0;
- out_enomem_free_avc:
- anon_vma_chain_free(avc);
- out_enomem:
- return -ENOMEM;
- }
- /*
- * This is a useful helper function for locking the anon_vma root as
- * we traverse the vma->anon_vma_chain, looping over anon_vma's that
- * have the same vma.
- *
- * Such anon_vma's should have the same root, so you'd expect to see
- * just a single mutex_lock for the whole traversal.
- */
- static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
- {
- struct anon_vma *new_root = anon_vma->root;
- if (new_root != root) {
- if (WARN_ON_ONCE(root))
- mutex_unlock(&root->mutex);
- root = new_root;
- mutex_lock(&root->mutex);
- }
- return root;
- }
- static inline void unlock_anon_vma_root(struct anon_vma *root)
- {
- if (root)
- mutex_unlock(&root->mutex);
- }
- /*
- * Attach the anon_vmas from src to dst.
- * Returns 0 on success, -ENOMEM on failure.
- *
- * If dst->anon_vma is NULL this function tries to find and reuse existing
- * anon_vma which has no vmas and only one child anon_vma. This prevents
- * degradation of anon_vma hierarchy to endless linear chain in case of
- * constantly forking task. On the other hand, an anon_vma with more than one
- * child isn't reused even if there was no alive vma, thus rmap walker has a
- * good chance of avoiding scanning the whole hierarchy when it searches where
- * page is mapped.
- */
- int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
- {
- struct anon_vma_chain *avc, *pavc;
- struct anon_vma *root = NULL;
- list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
- struct anon_vma *anon_vma;
- avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
- if (unlikely(!avc)) {
- unlock_anon_vma_root(root);
- root = NULL;
- avc = anon_vma_chain_alloc(GFP_KERNEL);
- if (!avc)
- goto enomem_failure;
- }
- anon_vma = pavc->anon_vma;
- root = lock_anon_vma_root(root, anon_vma);
- anon_vma_chain_link(dst, avc, anon_vma);
- /*
- * Reuse existing anon_vma if its degree lower than two,
- * that means it has no vma and only one anon_vma child.
- *
- * Do not chose parent anon_vma, otherwise first child
- * will always reuse it. Root anon_vma is never reused:
- * it has self-parent reference and at least one child.
- */
- if (!dst->anon_vma && anon_vma != src->anon_vma &&
- anon_vma->degree < 2)
- dst->anon_vma = anon_vma;
- }
- if (dst->anon_vma)
- dst->anon_vma->degree++;
- unlock_anon_vma_root(root);
- return 0;
- enomem_failure:
- /*
- * dst->anon_vma is dropped here otherwise its degree can be incorrectly
- * decremented in unlink_anon_vmas().
- * We can safely do this because callers of anon_vma_clone() don't care
- * about dst->anon_vma if anon_vma_clone() failed.
- */
- dst->anon_vma = NULL;
- unlink_anon_vmas(dst);
- return -ENOMEM;
- }
- /*
- * Some rmap walk that needs to find all ptes/hugepmds without false
- * negatives (like migrate and split_huge_page) running concurrent
- * with operations that copy or move pagetables (like mremap() and
- * fork()) to be safe. They depend on the anon_vma "same_anon_vma"
- * list to be in a certain order: the dst_vma must be placed after the
- * src_vma in the list. This is always guaranteed by fork() but
- * mremap() needs to call this function to enforce it in case the
- * dst_vma isn't newly allocated and chained with the anon_vma_clone()
- * function but just an extension of a pre-existing vma through
- * vma_merge.
- *
- * NOTE: the same_anon_vma list can still be changed by other
- * processes while mremap runs because mremap doesn't hold the
- * anon_vma mutex to prevent modifications to the list while it
- * runs. All we need to enforce is that the relative order of this
- * process vmas isn't changing (we don't care about other vmas
- * order). Each vma corresponds to an anon_vma_chain structure so
- * there's no risk that other processes calling anon_vma_moveto_tail()
- * and changing the same_anon_vma list under mremap() will screw with
- * the relative order of this process vmas in the list, because we
- * they can't alter the order of any vma that belongs to this
- * process. And there can't be another anon_vma_moveto_tail() running
- * concurrently with mremap() coming from this process because we hold
- * the mmap_sem for the whole mremap(). fork() ordering dependency
- * also shouldn't be affected because fork() only cares that the
- * parent vmas are placed in the list before the child vmas and
- * anon_vma_moveto_tail() won't reorder vmas from either the fork()
- * parent or child.
- */
- void anon_vma_moveto_tail(struct vm_area_struct *dst)
- {
- struct anon_vma_chain *pavc;
- struct anon_vma *root = NULL;
- list_for_each_entry_reverse(pavc, &dst->anon_vma_chain, same_vma) {
- struct anon_vma *anon_vma = pavc->anon_vma;
- VM_BUG_ON(pavc->vma != dst);
- root = lock_anon_vma_root(root, anon_vma);
- list_del(&pavc->same_anon_vma);
- list_add_tail(&pavc->same_anon_vma, &anon_vma->head);
- }
- unlock_anon_vma_root(root);
- }
- /*
- * Attach vma to its own anon_vma, as well as to the anon_vmas that
- * the corresponding VMA in the parent process is attached to.
- * Returns 0 on success, non-zero on failure.
- */
- int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
- {
- struct anon_vma_chain *avc;
- struct anon_vma *anon_vma;
- int error;
- /* Don't bother if the parent process has no anon_vma here. */
- if (!pvma->anon_vma)
- return 0;
- /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
- vma->anon_vma = NULL;
- /*
- * First, attach the new VMA to the parent VMA's anon_vmas,
- * so rmap can find non-COWed pages in child processes.
- */
- error = anon_vma_clone(vma, pvma);
- if (error)
- return error;
- /* An existing anon_vma has been reused, all done then. */
- if (vma->anon_vma)
- return 0;
- /* Then add our own anon_vma. */
- anon_vma = anon_vma_alloc();
- if (!anon_vma)
- goto out_error;
- avc = anon_vma_chain_alloc(GFP_KERNEL);
- if (!avc)
- goto out_error_free_anon_vma;
- /*
- * The root anon_vma's spinlock is the lock actually used when we
- * lock any of the anon_vmas in this anon_vma tree.
- */
- anon_vma->root = pvma->anon_vma->root;
- anon_vma->parent = pvma->anon_vma;
- /*
- * With refcounts, an anon_vma can stay around longer than the
- * process it belongs to. The root anon_vma needs to be pinned until
- * this anon_vma is freed, because the lock lives in the root.
- */
- get_anon_vma(anon_vma->root);
- /* Mark this anon_vma as the one where our new (COWed) pages go. */
- vma->anon_vma = anon_vma;
- anon_vma_lock(anon_vma);
- anon_vma_chain_link(vma, avc, anon_vma);
- anon_vma->parent->degree++;
- anon_vma_unlock(anon_vma);
- return 0;
- out_error_free_anon_vma:
- put_anon_vma(anon_vma);
- out_error:
- unlink_anon_vmas(vma);
- return -ENOMEM;
- }
- void unlink_anon_vmas(struct vm_area_struct *vma)
- {
- struct anon_vma_chain *avc, *next;
- struct anon_vma *root = NULL;
- /*
- * Unlink each anon_vma chained to the VMA. This list is ordered
- * from newest to oldest, ensuring the root anon_vma gets freed last.
- */
- list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
- struct anon_vma *anon_vma = avc->anon_vma;
- root = lock_anon_vma_root(root, anon_vma);
- list_del(&avc->same_anon_vma);
- /*
- * Leave empty anon_vmas on the list - we'll need
- * to free them outside the lock.
- */
- if (list_empty(&anon_vma->head)) {
- anon_vma->parent->degree--;
- continue;
- }
- list_del(&avc->same_vma);
- anon_vma_chain_free(avc);
- }
- if (vma->anon_vma)
- vma->anon_vma->degree--;
- unlock_anon_vma_root(root);
- /*
- * Iterate the list once more, it now only contains empty and unlinked
- * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
- * needing to acquire the anon_vma->root->mutex.
- */
- list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
- struct anon_vma *anon_vma = avc->anon_vma;
- BUG_ON(anon_vma->degree);
- put_anon_vma(anon_vma);
- list_del(&avc->same_vma);
- anon_vma_chain_free(avc);
- }
- }
- static void anon_vma_ctor(void *data)
- {
- struct anon_vma *anon_vma = data;
- mutex_init(&anon_vma->mutex);
- atomic_set(&anon_vma->refcount, 0);
- INIT_LIST_HEAD(&anon_vma->head);
- }
- void __init anon_vma_init(void)
- {
- anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
- 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
- anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
- }
- /*
- * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
- *
- * Since there is no serialization what so ever against page_remove_rmap()
- * the best this function can do is return a locked anon_vma that might
- * have been relevant to this page.
- *
- * The page might have been remapped to a different anon_vma or the anon_vma
- * returned may already be freed (and even reused).
- *
- * In case it was remapped to a different anon_vma, the new anon_vma will be a
- * child of the old anon_vma, and the anon_vma lifetime rules will therefore
- * ensure that any anon_vma obtained from the page will still be valid for as
- * long as we observe page_mapped() [ hence all those page_mapped() tests ].
- *
- * All users of this function must be very careful when walking the anon_vma
- * chain and verify that the page in question is indeed mapped in it
- * [ something equivalent to page_mapped_in_vma() ].
- *
- * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
- * that the anon_vma pointer from page->mapping is valid if there is a
- * mapcount, we can dereference the anon_vma after observing those.
- */
- struct anon_vma *page_get_anon_vma(struct page *page)
- {
- struct anon_vma *anon_vma = NULL;
- unsigned long anon_mapping;
- rcu_read_lock();
- anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
- if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
- goto out;
- if (!page_mapped(page))
- goto out;
- anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
- if (!atomic_inc_not_zero(&anon_vma->refcount)) {
- anon_vma = NULL;
- goto out;
- }
- /*
- * If this page is still mapped, then its anon_vma cannot have been
- * freed. But if it has been unmapped, we have no security against the
- * anon_vma structure being freed and reused (for another anon_vma:
- * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
- * above cannot corrupt).
- */
- if (!page_mapped(page)) {
- rcu_read_unlock();
- put_anon_vma(anon_vma);
- return NULL;
- }
- out:
- rcu_read_unlock();
- return anon_vma;
- }
- /*
- * Similar to page_get_anon_vma() except it locks the anon_vma.
- *
- * Its a little more complex as it tries to keep the fast path to a single
- * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
- * reference like with page_get_anon_vma() and then block on the mutex.
- */
- struct anon_vma *page_lock_anon_vma(struct page *page)
- {
- struct anon_vma *anon_vma = NULL;
- struct anon_vma *root_anon_vma;
- unsigned long anon_mapping;
- rcu_read_lock();
- anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
- if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
- goto out;
- if (!page_mapped(page))
- goto out;
- anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
- root_anon_vma = ACCESS_ONCE(anon_vma->root);
- if (mutex_trylock(&root_anon_vma->mutex)) {
- /*
- * If the page is still mapped, then this anon_vma is still
- * its anon_vma, and holding the mutex ensures that it will
- * not go away, see anon_vma_free().
- */
- if (!page_mapped(page)) {
- mutex_unlock(&root_anon_vma->mutex);
- anon_vma = NULL;
- }
- goto out;
- }
- /* trylock failed, we got to sleep */
- if (!atomic_inc_not_zero(&anon_vma->refcount)) {
- anon_vma = NULL;
- goto out;
- }
- if (!page_mapped(page)) {
- rcu_read_unlock();
- put_anon_vma(anon_vma);
- return NULL;
- }
- /* we pinned the anon_vma, its safe to sleep */
- rcu_read_unlock();
- anon_vma_lock(anon_vma);
- if (atomic_dec_and_test(&anon_vma->refcount)) {
- /*
- * Oops, we held the last refcount, release the lock
- * and bail -- can't simply use put_anon_vma() because
- * we'll deadlock on the anon_vma_lock() recursion.
- */
- anon_vma_unlock(anon_vma);
- __put_anon_vma(anon_vma);
- anon_vma = NULL;
- }
- return anon_vma;
- out:
- rcu_read_unlock();
- return anon_vma;
- }
- void page_unlock_anon_vma(struct anon_vma *anon_vma)
- {
- anon_vma_unlock(anon_vma);
- }
- /*
- * At what user virtual address is page expected in @vma?
- * Returns virtual address or -EFAULT if page's index/offset is not
- * within the range mapped the @vma.
- */
- static inline unsigned long
- vma_address(struct page *page, struct vm_area_struct *vma)
- {
- pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
- unsigned long address;
- if (unlikely(is_vm_hugetlb_page(vma)))
- pgoff = page->index << huge_page_order(page_hstate(page));
- address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
- if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
- /* page should be within @vma mapping range */
- return -EFAULT;
- }
- return address;
- }
- /*
- * At what user virtual address is page expected in vma?
- * Caller should check the page is actually part of the vma.
- */
- unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
- {
- if (PageAnon(page)) {
- struct anon_vma *page__anon_vma = page_anon_vma(page);
- /*
- * Note: swapoff's unuse_vma() is more efficient with this
- * check, and needs it to match anon_vma when KSM is active.
- */
- if (!vma->anon_vma || !page__anon_vma ||
- vma->anon_vma->root != page__anon_vma->root)
- return -EFAULT;
- } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
- if (!vma->vm_file ||
- vma->vm_file->f_mapping != page->mapping)
- return -EFAULT;
- } else
- return -EFAULT;
- return vma_address(page, vma);
- }
- /*
- * Check that @page is mapped at @address into @mm.
- *
- * If @sync is false, page_check_address may perform a racy check to avoid
- * the page table lock when the pte is not present (helpful when reclaiming
- * highly shared pages).
- *
- * On success returns with pte mapped and locked.
- */
- pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
- unsigned long address, spinlock_t **ptlp, int sync)
- {
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- spinlock_t *ptl;
- if (unlikely(PageHuge(page))) {
- /* when pud is not present, pte will be NULL */
- pte = huge_pte_offset(mm, address);
- if (!pte)
- return NULL;
- ptl = &mm->page_table_lock;
- goto check;
- }
- pgd = pgd_offset(mm, address);
- if (!pgd_present(*pgd))
- return NULL;
- pud = pud_offset(pgd, address);
- if (!pud_present(*pud))
- return NULL;
- pmd = pmd_offset(pud, address);
- if (!pmd_present(*pmd))
- return NULL;
- if (pmd_trans_huge(*pmd))
- return NULL;
- pte = pte_offset_map(pmd, address);
- /* Make a quick check before getting the lock */
- if (!sync && !pte_present(*pte)) {
- pte_unmap(pte);
- return NULL;
- }
- ptl = pte_lockptr(mm, pmd);
- check:
- spin_lock(ptl);
- if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
- *ptlp = ptl;
- return pte;
- }
- pte_unmap_unlock(pte, ptl);
- return NULL;
- }
- /**
- * page_mapped_in_vma - check whether a page is really mapped in a VMA
- * @page: the page to test
- * @vma: the VMA to test
- *
- * Returns 1 if the page is mapped into the page tables of the VMA, 0
- * if the page is not mapped into the page tables of this VMA. Only
- * valid for normal file or anonymous VMAs.
- */
- int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
- {
- unsigned long address;
- pte_t *pte;
- spinlock_t *ptl;
- address = vma_address(page, vma);
- if (address == -EFAULT) /* out of vma range */
- return 0;
- pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
- if (!pte) /* the page is not in this mm */
- return 0;
- pte_unmap_unlock(pte, ptl);
- return 1;
- }
- /*
- * Subfunctions of page_referenced: page_referenced_one called
- * repeatedly from either page_referenced_anon or page_referenced_file.
- */
- int page_referenced_one(struct page *page, struct vm_area_struct *vma,
- unsigned long address, unsigned int *mapcount,
- unsigned long *vm_flags)
- {
- struct mm_struct *mm = vma->vm_mm;
- int referenced = 0;
- if (unlikely(PageTransHuge(page))) {
- pmd_t *pmd;
- spin_lock(&mm->page_table_lock);
- /*
- * rmap might return false positives; we must filter
- * these out using page_check_address_pmd().
- */
- pmd = page_check_address_pmd(page, mm, address,
- PAGE_CHECK_ADDRESS_PMD_FLAG);
- if (!pmd) {
- spin_unlock(&mm->page_table_lock);
- goto out;
- }
- if (vma->vm_flags & VM_LOCKED) {
- spin_unlock(&mm->page_table_lock);
- *mapcount = 0; /* break early from loop */
- *vm_flags |= VM_LOCKED;
- goto out;
- }
- /* go ahead even if the pmd is pmd_trans_splitting() */
- if (pmdp_clear_flush_young_notify(vma, address, pmd))
- referenced++;
- spin_unlock(&mm->page_table_lock);
- } else {
- pte_t *pte;
- spinlock_t *ptl;
- /*
- * rmap might return false positives; we must filter
- * these out using page_check_address().
- */
- pte = page_check_address(page, mm, address, &ptl, 0);
- if (!pte)
- goto out;
- if (vma->vm_flags & VM_LOCKED) {
- pte_unmap_unlock(pte, ptl);
- *mapcount = 0; /* break early from loop */
- *vm_flags |= VM_LOCKED;
- goto out;
- }
- if (ptep_clear_flush_young_notify(vma, address, pte)) {
- /*
- * Don't treat a reference through a sequentially read
- * mapping as such. If the page has been used in
- * another mapping, we will catch it; if this other
- * mapping is already gone, the unmap path will have
- * set PG_referenced or activated the page.
- */
- if (likely(!VM_SequentialReadHint(vma)))
- referenced++;
- }
- pte_unmap_unlock(pte, ptl);
- }
- (*mapcount)--;
- if (referenced)
- *vm_flags |= vma->vm_flags;
- out:
- return referenced;
- }
- static int page_referenced_anon(struct page *page,
- struct mem_cgroup *memcg,
- unsigned long *vm_flags)
- {
- unsigned int mapcount;
- struct anon_vma *anon_vma;
- struct anon_vma_chain *avc;
- int referenced = 0;
- anon_vma = page_lock_anon_vma(page);
- if (!anon_vma)
- return referenced;
- mapcount = page_mapcount(page);
- list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
- struct vm_area_struct *vma = avc->vma;
- unsigned long address = vma_address(page, vma);
- if (address == -EFAULT)
- continue;
- /*
- * If we are reclaiming on behalf of a cgroup, skip
- * counting on behalf of references from different
- * cgroups
- */
- if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
- continue;
- referenced += page_referenced_one(page, vma, address,
- &mapcount, vm_flags);
- if (!mapcount)
- break;
- }
- page_unlock_anon_vma(anon_vma);
- return referenced;
- }
- /**
- * page_referenced_file - referenced check for object-based rmap
- * @page: the page we're checking references on.
- * @memcg: target memory control group
- * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
- *
- * For an object-based mapped page, find all the places it is mapped and
- * check/clear the referenced flag. This is done by following the page->mapping
- * pointer, then walking the chain of vmas it holds. It returns the number
- * of references it found.
- *
- * This function is only called from page_referenced for object-based pages.
- */
- static int page_referenced_file(struct page *page,
- struct mem_cgroup *memcg,
- unsigned long *vm_flags)
- {
- unsigned int mapcount;
- struct address_space *mapping = page->mapping;
- pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
- struct vm_area_struct *vma;
- struct prio_tree_iter iter;
- int referenced = 0;
- /*
- * The caller's checks on page->mapping and !PageAnon have made
- * sure that this is a file page: the check for page->mapping
- * excludes the case just before it gets set on an anon page.
- */
- BUG_ON(PageAnon(page));
- /*
- * The page lock not only makes sure that page->mapping cannot
- * suddenly be NULLified by truncation, it makes sure that the
- * structure at mapping cannot be freed and reused yet,
- * so we can safely take mapping->i_mmap_mutex.
- */
- BUG_ON(!PageLocked(page));
- mutex_lock(&mapping->i_mmap_mutex);
- /*
- * i_mmap_mutex does not stabilize mapcount at all, but mapcount
- * is more likely to be accurate if we note it after spinning.
- */
- mapcount = page_mapcount(page);
- vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
- unsigned long address = vma_address(page, vma);
- if (address == -EFAULT)
- continue;
- /*
- * If we are reclaiming on behalf of a cgroup, skip
- * counting on behalf of references from different
- * cgroups
- */
- if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
- continue;
- referenced += page_referenced_one(page, vma, address,
- &mapcount, vm_flags);
- if (!mapcount)
- break;
- }
- mutex_unlock(&mapping->i_mmap_mutex);
- return referenced;
- }
- /**
- * page_referenced - test if the page was referenced
- * @page: the page to test
- * @is_locked: caller holds lock on the page
- * @memcg: target memory cgroup
- * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
- *
- * Quick test_and_clear_referenced for all mappings to a page,
- * returns the number of ptes which referenced the page.
- */
- int page_referenced(struct page *page,
- int is_locked,
- struct mem_cgroup *memcg,
- unsigned long *vm_flags)
- {
- int referenced = 0;
- int we_locked = 0;
- *vm_flags = 0;
- if (page_mapped(page) && page_rmapping(page)) {
- if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
- we_locked = trylock_page(page);
- if (!we_locked) {
- referenced++;
- goto out;
- }
- }
- if (unlikely(PageKsm(page)))
- referenced += page_referenced_ksm(page, memcg,
- vm_flags);
- else if (PageAnon(page))
- referenced += page_referenced_anon(page, memcg,
- vm_flags);
- else if (page->mapping)
- referenced += page_referenced_file(page, memcg,
- vm_flags);
- if (we_locked)
- unlock_page(page);
- if (page_test_and_clear_young(page_to_pfn(page)))
- referenced++;
- }
- out:
- return referenced;
- }
- static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
- unsigned long address)
- {
- struct mm_struct *mm = vma->vm_mm;
- pte_t *pte;
- spinlock_t *ptl;
- int ret = 0;
- pte = page_check_address(page, mm, address, &ptl, 1);
- if (!pte)
- goto out;
- if (pte_dirty(*pte) || pte_write(*pte)) {
- pte_t entry;
- flush_cache_page(vma, address, pte_pfn(*pte));
- entry = ptep_clear_flush_notify(vma, address, pte);
- entry = pte_wrprotect(entry);
- entry = pte_mkclean(entry);
- set_pte_at(mm, address, pte, entry);
- ret = 1;
- }
- pte_unmap_unlock(pte, ptl);
- out:
- return ret;
- }
- static int page_mkclean_file(struct address_space *mapping, struct page *page)
- {
- pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
- struct vm_area_struct *vma;
- struct prio_tree_iter iter;
- int ret = 0;
- BUG_ON(PageAnon(page));
- mutex_lock(&mapping->i_mmap_mutex);
- vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
- if (vma->vm_flags & VM_SHARED) {
- unsigned long address = vma_address(page, vma);
- if (address == -EFAULT)
- continue;
- ret += page_mkclean_one(page, vma, address);
- }
- }
- mutex_unlock(&mapping->i_mmap_mutex);
- return ret;
- }
- int page_mkclean(struct page *page)
- {
- int ret = 0;
- BUG_ON(!PageLocked(page));
- if (page_mapped(page)) {
- struct address_space *mapping = page_mapping(page);
- if (mapping)
- ret = page_mkclean_file(mapping, page);
- }
- return ret;
- }
- EXPORT_SYMBOL_GPL(page_mkclean);
- /**
- * page_move_anon_rmap - move a page to our anon_vma
- * @page: the page to move to our anon_vma
- * @vma: the vma the page belongs to
- * @address: the user virtual address mapped
- *
- * When a page belongs exclusively to one process after a COW event,
- * that page can be moved into the anon_vma that belongs to just that
- * process, so the rmap code will not search the parent or sibling
- * processes.
- */
- void page_move_anon_rmap(struct page *page,
- struct vm_area_struct *vma, unsigned long address)
- {
- struct anon_vma *anon_vma = vma->anon_vma;
- VM_BUG_ON(!PageLocked(page));
- VM_BUG_ON(!anon_vma);
- VM_BUG_ON(page->index != linear_page_index(vma, address));
- anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
- page->mapping = (struct address_space *) anon_vma;
- }
- /**
- * __page_set_anon_rmap - set up new anonymous rmap
- * @page: Page to add to rmap
- * @vma: VM area to add page to.
- * @address: User virtual address of the mapping
- * @exclusive: the page is exclusively owned by the current process
- */
- static void __page_set_anon_rmap(struct page *page,
- struct vm_area_struct *vma, unsigned long address, int exclusive)
- {
- struct anon_vma *anon_vma = vma->anon_vma;
- BUG_ON(!anon_vma);
- if (PageAnon(page))
- return;
- /*
- * If the page isn't exclusively mapped into this vma,
- * we must use the _oldest_ possible anon_vma for the
- * page mapping!
- */
- if (!exclusive)
- anon_vma = anon_vma->root;
- anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
- page->mapping = (struct address_space *) anon_vma;
- page->index = linear_page_index(vma, address);
- }
- /**
- * __page_check_anon_rmap - sanity check anonymous rmap addition
- * @page: the page to add the mapping to
- * @vma: the vm area in which the mapping is added
- * @address: the user virtual address mapped
- */
- static void __page_check_anon_rmap(struct page *page,
- struct vm_area_struct *vma, unsigned long address)
- {
- #ifdef CONFIG_DEBUG_VM
- /*
- * The page's anon-rmap details (mapping and index) are guaranteed to
- * be set up correctly at this point.
- *
- * We have exclusion against page_add_anon_rmap because the caller
- * always holds the page locked, except if called from page_dup_rmap,
- * in which case the page is already known to be setup.
- *
- * We have exclusion against page_add_new_anon_rmap because those pages
- * are initially only visible via the pagetables, and the pte is locked
- * over the call to page_add_new_anon_rmap.
- */
- BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
- BUG_ON(page->index != linear_page_index(vma, address));
- #endif
- }
- /**
- * page_add_anon_rmap - add pte mapping to an anonymous page
- * @page: the page to add the mapping to
- * @vma: the vm area in which the mapping is added
- * @address: the user virtual address mapped
- *
- * The caller needs to hold the pte lock, and the page must be locked in
- * the anon_vma case: to serialize mapping,index checking after setting,
- * and to ensure that PageAnon is not being upgraded racily to PageKsm
- * (but PageKsm is never downgraded to PageAnon).
- */
- void page_add_anon_rmap(struct page *page,
- struct vm_area_struct *vma, unsigned long address)
- {
- do_page_add_anon_rmap(page, vma, address, 0);
- }
- /*
- * Special version of the above for do_swap_page, which often runs
- * into pages that are exclusively owned by the current process.
- * Everybody else should continue to use page_add_anon_rmap above.
- */
- void do_page_add_anon_rmap(struct page *page,
- struct vm_area_struct *vma, unsigned long address, int exclusive)
- {
- int first = atomic_inc_and_test(&page->_mapcount);
- if (first) {
- if (PageTransHuge(page))
- __inc_zone_page_state(page,
- NR_ANON_TRANSPARENT_HUGEPAGES);
- __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
- hpage_nr_pages(page));
- }
- if (unlikely(PageKsm(page)))
- return;
- VM_BUG_ON(!PageLocked(page));
- /* address might be in next vma when migration races vma_adjust */
- if (first)
- __page_set_anon_rmap(page, vma, address, exclusive);
- else
- __page_check_anon_rmap(page, vma, address);
- }
- /**
- * page_add_new_anon_rmap - add pte mapping to a new anonymous page
- * @page: the page to add the mapping to
- * @vma: the vm area in which the mapping is added
- * @address: the user virtual address mapped
- *
- * Same as page_add_anon_rmap but must only be called on *new* pages.
- * This means the inc-and-test can be bypassed.
- * Page does not have to be locked.
- */
- void page_add_new_anon_rmap(struct page *page,
- struct vm_area_struct *vma, unsigned long address)
- {
- VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
- SetPageSwapBacked(page);
- atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
- if (PageTransHuge(page))
- __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
- __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
- hpage_nr_pages(page));
- __page_set_anon_rmap(page, vma, address, 1);
- if (page_evictable(page, vma))
- lru_cache_add_lru(page, LRU_ACTIVE_ANON);
- else
- add_page_to_unevictable_list(page);
- }
- /**
- * page_add_file_rmap - add pte mapping to a file page
- * @page: the page to add the mapping to
- *
- * The caller needs to hold the pte lock.
- */
- void page_add_file_rmap(struct page *page)
- {
- bool locked;
- unsigned long flags;
- mem_cgroup_begin_update_page_stat(page, &locked, &flags);
- if (atomic_inc_and_test(&page->_mapcount)) {
- __inc_zone_page_state(page, NR_FILE_MAPPED);
- mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
- }
- mem_cgroup_end_update_page_stat(page, &locked, &flags);
- }
- /**
- * page_remove_rmap - take down pte mapping from a page
- * @page: page to remove mapping from
- *
- * The caller needs to hold the pte lock.
- */
- void page_remove_rmap(struct page *page)
- {
- struct address_space *mapping = page_mapping(page);
- bool anon = PageAnon(page);
- bool locked;
- unsigned long flags;
- /*
- * The anon case has no mem_cgroup page_stat to update; but may
- * uncharge_page() below, where the lock ordering can deadlock if
- * we hold the lock against page_stat move: so avoid it on anon.
- */
- if (!anon)
- mem_cgroup_begin_update_page_stat(page, &locked, &flags);
- /* page still mapped by someone else? */
- if (!atomic_add_negative(-1, &page->_mapcount))
- goto out;
- /*
- * Now that the last pte has gone, s390 must transfer dirty
- * flag from storage key to struct page. We can usually skip
- * this if the page is anon, so about to be freed; but perhaps
- * not if it's in swapcache - there might be another pte slot
- * containing the swap entry, but page not yet written to swap.
- *
- * And we can skip it on file pages, so long as the filesystem
- * participates in dirty tracking; but need to catch shm and tmpfs
- * and ramfs pages which have been modified since creation by read
- * fault.
- *
- * Note that mapping must be decided above, before decrementing
- * mapcount (which luckily provides a barrier): once page is unmapped,
- * it could be truncated and page->mapping reset to NULL at any moment.
- * Note also that we are relying on page_mapping(page) to set mapping
- * to &swapper_space when PageSwapCache(page).
- */
- if (mapping && !mapping_cap_account_dirty(mapping) &&
- page_test_and_clear_dirty(page_to_pfn(page), 1))
- set_page_dirty(page);
- /*
- * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
- * and not charged by memcg for now.
- */
- if (unlikely(PageHuge(page)))
- goto out;
- if (anon) {
- mem_cgroup_uncharge_page(page);
- if (PageTransHuge(page))
- __dec_zone_page_state(page,
- NR_ANON_TRANSPARENT_HUGEPAGES);
- __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
- -hpage_nr_pages(page));
- } else {
- __dec_zone_page_state(page, NR_FILE_MAPPED);
- mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
- }
- /*
- * It would be tidy to reset the PageAnon mapping here,
- * but that might overwrite a racing page_add_anon_rmap
- * which increments mapcount after us but sets mapping
- * before us: so leave the reset to free_hot_cold_page,
- * and remember that it's only reliable while mapped.
- * Leaving it set also helps swapoff to reinstate ptes
- * faster for those pages still in swapcache.
- */
- out:
- if (!anon)
- mem_cgroup_end_update_page_stat(page, &locked, &flags);
- }
- /*
- * Subfunctions of try_to_unmap: try_to_unmap_one called
- * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
- */
- int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
- unsigned long address, enum ttu_flags flags)
- {
- struct mm_struct *mm = vma->vm_mm;
- pte_t *pte;
- pte_t pteval;
- spinlock_t *ptl;
- int ret = SWAP_AGAIN;
- pte = page_check_address(page, mm, address, &ptl, 0);
- if (!pte)
- goto out;
- /*
- * If the page is mlock()d, we cannot swap it out.
- * If it's recently referenced (perhaps page_referenced
- * skipped over this mm) then we should reactivate it.
- */
- if (!(flags & TTU_IGNORE_MLOCK)) {
- if (vma->vm_flags & VM_LOCKED)
- goto out_mlock;
- if (TTU_ACTION(flags) == TTU_MUNLOCK)
- goto out_unmap;
- }
- if (!(flags & TTU_IGNORE_ACCESS)) {
- if (ptep_clear_flush_young_notify(vma, address, pte)) {
- ret = SWAP_FAIL;
- goto out_unmap;
- }
- }
- /* Nuke the page table entry. */
- flush_cache_page(vma, address, page_to_pfn(page));
- pteval = ptep_clear_flush_notify(vma, address, pte);
- /* Move the dirty bit to the physical page now the pte is gone. */
- if (pte_dirty(pteval))
- set_page_dirty(page);
- /* Update high watermark before we lower rss */
- update_hiwater_rss(mm);
- if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
- if (PageAnon(page))
- dec_mm_counter(mm, MM_ANONPAGES);
- else
- dec_mm_counter(mm, MM_FILEPAGES);
- set_pte_at(mm, address, pte,
- swp_entry_to_pte(make_hwpoison_entry(page)));
- } else if (PageAnon(page)) {
- swp_entry_t entry = { .val = page_private(page) };
- if (PageSwapCache(page)) {
- /*
- * Store the swap location in the pte.
- * See handle_pte_fault() ...
- */
- if (swap_duplicate(entry) < 0) {
- set_pte_at(mm, address, pte, pteval);
- ret = SWAP_FAIL;
- goto out_unmap;
- }
- if (list_empty(&mm->mmlist)) {
- spin_lock(&mmlist_lock);
- if (list_empty(&mm->mmlist))
- list_add(&mm->mmlist, &init_mm.mmlist);
- spin_unlock(&mmlist_lock);
- }
- dec_mm_counter(mm, MM_ANONPAGES);
- inc_mm_counter(mm, MM_SWAPENTS);
- } else if (IS_ENABLED(CONFIG_MIGRATION)) {
- /*
- * Store the pfn of the page in a special migration
- * pte. do_swap_page() will wait until the migration
- * pte is removed and then restart fault handling.
- */
- BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
- entry = make_migration_entry(page, pte_write(pteval));
- }
- set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
- BUG_ON(pte_file(*pte));
- } else if (IS_ENABLED(CONFIG_MIGRATION) &&
- (TTU_ACTION(flags) == TTU_MIGRATION)) {
- /* Establish migration entry for a file page */
- swp_entry_t entry;
- entry = make_migration_entry(page, pte_write(pteval));
- set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
- } else
- dec_mm_counter(mm, MM_FILEPAGES);
- page_remove_rmap(page);
- page_cache_release(page);
- out_unmap:
- pte_unmap_unlock(pte, ptl);
- out:
- return ret;
- out_mlock:
- pte_unmap_unlock(pte, ptl);
- /*
- * We need mmap_sem locking, Otherwise VM_LOCKED check makes
- * unstable result and race. Plus, We can't wait here because
- * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
- * if trylock failed, the page remain in evictable lru and later
- * vmscan could retry to move the page to unevictable lru if the
- * page is actually mlocked.
- */
- if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
- if (vma->vm_flags & VM_LOCKED) {
- mlock_vma_page(page);
- ret = SWAP_MLOCK;
- }
- up_read(&vma->vm_mm->mmap_sem);
- }
- return ret;
- }
- /*
- * objrmap doesn't work for nonlinear VMAs because the assumption that
- * offset-into-file correlates with offset-into-virtual-addresses does not hold.
- * Consequently, given a particular page and its ->index, we cannot locate the
- * ptes which are mapping that page without an exhaustive linear search.
- *
- * So what this code does is a mini "virtual scan" of each nonlinear VMA which
- * maps the file to which the target page belongs. The ->vm_private_data field
- * holds the current cursor into that scan. Successive searches will circulate
- * around the vma's virtual address space.
- *
- * So as more replacement pressure is applied to the pages in a nonlinear VMA,
- * more scanning pressure is placed against them as well. Eventually pages
- * will become fully unmapped and are eligible for eviction.
- *
- * For very sparsely populated VMAs this is a little inefficient - chances are
- * there there won't be many ptes located within the scan cluster. In this case
- * maybe we could scan further - to the end of the pte page, perhaps.
- *
- * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
- * acquire it without blocking. If vma locked, mlock the pages in the cluster,
- * rather than unmapping them. If we encounter the "check_page" that vmscan is
- * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
- */
- #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
- #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
- static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
- struct vm_area_struct *vma, struct page *check_page)
- {
- struct mm_struct *mm = vma->vm_mm;
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- pte_t pteval;
- spinlock_t *ptl;
- struct page *page;
- unsigned long address;
- unsigned long end;
- int ret = SWAP_AGAIN;
- int locked_vma = 0;
- address = (vma->vm_start + cursor) & CLUSTER_MASK;
- end = address + CLUSTER_SIZE;
- if (address < vma->vm_start)
- address = vma->vm_start;
- if (end > vma->vm_end)
- end = vma->vm_end;
- pgd = pgd_offset(mm, address);
- if (!pgd_present(*pgd))
- return ret;
- pud = pud_offset(pgd, address);
- if (!pud_present(*pud))
- return ret;
- pmd = pmd_offset(pud, address);
- if (!pmd_present(*pmd))
- return ret;
- /*
- * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
- * keep the sem while scanning the cluster for mlocking pages.
- */
- if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
- locked_vma = (vma->vm_flags & VM_LOCKED);
- if (!locked_vma)
- up_read(&vma->vm_mm->mmap_sem); /* don't need it */
- }
- pte = pte_offset_map_lock(mm, pmd, address, &ptl);
- /* Update high watermark before we lower rss */
- update_hiwater_rss(mm);
- for (; address < end; pte++, address += PAGE_SIZE) {
- if (!pte_present(*pte))
- continue;
- page = vm_normal_page(vma, address, *pte);
- BUG_ON(!page || PageAnon(page));
- if (locked_vma) {
- if (page == check_page) {
- /* we know we have check_page locked */
- mlock_vma_page(page);
- ret = SWAP_MLOCK;
- } else if (trylock_page(page)) {
- /*
- * If we can lock the page, perform mlock.
- * Otherwise leave the page alone, it will be
- * eventually encountered again later.
- */
- mlock_vma_page(page);
- unlock_page(page);
- }
- continue; /* don't unmap */
- }
- if (ptep_clear_flush_young_notify(vma, address, pte))
- continue;
- /* Nuke the page table entry. */
- flush_cache_page(vma, address, pte_pfn(*pte));
- pteval = ptep_clear_flush_notify(vma, address, pte);
- /* If nonlinear, store the file page offset in the pte. */
- if (page->index != linear_page_index(vma, address))
- set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
- /* Move the dirty bit to the physical page now the pte is gone. */
- if (pte_dirty(pteval))
- set_page_dirty(page);
- page_remove_rmap(page);
- page_cache_release(page);
- dec_mm_counter(mm, MM_FILEPAGES);
- (*mapcount)--;
- }
- pte_unmap_unlock(pte - 1, ptl);
- if (locked_vma)
- up_read(&vma->vm_mm->mmap_sem);
- return ret;
- }
- bool is_vma_temporary_stack(struct vm_area_struct *vma)
- {
- int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
- if (!maybe_stack)
- return false;
- if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
- VM_STACK_INCOMPLETE_SETUP)
- return true;
- return false;
- }
- /**
- * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
- * rmap method
- * @page: the page to unmap/unlock
- * @flags: action and flags
- *
- * Find all the mappings of a page using the mapping pointer and the vma chains
- * contained in the anon_vma struct it points to.
- *
- * This function is only called from try_to_unmap/try_to_munlock for
- * anonymous pages.
- * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
- * where the page was found will be held for write. So, we won't recheck
- * vm_flags for that VMA. That should be OK, because that vma shouldn't be
- * 'LOCKED.
- */
- static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
- {
- struct anon_vma *anon_vma;
- struct anon_vma_chain *avc;
- int ret = SWAP_AGAIN;
- anon_vma = page_lock_anon_vma(page);
- if (!anon_vma)
- return ret;
- list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
- struct vm_area_struct *vma = avc->vma;
- unsigned long address;
- /*
- * During exec, a temporary VMA is setup and later moved.
- * The VMA is moved under the anon_vma lock but not the
- * page tables leading to a race where migration cannot
- * find the migration ptes. Rather than increasing the
- * locking requirements of exec(), migration skips
- * temporary VMAs until after exec() completes.
- */
- if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
- is_vma_temporary_stack(vma))
- continue;
- address = vma_address(page, vma);
- if (address == -EFAULT)
- continue;
- ret = try_to_unmap_one(page, vma, address, flags);
- if (ret != SWAP_AGAIN || !page_mapped(page))
- break;
- }
- page_unlock_anon_vma(anon_vma);
- return ret;
- }
- /**
- * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
- * @page: the page to unmap/unlock
- * @flags: action and flags
- *
- * Find all the mappings of a page using the mapping pointer and the vma chains
- * contained in the address_space struct it points to.
- *
- * This function is only called from try_to_unmap/try_to_munlock for
- * object-based pages.
- * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
- * where the page was found will be held for write. So, we won't recheck
- * vm_flags for that VMA. That should be OK, because that vma shouldn't be
- * 'LOCKED.
- */
- static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
- {
- struct address_space *mapping = page->mapping;
- pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
- struct vm_area_struct *vma;
- struct prio_tree_iter iter;
- int ret = SWAP_AGAIN;
- unsigned long cursor;
- unsigned long max_nl_cursor = 0;
- unsigned long max_nl_size = 0;
- unsigned int mapcount;
- mutex_lock(&mapping->i_mmap_mutex);
- vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
- unsigned long address = vma_address(page, vma);
- if (address == -EFAULT)
- continue;
- ret = try_to_unmap_one(page, vma, address, flags);
- if (ret != SWAP_AGAIN || !page_mapped(page))
- goto out;
- }
- if (list_empty(&mapping->i_mmap_nonlinear))
- goto out;
- /*
- * We don't bother to try to find the munlocked page in nonlinears.
- * It's costly. Instead, later, page reclaim logic may call
- * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
- */
- if (TTU_ACTION(flags) == TTU_MUNLOCK)
- goto out;
- list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
- shared.vm_set.list) {
- cursor = (unsigned long) vma->vm_private_data;
- if (cursor > max_nl_cursor)
- max_nl_cursor = cursor;
- cursor = vma->vm_end - vma->vm_start;
- if (cursor > max_nl_size)
- max_nl_size = cursor;
- }
- if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
- ret = SWAP_FAIL;
- goto out;
- }
- /*
- * We don't try to search for this page in the nonlinear vmas,
- * and page_referenced wouldn't have found it anyway. Instead
- * just walk the nonlinear vmas trying to age and unmap some.
- * The mapcount of the page we came in with is irrelevant,
- * but even so use it as a guide to how hard we should try?
- */
- mapcount = page_mapcount(page);
- if (!mapcount)
- goto out;
- cond_resched();
- max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
- if (max_nl_cursor == 0)
- max_nl_cursor = CLUSTER_SIZE;
- do {
- list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
- shared.vm_set.list) {
- cursor = (unsigned long) vma->vm_private_data;
- while ( cursor < max_nl_cursor &&
- cursor < vma->vm_end - vma->vm_start) {
- if (try_to_unmap_cluster(cursor, &mapcount,
- vma, page) == SWAP_MLOCK)
- ret = SWAP_MLOCK;
- cursor += CLUSTER_SIZE;
- vma->vm_private_data = (void *) cursor;
- if ((int)mapcount <= 0)
- goto out;
- }
- vma->vm_private_data = (void *) max_nl_cursor;
- }
- cond_resched();
- max_nl_cursor += CLUSTER_SIZE;
- } while (max_nl_cursor <= max_nl_size);
- /*
- * Don't loop forever (perhaps all the remaining pages are
- * in locked vmas). Reset cursor on all unreserved nonlinear
- * vmas, now forgetting on which ones it had fallen behind.
- */
- list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
- vma->vm_private_data = NULL;
- out:
- mutex_unlock(&mapping->i_mmap_mutex);
- return ret;
- }
- /**
- * try_to_unmap - try to remove all page table mappings to a page
- * @page: the page to get unmapped
- * @flags: action and flags
- *
- * Tries to remove all the page table entries which are mapping this
- * page, used in the pageout path. Caller must hold the page lock.
- * Return values are:
- *
- * SWAP_SUCCESS - we succeeded in removing all mappings
- * SWAP_AGAIN - we missed a mapping, try again later
- * SWAP_FAIL - the page is unswappable
- * SWAP_MLOCK - page is mlocked.
- */
- int try_to_unmap(struct page *page, enum ttu_flags flags)
- {
- int ret;
- BUG_ON(!PageLocked(page));
- VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
- if (unlikely(PageKsm(page)))
- ret = try_to_unmap_ksm(page, flags);
- else if (PageAnon(page))
- ret = try_to_unmap_anon(page, flags);
- else
- ret = try_to_unmap_file(page, flags);
- if (ret != SWAP_MLOCK && !page_mapped(page))
- ret = SWAP_SUCCESS;
- return ret;
- }
- /**
- * try_to_munlock - try to munlock a page
- * @page: the page to be munlocked
- *
- * Called from munlock code. Checks all of the VMAs mapping the page
- * to make sure nobody else has this page mlocked. The page will be
- * returned with PG_mlocked cleared if no other vmas have it mlocked.
- *
- * Return values are:
- *
- * SWAP_AGAIN - no vma is holding page mlocked, or,
- * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
- * SWAP_FAIL - page cannot be located at present
- * SWAP_MLOCK - page is now mlocked.
- */
- int try_to_munlock(struct page *page)
- {
- VM_BUG_ON(!PageLocked(page) || PageLRU(page));
- if (unlikely(PageKsm(page)))
- return try_to_unmap_ksm(page, TTU_MUNLOCK);
- else if (PageAnon(page))
- return try_to_unmap_anon(page, TTU_MUNLOCK);
- else
- return try_to_unmap_file(page, TTU_MUNLOCK);
- }
- void __put_anon_vma(struct anon_vma *anon_vma)
- {
- struct anon_vma *root = anon_vma->root;
- anon_vma_free(anon_vma);
- if (root != anon_vma && atomic_dec_and_test(&root->refcount))
- anon_vma_free(root);
- }
- #ifdef CONFIG_MIGRATION
- /*
- * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
- * Called by migrate.c to remove migration ptes, but might be used more later.
- */
- static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
- struct vm_area_struct *, unsigned long, void *), void *arg)
- {
- struct anon_vma *anon_vma;
- struct anon_vma_chain *avc;
- int ret = SWAP_AGAIN;
- /*
- * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
- * because that depends on page_mapped(); but not all its usages
- * are holding mmap_sem. Users without mmap_sem are required to
- * take a reference count to prevent the anon_vma disappearing
- */
- anon_vma = page_anon_vma(page);
- if (!anon_vma)
- return ret;
- anon_vma_lock(anon_vma);
- list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
- struct vm_area_struct *vma = avc->vma;
- unsigned long address = vma_address(page, vma);
- if (address == -EFAULT)
- continue;
- ret = rmap_one(page, vma, address, arg);
- if (ret != SWAP_AGAIN)
- break;
- }
- anon_vma_unlock(anon_vma);
- return ret;
- }
- static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
- struct vm_area_struct *, unsigned long, void *), void *arg)
- {
- struct address_space *mapping = page->mapping;
- pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
- struct vm_area_struct *vma;
- struct prio_tree_iter iter;
- int ret = SWAP_AGAIN;
- if (!mapping)
- return ret;
- mutex_lock(&mapping->i_mmap_mutex);
- vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
- unsigned long address = vma_address(page, vma);
- if (address == -EFAULT)
- continue;
- ret = rmap_one(page, vma, address, arg);
- if (ret != SWAP_AGAIN)
- break;
- }
- /*
- * No nonlinear handling: being always shared, nonlinear vmas
- * never contain migration ptes. Decide what to do about this
- * limitation to linear when we need rmap_walk() on nonlinear.
- */
- mutex_unlock(&mapping->i_mmap_mutex);
- return ret;
- }
- int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
- struct vm_area_struct *, unsigned long, void *), void *arg)
- {
- VM_BUG_ON(!PageLocked(page));
- if (unlikely(PageKsm(page)))
- return rmap_walk_ksm(page, rmap_one, arg);
- else if (PageAnon(page))
- return rmap_walk_anon(page, rmap_one, arg);
- else
- return rmap_walk_file(page, rmap_one, arg);
- }
- #endif /* CONFIG_MIGRATION */
- #ifdef CONFIG_HUGETLB_PAGE
- /*
- * The following three functions are for anonymous (private mapped) hugepages.
- * Unlike common anonymous pages, anonymous hugepages have no accounting code
- * and no lru code, because we handle hugepages differently from common pages.
- */
- static void __hugepage_set_anon_rmap(struct page *page,
- struct vm_area_struct *vma, unsigned long address, int exclusive)
- {
- struct anon_vma *anon_vma = vma->anon_vma;
- BUG_ON(!anon_vma);
- if (PageAnon(page))
- return;
- if (!exclusive)
- anon_vma = anon_vma->root;
- anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
- page->mapping = (struct address_space *) anon_vma;
- page->index = linear_page_index(vma, address);
- }
- void hugepage_add_anon_rmap(struct page *page,
- struct vm_area_struct *vma, unsigned long address)
- {
- struct anon_vma *anon_vma = vma->anon_vma;
- int first;
- BUG_ON(!PageLocked(page));
- BUG_ON(!anon_vma);
- /* address might be in next vma when migration races vma_adjust */
- first = atomic_inc_and_test(&page->_mapcount);
- if (first)
- __hugepage_set_anon_rmap(page, vma, address, 0);
- }
- void hugepage_add_new_anon_rmap(struct page *page,
- struct vm_area_struct *vma, unsigned long address)
- {
- BUG_ON(address < vma->vm_start || address >= vma->vm_end);
- atomic_set(&page->_mapcount, 0);
- __hugepage_set_anon_rmap(page, vma, address, 1);
- }
- #endif /* CONFIG_HUGETLB_PAGE */
|