exit.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902
  1. /*
  2. * linux/kernel/exit.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/slab.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/module.h>
  10. #include <linux/capability.h>
  11. #include <linux/completion.h>
  12. #include <linux/personality.h>
  13. #include <linux/tty.h>
  14. #include <linux/iocontext.h>
  15. #include <linux/key.h>
  16. #include <linux/security.h>
  17. #include <linux/cpu.h>
  18. #include <linux/acct.h>
  19. #include <linux/tsacct_kern.h>
  20. #include <linux/file.h>
  21. #include <linux/fdtable.h>
  22. #include <linux/binfmts.h>
  23. #include <linux/nsproxy.h>
  24. #include <linux/pid_namespace.h>
  25. #include <linux/ptrace.h>
  26. #include <linux/profile.h>
  27. #include <linux/mount.h>
  28. #include <linux/proc_fs.h>
  29. #include <linux/kthread.h>
  30. #include <linux/mempolicy.h>
  31. #include <linux/taskstats_kern.h>
  32. #include <linux/delayacct.h>
  33. #include <linux/freezer.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/signal.h>
  37. #include <linux/posix-timers.h>
  38. #include <linux/cn_proc.h>
  39. #include <linux/mutex.h>
  40. #include <linux/futex.h>
  41. #include <linux/pipe_fs_i.h>
  42. #include <linux/audit.h> /* for audit_free() */
  43. #include <linux/resource.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/task_io_accounting_ops.h>
  46. #include <linux/tracehook.h>
  47. #include <linux/fs_struct.h>
  48. #include <linux/init_task.h>
  49. #include <linux/perf_event.h>
  50. #include <trace/events/sched.h>
  51. #include <linux/hw_breakpoint.h>
  52. #include <linux/oom.h>
  53. #include <linux/writeback.h>
  54. #include <linux/shm.h>
  55. #include <asm/uaccess.h>
  56. #include <asm/unistd.h>
  57. #include <asm/pgtable.h>
  58. #include <asm/mmu_context.h>
  59. static void exit_mm(struct task_struct * tsk);
  60. static void __unhash_process(struct task_struct *p, bool group_dead)
  61. {
  62. nr_threads--;
  63. detach_pid(p, PIDTYPE_PID);
  64. if (group_dead) {
  65. detach_pid(p, PIDTYPE_PGID);
  66. detach_pid(p, PIDTYPE_SID);
  67. list_del_rcu(&p->tasks);
  68. delete_from_adj_tree(p);
  69. list_del_init(&p->sibling);
  70. __this_cpu_dec(process_counts);
  71. }
  72. list_del_rcu(&p->thread_group);
  73. list_del_rcu(&p->thread_node);
  74. }
  75. /*
  76. * This function expects the tasklist_lock write-locked.
  77. */
  78. static void __exit_signal(struct task_struct *tsk)
  79. {
  80. struct signal_struct *sig = tsk->signal;
  81. bool group_dead = thread_group_leader(tsk);
  82. struct sighand_struct *sighand;
  83. struct tty_struct *uninitialized_var(tty);
  84. sighand = rcu_dereference_check(tsk->sighand,
  85. lockdep_tasklist_lock_is_held());
  86. spin_lock(&sighand->siglock);
  87. posix_cpu_timers_exit(tsk);
  88. if (group_dead) {
  89. posix_cpu_timers_exit_group(tsk);
  90. tty = sig->tty;
  91. sig->tty = NULL;
  92. } else {
  93. /*
  94. * This can only happen if the caller is de_thread().
  95. * FIXME: this is the temporary hack, we should teach
  96. * posix-cpu-timers to handle this case correctly.
  97. */
  98. if (unlikely(has_group_leader_pid(tsk)))
  99. posix_cpu_timers_exit_group(tsk);
  100. /*
  101. * If there is any task waiting for the group exit
  102. * then notify it:
  103. */
  104. if (sig->notify_count > 0 && !--sig->notify_count)
  105. wake_up_process(sig->group_exit_task);
  106. if (tsk == sig->curr_target)
  107. sig->curr_target = next_thread(tsk);
  108. /*
  109. * Accumulate here the counters for all threads but the
  110. * group leader as they die, so they can be added into
  111. * the process-wide totals when those are taken.
  112. * The group leader stays around as a zombie as long
  113. * as there are other threads. When it gets reaped,
  114. * the exit.c code will add its counts into these totals.
  115. * We won't ever get here for the group leader, since it
  116. * will have been the last reference on the signal_struct.
  117. */
  118. sig->utime += tsk->utime;
  119. sig->stime += tsk->stime;
  120. sig->gtime += tsk->gtime;
  121. sig->min_flt += tsk->min_flt;
  122. sig->maj_flt += tsk->maj_flt;
  123. sig->nvcsw += tsk->nvcsw;
  124. sig->nivcsw += tsk->nivcsw;
  125. sig->inblock += task_io_get_inblock(tsk);
  126. sig->oublock += task_io_get_oublock(tsk);
  127. task_io_accounting_add(&sig->ioac, &tsk->ioac);
  128. sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
  129. }
  130. sig->nr_threads--;
  131. __unhash_process(tsk, group_dead);
  132. /*
  133. * Do this under ->siglock, we can race with another thread
  134. * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
  135. */
  136. flush_sigqueue(&tsk->pending);
  137. tsk->sighand = NULL;
  138. spin_unlock(&sighand->siglock);
  139. __cleanup_sighand(sighand);
  140. clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
  141. if (group_dead) {
  142. flush_sigqueue(&sig->shared_pending);
  143. tty_kref_put(tty);
  144. }
  145. }
  146. static void delayed_put_task_struct(struct rcu_head *rhp)
  147. {
  148. struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  149. perf_event_delayed_put(tsk);
  150. trace_sched_process_free(tsk);
  151. put_task_struct(tsk);
  152. }
  153. void release_task(struct task_struct * p)
  154. {
  155. struct task_struct *leader;
  156. int zap_leader;
  157. repeat:
  158. /* don't need to get the RCU readlock here - the process is dead and
  159. * can't be modifying its own credentials. But shut RCU-lockdep up */
  160. rcu_read_lock();
  161. atomic_dec(&__task_cred(p)->user->processes);
  162. rcu_read_unlock();
  163. proc_flush_task(p);
  164. write_lock_irq(&tasklist_lock);
  165. ptrace_release_task(p);
  166. __exit_signal(p);
  167. /*
  168. * If we are the last non-leader member of the thread
  169. * group, and the leader is zombie, then notify the
  170. * group leader's parent process. (if it wants notification.)
  171. */
  172. zap_leader = 0;
  173. leader = p->group_leader;
  174. if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
  175. /*
  176. * If we were the last child thread and the leader has
  177. * exited already, and the leader's parent ignores SIGCHLD,
  178. * then we are the one who should release the leader.
  179. */
  180. zap_leader = do_notify_parent(leader, leader->exit_signal);
  181. if (zap_leader)
  182. leader->exit_state = EXIT_DEAD;
  183. }
  184. write_unlock_irq(&tasklist_lock);
  185. release_thread(p);
  186. call_rcu(&p->rcu, delayed_put_task_struct);
  187. p = leader;
  188. if (unlikely(zap_leader))
  189. goto repeat;
  190. }
  191. /*
  192. * This checks not only the pgrp, but falls back on the pid if no
  193. * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
  194. * without this...
  195. *
  196. * The caller must hold rcu lock or the tasklist lock.
  197. */
  198. struct pid *session_of_pgrp(struct pid *pgrp)
  199. {
  200. struct task_struct *p;
  201. struct pid *sid = NULL;
  202. p = pid_task(pgrp, PIDTYPE_PGID);
  203. if (p == NULL)
  204. p = pid_task(pgrp, PIDTYPE_PID);
  205. if (p != NULL)
  206. sid = task_session(p);
  207. return sid;
  208. }
  209. /*
  210. * Determine if a process group is "orphaned", according to the POSIX
  211. * definition in 2.2.2.52. Orphaned process groups are not to be affected
  212. * by terminal-generated stop signals. Newly orphaned process groups are
  213. * to receive a SIGHUP and a SIGCONT.
  214. *
  215. * "I ask you, have you ever known what it is to be an orphan?"
  216. */
  217. static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
  218. {
  219. struct task_struct *p;
  220. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  221. if ((p == ignored_task) ||
  222. (p->exit_state && thread_group_empty(p)) ||
  223. is_global_init(p->real_parent))
  224. continue;
  225. if (task_pgrp(p->real_parent) != pgrp &&
  226. task_session(p->real_parent) == task_session(p))
  227. return 0;
  228. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  229. return 1;
  230. }
  231. int is_current_pgrp_orphaned(void)
  232. {
  233. int retval;
  234. read_lock(&tasklist_lock);
  235. retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
  236. read_unlock(&tasklist_lock);
  237. return retval;
  238. }
  239. static bool has_stopped_jobs(struct pid *pgrp)
  240. {
  241. struct task_struct *p;
  242. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  243. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  244. return true;
  245. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  246. return false;
  247. }
  248. /*
  249. * Check to see if any process groups have become orphaned as
  250. * a result of our exiting, and if they have any stopped jobs,
  251. * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  252. */
  253. static void
  254. kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
  255. {
  256. struct pid *pgrp = task_pgrp(tsk);
  257. struct task_struct *ignored_task = tsk;
  258. if (!parent)
  259. /* exit: our father is in a different pgrp than
  260. * we are and we were the only connection outside.
  261. */
  262. parent = tsk->real_parent;
  263. else
  264. /* reparent: our child is in a different pgrp than
  265. * we are, and it was the only connection outside.
  266. */
  267. ignored_task = NULL;
  268. if (task_pgrp(parent) != pgrp &&
  269. task_session(parent) == task_session(tsk) &&
  270. will_become_orphaned_pgrp(pgrp, ignored_task) &&
  271. has_stopped_jobs(pgrp)) {
  272. __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
  273. __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
  274. }
  275. }
  276. /**
  277. * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
  278. *
  279. * If a kernel thread is launched as a result of a system call, or if
  280. * it ever exits, it should generally reparent itself to kthreadd so it
  281. * isn't in the way of other processes and is correctly cleaned up on exit.
  282. *
  283. * The various task state such as scheduling policy and priority may have
  284. * been inherited from a user process, so we reset them to sane values here.
  285. *
  286. * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
  287. */
  288. static void reparent_to_kthreadd(void)
  289. {
  290. write_lock_irq(&tasklist_lock);
  291. ptrace_unlink(current);
  292. /* Reparent to init */
  293. current->real_parent = current->parent = kthreadd_task;
  294. list_move_tail(&current->sibling, &current->real_parent->children);
  295. /* Set the exit signal to SIGCHLD so we signal init on exit */
  296. current->exit_signal = SIGCHLD;
  297. if (task_nice(current) < 0)
  298. set_user_nice(current, 0);
  299. /* cpus_allowed? */
  300. /* rt_priority? */
  301. /* signals? */
  302. memcpy(current->signal->rlim, init_task.signal->rlim,
  303. sizeof(current->signal->rlim));
  304. atomic_inc(&init_cred.usage);
  305. commit_creds(&init_cred);
  306. write_unlock_irq(&tasklist_lock);
  307. }
  308. void __set_special_pids(struct pid *pid)
  309. {
  310. struct task_struct *curr = current->group_leader;
  311. if (task_session(curr) != pid)
  312. change_pid(curr, PIDTYPE_SID, pid);
  313. if (task_pgrp(curr) != pid)
  314. change_pid(curr, PIDTYPE_PGID, pid);
  315. }
  316. static void set_special_pids(struct pid *pid)
  317. {
  318. write_lock_irq(&tasklist_lock);
  319. __set_special_pids(pid);
  320. write_unlock_irq(&tasklist_lock);
  321. }
  322. /*
  323. * Let kernel threads use this to say that they allow a certain signal.
  324. * Must not be used if kthread was cloned with CLONE_SIGHAND.
  325. */
  326. int allow_signal(int sig)
  327. {
  328. if (!valid_signal(sig) || sig < 1)
  329. return -EINVAL;
  330. spin_lock_irq(&current->sighand->siglock);
  331. /* This is only needed for daemonize()'ed kthreads */
  332. sigdelset(&current->blocked, sig);
  333. /*
  334. * Kernel threads handle their own signals. Let the signal code
  335. * know it'll be handled, so that they don't get converted to
  336. * SIGKILL or just silently dropped.
  337. */
  338. current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
  339. recalc_sigpending();
  340. spin_unlock_irq(&current->sighand->siglock);
  341. return 0;
  342. }
  343. EXPORT_SYMBOL(allow_signal);
  344. int disallow_signal(int sig)
  345. {
  346. if (!valid_signal(sig) || sig < 1)
  347. return -EINVAL;
  348. spin_lock_irq(&current->sighand->siglock);
  349. current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
  350. recalc_sigpending();
  351. spin_unlock_irq(&current->sighand->siglock);
  352. return 0;
  353. }
  354. EXPORT_SYMBOL(disallow_signal);
  355. /*
  356. * Put all the gunge required to become a kernel thread without
  357. * attached user resources in one place where it belongs.
  358. */
  359. void daemonize(const char *name, ...)
  360. {
  361. va_list args;
  362. sigset_t blocked;
  363. va_start(args, name);
  364. vsnprintf(current->comm, sizeof(current->comm), name, args);
  365. va_end(args);
  366. /*
  367. * If we were started as result of loading a module, close all of the
  368. * user space pages. We don't need them, and if we didn't close them
  369. * they would be locked into memory.
  370. */
  371. exit_mm(current);
  372. /*
  373. * We don't want to get frozen, in case system-wide hibernation
  374. * or suspend transition begins right now.
  375. */
  376. current->flags |= (PF_NOFREEZE | PF_KTHREAD);
  377. if (current->nsproxy != &init_nsproxy) {
  378. get_nsproxy(&init_nsproxy);
  379. switch_task_namespaces(current, &init_nsproxy);
  380. }
  381. set_special_pids(&init_struct_pid);
  382. proc_clear_tty(current);
  383. /* Block and flush all signals */
  384. sigfillset(&blocked);
  385. sigprocmask(SIG_BLOCK, &blocked, NULL);
  386. flush_signals(current);
  387. /* Become as one with the init task */
  388. daemonize_fs_struct();
  389. exit_files(current);
  390. current->files = init_task.files;
  391. atomic_inc(&current->files->count);
  392. reparent_to_kthreadd();
  393. }
  394. EXPORT_SYMBOL(daemonize);
  395. static void close_files(struct files_struct * files)
  396. {
  397. int i, j;
  398. struct fdtable *fdt;
  399. j = 0;
  400. /*
  401. * It is safe to dereference the fd table without RCU or
  402. * ->file_lock because this is the last reference to the
  403. * files structure. But use RCU to shut RCU-lockdep up.
  404. */
  405. rcu_read_lock();
  406. fdt = files_fdtable(files);
  407. rcu_read_unlock();
  408. for (;;) {
  409. unsigned long set;
  410. i = j * BITS_PER_LONG;
  411. if (i >= fdt->max_fds)
  412. break;
  413. set = fdt->open_fds[j++];
  414. while (set) {
  415. if (set & 1) {
  416. struct file * file = xchg(&fdt->fd[i], NULL);
  417. if (file) {
  418. filp_close(file, files);
  419. cond_resched();
  420. }
  421. }
  422. i++;
  423. set >>= 1;
  424. }
  425. }
  426. }
  427. struct files_struct *get_files_struct(struct task_struct *task)
  428. {
  429. struct files_struct *files;
  430. task_lock(task);
  431. files = task->files;
  432. if (files)
  433. atomic_inc(&files->count);
  434. task_unlock(task);
  435. return files;
  436. }
  437. void put_files_struct(struct files_struct *files)
  438. {
  439. struct fdtable *fdt;
  440. if (atomic_dec_and_test(&files->count)) {
  441. close_files(files);
  442. /*
  443. * Free the fd and fdset arrays if we expanded them.
  444. * If the fdtable was embedded, pass files for freeing
  445. * at the end of the RCU grace period. Otherwise,
  446. * you can free files immediately.
  447. */
  448. rcu_read_lock();
  449. fdt = files_fdtable(files);
  450. if (fdt != &files->fdtab)
  451. kmem_cache_free(files_cachep, files);
  452. free_fdtable(fdt);
  453. rcu_read_unlock();
  454. }
  455. }
  456. void reset_files_struct(struct files_struct *files)
  457. {
  458. struct task_struct *tsk = current;
  459. struct files_struct *old;
  460. old = tsk->files;
  461. task_lock(tsk);
  462. tsk->files = files;
  463. task_unlock(tsk);
  464. put_files_struct(old);
  465. }
  466. void exit_files(struct task_struct *tsk)
  467. {
  468. struct files_struct * files = tsk->files;
  469. if (files) {
  470. task_lock(tsk);
  471. tsk->files = NULL;
  472. task_unlock(tsk);
  473. put_files_struct(files);
  474. }
  475. }
  476. #ifdef CONFIG_MM_OWNER
  477. /*
  478. * A task is exiting. If it owned this mm, find a new owner for the mm.
  479. */
  480. void mm_update_next_owner(struct mm_struct *mm)
  481. {
  482. struct task_struct *c, *g, *p = current;
  483. retry:
  484. /*
  485. * If the exiting or execing task is not the owner, it's
  486. * someone else's problem.
  487. */
  488. if (mm->owner != p)
  489. return;
  490. /*
  491. * The current owner is exiting/execing and there are no other
  492. * candidates. Do not leave the mm pointing to a possibly
  493. * freed task structure.
  494. */
  495. if (atomic_read(&mm->mm_users) <= 1) {
  496. mm->owner = NULL;
  497. return;
  498. }
  499. read_lock(&tasklist_lock);
  500. /*
  501. * Search in the children
  502. */
  503. list_for_each_entry(c, &p->children, sibling) {
  504. if (c->mm == mm)
  505. goto assign_new_owner;
  506. }
  507. /*
  508. * Search in the siblings
  509. */
  510. list_for_each_entry(c, &p->real_parent->children, sibling) {
  511. if (c->mm == mm)
  512. goto assign_new_owner;
  513. }
  514. /*
  515. * Search through everything else. We should not get
  516. * here often
  517. */
  518. do_each_thread(g, c) {
  519. if (c->mm == mm)
  520. goto assign_new_owner;
  521. } while_each_thread(g, c);
  522. read_unlock(&tasklist_lock);
  523. /*
  524. * We found no owner yet mm_users > 1: this implies that we are
  525. * most likely racing with swapoff (try_to_unuse()) or /proc or
  526. * ptrace or page migration (get_task_mm()). Mark owner as NULL.
  527. */
  528. mm->owner = NULL;
  529. return;
  530. assign_new_owner:
  531. BUG_ON(c == p);
  532. get_task_struct(c);
  533. /*
  534. * The task_lock protects c->mm from changing.
  535. * We always want mm->owner->mm == mm
  536. */
  537. task_lock(c);
  538. /*
  539. * Delay read_unlock() till we have the task_lock()
  540. * to ensure that c does not slip away underneath us
  541. */
  542. read_unlock(&tasklist_lock);
  543. if (c->mm != mm) {
  544. task_unlock(c);
  545. put_task_struct(c);
  546. goto retry;
  547. }
  548. mm->owner = c;
  549. task_unlock(c);
  550. put_task_struct(c);
  551. }
  552. #endif /* CONFIG_MM_OWNER */
  553. /*
  554. * Turn us into a lazy TLB process if we
  555. * aren't already..
  556. */
  557. static void exit_mm(struct task_struct * tsk)
  558. {
  559. struct mm_struct *mm = tsk->mm;
  560. struct core_state *core_state;
  561. int mm_released;
  562. mm_release(tsk, mm);
  563. if (!mm)
  564. return;
  565. sync_mm_rss(mm);
  566. /*
  567. * Serialize with any possible pending coredump.
  568. * We must hold mmap_sem around checking core_state
  569. * and clearing tsk->mm. The core-inducing thread
  570. * will increment ->nr_threads for each thread in the
  571. * group with ->mm != NULL.
  572. */
  573. down_read(&mm->mmap_sem);
  574. core_state = mm->core_state;
  575. if (core_state) {
  576. struct core_thread self;
  577. up_read(&mm->mmap_sem);
  578. self.task = tsk;
  579. self.next = xchg(&core_state->dumper.next, &self);
  580. /*
  581. * Implies mb(), the result of xchg() must be visible
  582. * to core_state->dumper.
  583. */
  584. if (atomic_dec_and_test(&core_state->nr_threads))
  585. complete(&core_state->startup);
  586. for (;;) {
  587. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  588. if (!self.task) /* see coredump_finish() */
  589. break;
  590. schedule();
  591. }
  592. __set_task_state(tsk, TASK_RUNNING);
  593. down_read(&mm->mmap_sem);
  594. }
  595. atomic_inc(&mm->mm_count);
  596. BUG_ON(mm != tsk->active_mm);
  597. /* more a memory barrier than a real lock */
  598. task_lock(tsk);
  599. tsk->mm = NULL;
  600. up_read(&mm->mmap_sem);
  601. enter_lazy_tlb(mm, current);
  602. task_unlock(tsk);
  603. mm_update_next_owner(mm);
  604. mm_released = mmput(mm);
  605. if (mm_released)
  606. set_tsk_thread_flag(tsk, TIF_MM_RELEASED);
  607. clear_thread_flag(TIF_MEMDIE);
  608. }
  609. /*
  610. * When we die, we re-parent all our children, and try to:
  611. * 1. give them to another thread in our thread group, if such a member exists
  612. * 2. give it to the first ancestor process which prctl'd itself as a
  613. * child_subreaper for its children (like a service manager)
  614. * 3. give it to the init process (PID 1) in our pid namespace
  615. */
  616. static struct task_struct *find_new_reaper(struct task_struct *father)
  617. __releases(&tasklist_lock)
  618. __acquires(&tasklist_lock)
  619. {
  620. struct pid_namespace *pid_ns = task_active_pid_ns(father);
  621. struct task_struct *thread;
  622. thread = father;
  623. while_each_thread(father, thread) {
  624. if (thread->flags & PF_EXITING)
  625. continue;
  626. if (unlikely(pid_ns->child_reaper == father))
  627. pid_ns->child_reaper = thread;
  628. return thread;
  629. }
  630. if (unlikely(pid_ns->child_reaper == father)) {
  631. write_unlock_irq(&tasklist_lock);
  632. if (unlikely(pid_ns == &init_pid_ns)) {
  633. panic("Attempted to kill init! exitcode=0x%08x\n",
  634. father->signal->group_exit_code ?:
  635. father->exit_code);
  636. }
  637. zap_pid_ns_processes(pid_ns);
  638. write_lock_irq(&tasklist_lock);
  639. /*
  640. * We can not clear ->child_reaper or leave it alone.
  641. * There may by stealth EXIT_DEAD tasks on ->children,
  642. * forget_original_parent() must move them somewhere.
  643. */
  644. pid_ns->child_reaper = init_pid_ns.child_reaper;
  645. } else if (father->signal->has_child_subreaper) {
  646. struct task_struct *reaper;
  647. /*
  648. * Find the first ancestor marked as child_subreaper.
  649. * Note that the code below checks same_thread_group(reaper,
  650. * pid_ns->child_reaper). This is what we need to DTRT in a
  651. * PID namespace. However we still need the check above, see
  652. * http://marc.info/?l=linux-kernel&m=131385460420380
  653. */
  654. for (reaper = father->real_parent;
  655. reaper != &init_task;
  656. reaper = reaper->real_parent) {
  657. if (same_thread_group(reaper, pid_ns->child_reaper))
  658. break;
  659. if (!reaper->signal->is_child_subreaper)
  660. continue;
  661. thread = reaper;
  662. do {
  663. if (!(thread->flags & PF_EXITING))
  664. return reaper;
  665. } while_each_thread(reaper, thread);
  666. }
  667. }
  668. return pid_ns->child_reaper;
  669. }
  670. /*
  671. * Any that need to be release_task'd are put on the @dead list.
  672. */
  673. static void reparent_leader(struct task_struct *father, struct task_struct *p,
  674. struct list_head *dead)
  675. {
  676. list_move_tail(&p->sibling, &p->real_parent->children);
  677. /*
  678. * If this is a threaded reparent there is no need to
  679. * notify anyone anything has happened.
  680. */
  681. if (same_thread_group(p->real_parent, father))
  682. return;
  683. /*
  684. * We don't want people slaying init.
  685. *
  686. * Note: we do this even if it is EXIT_DEAD, wait_task_zombie()
  687. * can change ->exit_state to EXIT_ZOMBIE. If this is the final
  688. * state, do_notify_parent() was already called and ->exit_signal
  689. * doesn't matter.
  690. */
  691. p->exit_signal = SIGCHLD;
  692. if (p->exit_state == EXIT_DEAD)
  693. return;
  694. /* If it has exited notify the new parent about this child's death. */
  695. if (!p->ptrace &&
  696. p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
  697. if (do_notify_parent(p, p->exit_signal)) {
  698. p->exit_state = EXIT_DEAD;
  699. list_move_tail(&p->sibling, dead);
  700. }
  701. }
  702. kill_orphaned_pgrp(p, father);
  703. }
  704. static void forget_original_parent(struct task_struct *father)
  705. {
  706. struct task_struct *p, *n, *reaper;
  707. LIST_HEAD(dead_children);
  708. write_lock_irq(&tasklist_lock);
  709. /*
  710. * Note that exit_ptrace() and find_new_reaper() might
  711. * drop tasklist_lock and reacquire it.
  712. */
  713. exit_ptrace(father);
  714. reaper = find_new_reaper(father);
  715. list_for_each_entry_safe(p, n, &father->children, sibling) {
  716. struct task_struct *t = p;
  717. do {
  718. t->real_parent = reaper;
  719. if (t->parent == father) {
  720. BUG_ON(t->ptrace);
  721. t->parent = t->real_parent;
  722. }
  723. if (t->pdeath_signal)
  724. group_send_sig_info(t->pdeath_signal,
  725. SEND_SIG_NOINFO, t);
  726. } while_each_thread(p, t);
  727. reparent_leader(father, p, &dead_children);
  728. }
  729. write_unlock_irq(&tasklist_lock);
  730. BUG_ON(!list_empty(&father->children));
  731. list_for_each_entry_safe(p, n, &dead_children, sibling) {
  732. list_del_init(&p->sibling);
  733. release_task(p);
  734. }
  735. }
  736. /*
  737. * Send signals to all our closest relatives so that they know
  738. * to properly mourn us..
  739. */
  740. static void exit_notify(struct task_struct *tsk, int group_dead)
  741. {
  742. bool autoreap;
  743. /*
  744. * This does two things:
  745. *
  746. * A. Make init inherit all the child processes
  747. * B. Check to see if any process groups have become orphaned
  748. * as a result of our exiting, and if they have any stopped
  749. * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  750. */
  751. forget_original_parent(tsk);
  752. exit_task_namespaces(tsk);
  753. write_lock_irq(&tasklist_lock);
  754. if (group_dead)
  755. kill_orphaned_pgrp(tsk->group_leader, NULL);
  756. if (unlikely(tsk->ptrace)) {
  757. int sig = thread_group_leader(tsk) &&
  758. thread_group_empty(tsk) &&
  759. !ptrace_reparented(tsk) ?
  760. tsk->exit_signal : SIGCHLD;
  761. autoreap = do_notify_parent(tsk, sig);
  762. } else if (thread_group_leader(tsk)) {
  763. autoreap = thread_group_empty(tsk) &&
  764. do_notify_parent(tsk, tsk->exit_signal);
  765. } else {
  766. autoreap = true;
  767. }
  768. tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
  769. /* mt-exec, de_thread() is waiting for group leader */
  770. if (unlikely(tsk->signal->notify_count < 0))
  771. wake_up_process(tsk->signal->group_exit_task);
  772. write_unlock_irq(&tasklist_lock);
  773. /* If the process is dead, release it - nobody will wait for it */
  774. if (autoreap)
  775. release_task(tsk);
  776. }
  777. #ifdef CONFIG_DEBUG_STACK_USAGE
  778. static void check_stack_usage(void)
  779. {
  780. static DEFINE_SPINLOCK(low_water_lock);
  781. static int lowest_to_date = THREAD_SIZE;
  782. unsigned long free;
  783. free = stack_not_used(current);
  784. if (free >= lowest_to_date)
  785. return;
  786. spin_lock(&low_water_lock);
  787. if (free < lowest_to_date) {
  788. printk(KERN_WARNING "%s (%d) used greatest stack depth: "
  789. "%lu bytes left\n",
  790. current->comm, task_pid_nr(current), free);
  791. lowest_to_date = free;
  792. }
  793. spin_unlock(&low_water_lock);
  794. }
  795. #else
  796. static inline void check_stack_usage(void) {}
  797. #endif
  798. void do_exit(long code)
  799. {
  800. struct task_struct *tsk = current;
  801. int group_dead;
  802. profile_task_exit(tsk);
  803. WARN_ON(blk_needs_flush_plug(tsk));
  804. if (unlikely(in_interrupt()))
  805. panic("Aiee, killing interrupt handler!");
  806. if (unlikely(!tsk->pid) || unlikely(tsk->pid==1))
  807. panic("Attempted to kill the idle task! or init task");
  808. /*
  809. * If do_exit is called because this processes oopsed, it's possible
  810. * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
  811. * continuing. Amongst other possible reasons, this is to prevent
  812. * mm_release()->clear_child_tid() from writing to a user-controlled
  813. * kernel address.
  814. */
  815. set_fs(USER_DS);
  816. ptrace_event(PTRACE_EVENT_EXIT, code);
  817. validate_creds_for_do_exit(tsk);
  818. /*
  819. * We're taking recursive faults here in do_exit. Safest is to just
  820. * leave this task alone and wait for reboot.
  821. */
  822. if (unlikely(tsk->flags & PF_EXITING)) {
  823. printk(KERN_ALERT
  824. "Fixing recursive fault but reboot is needed!\n");
  825. /*
  826. * We can do this unlocked here. The futex code uses
  827. * this flag just to verify whether the pi state
  828. * cleanup has been done or not. In the worst case it
  829. * loops once more. We pretend that the cleanup was
  830. * done as there is no way to return. Either the
  831. * OWNER_DIED bit is set by now or we push the blocked
  832. * task into the wait for ever nirwana as well.
  833. */
  834. tsk->flags |= PF_EXITPIDONE;
  835. set_current_state(TASK_UNINTERRUPTIBLE);
  836. schedule();
  837. }
  838. exit_signals(tsk); /* sets PF_EXITING */
  839. if (tsk->flags & PF_SU) {
  840. su_exit();
  841. }
  842. /*
  843. * tsk->flags are checked in the futex code to protect against
  844. * an exiting task cleaning up the robust pi futexes.
  845. */
  846. smp_mb();
  847. raw_spin_unlock_wait(&tsk->pi_lock);
  848. exit_irq_thread();
  849. if (unlikely(in_atomic()))
  850. printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
  851. current->comm, task_pid_nr(current),
  852. preempt_count());
  853. acct_update_integrals(tsk);
  854. /* sync mm's RSS info before statistics gathering */
  855. if (tsk->mm)
  856. sync_mm_rss(tsk->mm);
  857. group_dead = atomic_dec_and_test(&tsk->signal->live);
  858. if (group_dead) {
  859. hrtimer_cancel(&tsk->signal->real_timer);
  860. exit_itimers(tsk->signal);
  861. if (tsk->mm)
  862. setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
  863. }
  864. acct_collect(code, group_dead);
  865. if (group_dead)
  866. tty_audit_exit();
  867. audit_free(tsk);
  868. tsk->exit_code = code;
  869. taskstats_exit(tsk, group_dead);
  870. exit_mm(tsk);
  871. if (group_dead)
  872. acct_process();
  873. trace_sched_process_exit(tsk);
  874. exit_sem(tsk);
  875. exit_shm(tsk);
  876. exit_files(tsk);
  877. exit_fs(tsk);
  878. check_stack_usage();
  879. exit_thread();
  880. /*
  881. * Flush inherited counters to the parent - before the parent
  882. * gets woken up by child-exit notifications.
  883. *
  884. * because of cgroup mode, must be called before cgroup_exit()
  885. */
  886. perf_event_exit_task(tsk);
  887. cgroup_exit(tsk, 1);
  888. if (group_dead)
  889. disassociate_ctty(1);
  890. module_put(task_thread_info(tsk)->exec_domain->module);
  891. proc_exit_connector(tsk);
  892. /*
  893. * FIXME: do that only when needed, using sched_exit tracepoint
  894. */
  895. ptrace_put_breakpoints(tsk);
  896. exit_notify(tsk, group_dead);
  897. #ifdef CONFIG_NUMA
  898. task_lock(tsk);
  899. mpol_put(tsk->mempolicy);
  900. tsk->mempolicy = NULL;
  901. task_unlock(tsk);
  902. #endif
  903. #ifdef CONFIG_FUTEX
  904. if (unlikely(current->pi_state_cache))
  905. kfree(current->pi_state_cache);
  906. #endif
  907. /*
  908. * Make sure we are holding no locks:
  909. */
  910. debug_check_no_locks_held();
  911. /*
  912. * We can do this unlocked here. The futex code uses this flag
  913. * just to verify whether the pi state cleanup has been done
  914. * or not. In the worst case it loops once more.
  915. */
  916. tsk->flags |= PF_EXITPIDONE;
  917. if (tsk->io_context)
  918. exit_io_context(tsk);
  919. if (tsk->splice_pipe)
  920. __free_pipe_info(tsk->splice_pipe);
  921. validate_creds_for_do_exit(tsk);
  922. preempt_disable();
  923. if (tsk->nr_dirtied)
  924. __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
  925. exit_rcu();
  926. /*
  927. * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
  928. * when the following two conditions become true.
  929. * - There is race condition of mmap_sem (It is acquired by
  930. * exit_mm()), and
  931. * - SMI occurs before setting TASK_RUNINNG.
  932. * (or hypervisor of virtual machine switches to other guest)
  933. * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
  934. *
  935. * To avoid it, we have to wait for releasing tsk->pi_lock which
  936. * is held by try_to_wake_up()
  937. */
  938. smp_mb();
  939. raw_spin_unlock_wait(&tsk->pi_lock);
  940. /* causes final put_task_struct in finish_task_switch(). */
  941. tsk->state = TASK_DEAD;
  942. tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
  943. schedule();
  944. BUG();
  945. /* Avoid "noreturn function does return". */
  946. for (;;)
  947. cpu_relax(); /* For when BUG is null */
  948. }
  949. EXPORT_SYMBOL_GPL(do_exit);
  950. void complete_and_exit(struct completion *comp, long code)
  951. {
  952. if (comp)
  953. complete(comp);
  954. do_exit(code);
  955. }
  956. EXPORT_SYMBOL(complete_and_exit);
  957. SYSCALL_DEFINE1(exit, int, error_code)
  958. {
  959. do_exit((error_code&0xff)<<8);
  960. }
  961. /*
  962. * Take down every thread in the group. This is called by fatal signals
  963. * as well as by sys_exit_group (below).
  964. */
  965. void
  966. do_group_exit(int exit_code)
  967. {
  968. struct signal_struct *sig = current->signal;
  969. BUG_ON(exit_code & 0x80); /* core dumps don't get here */
  970. if (signal_group_exit(sig))
  971. exit_code = sig->group_exit_code;
  972. else if (!thread_group_empty(current)) {
  973. struct sighand_struct *const sighand = current->sighand;
  974. spin_lock_irq(&sighand->siglock);
  975. if (signal_group_exit(sig))
  976. /* Another thread got here before we took the lock. */
  977. exit_code = sig->group_exit_code;
  978. else {
  979. sig->group_exit_code = exit_code;
  980. sig->flags = SIGNAL_GROUP_EXIT;
  981. zap_other_threads(current);
  982. }
  983. spin_unlock_irq(&sighand->siglock);
  984. }
  985. do_exit(exit_code);
  986. /* NOTREACHED */
  987. }
  988. /*
  989. * this kills every thread in the thread group. Note that any externally
  990. * wait4()-ing process will get the correct exit code - even if this
  991. * thread is not the thread group leader.
  992. */
  993. SYSCALL_DEFINE1(exit_group, int, error_code)
  994. {
  995. do_group_exit((error_code & 0xff) << 8);
  996. /* NOTREACHED */
  997. return 0;
  998. }
  999. struct wait_opts {
  1000. enum pid_type wo_type;
  1001. int wo_flags;
  1002. struct pid *wo_pid;
  1003. struct siginfo __user *wo_info;
  1004. int __user *wo_stat;
  1005. struct rusage __user *wo_rusage;
  1006. wait_queue_t child_wait;
  1007. int notask_error;
  1008. };
  1009. static inline
  1010. struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
  1011. {
  1012. if (type != PIDTYPE_PID)
  1013. task = task->group_leader;
  1014. return task->pids[type].pid;
  1015. }
  1016. static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
  1017. {
  1018. return wo->wo_type == PIDTYPE_MAX ||
  1019. task_pid_type(p, wo->wo_type) == wo->wo_pid;
  1020. }
  1021. static int eligible_child(struct wait_opts *wo, struct task_struct *p)
  1022. {
  1023. if (!eligible_pid(wo, p))
  1024. return 0;
  1025. /* Wait for all children (clone and not) if __WALL is set;
  1026. * otherwise, wait for clone children *only* if __WCLONE is
  1027. * set; otherwise, wait for non-clone children *only*. (Note:
  1028. * A "clone" child here is one that reports to its parent
  1029. * using a signal other than SIGCHLD.) */
  1030. if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
  1031. && !(wo->wo_flags & __WALL))
  1032. return 0;
  1033. return 1;
  1034. }
  1035. static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
  1036. pid_t pid, uid_t uid, int why, int status)
  1037. {
  1038. struct siginfo __user *infop;
  1039. int retval = wo->wo_rusage
  1040. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1041. put_task_struct(p);
  1042. infop = wo->wo_info;
  1043. if (infop) {
  1044. if (!retval)
  1045. retval = put_user(SIGCHLD, &infop->si_signo);
  1046. if (!retval)
  1047. retval = put_user(0, &infop->si_errno);
  1048. if (!retval)
  1049. retval = put_user((short)why, &infop->si_code);
  1050. if (!retval)
  1051. retval = put_user(pid, &infop->si_pid);
  1052. if (!retval)
  1053. retval = put_user(uid, &infop->si_uid);
  1054. if (!retval)
  1055. retval = put_user(status, &infop->si_status);
  1056. }
  1057. if (!retval)
  1058. retval = pid;
  1059. return retval;
  1060. }
  1061. /*
  1062. * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
  1063. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1064. * the lock and this task is uninteresting. If we return nonzero, we have
  1065. * released the lock and the system call should return.
  1066. */
  1067. static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
  1068. {
  1069. unsigned long state;
  1070. int retval, status, traced;
  1071. pid_t pid = task_pid_vnr(p);
  1072. uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
  1073. struct siginfo __user *infop;
  1074. if (!likely(wo->wo_flags & WEXITED))
  1075. return 0;
  1076. if (unlikely(wo->wo_flags & WNOWAIT)) {
  1077. int exit_code = p->exit_code;
  1078. int why;
  1079. get_task_struct(p);
  1080. read_unlock(&tasklist_lock);
  1081. if ((exit_code & 0x7f) == 0) {
  1082. why = CLD_EXITED;
  1083. status = exit_code >> 8;
  1084. } else {
  1085. why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1086. status = exit_code & 0x7f;
  1087. }
  1088. return wait_noreap_copyout(wo, p, pid, uid, why, status);
  1089. }
  1090. /*
  1091. * Try to move the task's state to DEAD
  1092. * only one thread is allowed to do this:
  1093. */
  1094. state = xchg(&p->exit_state, EXIT_DEAD);
  1095. if (state != EXIT_ZOMBIE) {
  1096. BUG_ON(state != EXIT_DEAD);
  1097. return 0;
  1098. }
  1099. traced = ptrace_reparented(p);
  1100. /*
  1101. * It can be ptraced but not reparented, check
  1102. * thread_group_leader() to filter out sub-threads.
  1103. */
  1104. if (likely(!traced) && thread_group_leader(p)) {
  1105. struct signal_struct *psig;
  1106. struct signal_struct *sig;
  1107. unsigned long maxrss;
  1108. cputime_t tgutime, tgstime;
  1109. /*
  1110. * The resource counters for the group leader are in its
  1111. * own task_struct. Those for dead threads in the group
  1112. * are in its signal_struct, as are those for the child
  1113. * processes it has previously reaped. All these
  1114. * accumulate in the parent's signal_struct c* fields.
  1115. *
  1116. * We don't bother to take a lock here to protect these
  1117. * p->signal fields, because they are only touched by
  1118. * __exit_signal, which runs with tasklist_lock
  1119. * write-locked anyway, and so is excluded here. We do
  1120. * need to protect the access to parent->signal fields,
  1121. * as other threads in the parent group can be right
  1122. * here reaping other children at the same time.
  1123. *
  1124. * We use thread_group_cputime_adjusted() to get times for the thread
  1125. * group, which consolidates times for all threads in the
  1126. * group including the group leader.
  1127. */
  1128. thread_group_cputime_adjusted(p, &tgutime, &tgstime);
  1129. spin_lock_irq(&p->real_parent->sighand->siglock);
  1130. psig = p->real_parent->signal;
  1131. sig = p->signal;
  1132. psig->cutime += tgutime + sig->cutime;
  1133. psig->cstime += tgstime + sig->cstime;
  1134. psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
  1135. psig->cmin_flt +=
  1136. p->min_flt + sig->min_flt + sig->cmin_flt;
  1137. psig->cmaj_flt +=
  1138. p->maj_flt + sig->maj_flt + sig->cmaj_flt;
  1139. psig->cnvcsw +=
  1140. p->nvcsw + sig->nvcsw + sig->cnvcsw;
  1141. psig->cnivcsw +=
  1142. p->nivcsw + sig->nivcsw + sig->cnivcsw;
  1143. psig->cinblock +=
  1144. task_io_get_inblock(p) +
  1145. sig->inblock + sig->cinblock;
  1146. psig->coublock +=
  1147. task_io_get_oublock(p) +
  1148. sig->oublock + sig->coublock;
  1149. maxrss = max(sig->maxrss, sig->cmaxrss);
  1150. if (psig->cmaxrss < maxrss)
  1151. psig->cmaxrss = maxrss;
  1152. task_io_accounting_add(&psig->ioac, &p->ioac);
  1153. task_io_accounting_add(&psig->ioac, &sig->ioac);
  1154. spin_unlock_irq(&p->real_parent->sighand->siglock);
  1155. }
  1156. /*
  1157. * Now we are sure this task is interesting, and no other
  1158. * thread can reap it because we set its state to EXIT_DEAD.
  1159. */
  1160. read_unlock(&tasklist_lock);
  1161. retval = wo->wo_rusage
  1162. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1163. status = (p->signal->flags & SIGNAL_GROUP_EXIT)
  1164. ? p->signal->group_exit_code : p->exit_code;
  1165. if (!retval && wo->wo_stat)
  1166. retval = put_user(status, wo->wo_stat);
  1167. infop = wo->wo_info;
  1168. if (!retval && infop)
  1169. retval = put_user(SIGCHLD, &infop->si_signo);
  1170. if (!retval && infop)
  1171. retval = put_user(0, &infop->si_errno);
  1172. if (!retval && infop) {
  1173. int why;
  1174. if ((status & 0x7f) == 0) {
  1175. why = CLD_EXITED;
  1176. status >>= 8;
  1177. } else {
  1178. why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1179. status &= 0x7f;
  1180. }
  1181. retval = put_user((short)why, &infop->si_code);
  1182. if (!retval)
  1183. retval = put_user(status, &infop->si_status);
  1184. }
  1185. if (!retval && infop)
  1186. retval = put_user(pid, &infop->si_pid);
  1187. if (!retval && infop)
  1188. retval = put_user(uid, &infop->si_uid);
  1189. if (!retval)
  1190. retval = pid;
  1191. if (traced) {
  1192. write_lock_irq(&tasklist_lock);
  1193. /* We dropped tasklist, ptracer could die and untrace */
  1194. ptrace_unlink(p);
  1195. /*
  1196. * If this is not a sub-thread, notify the parent.
  1197. * If parent wants a zombie, don't release it now.
  1198. */
  1199. if (thread_group_leader(p) &&
  1200. !do_notify_parent(p, p->exit_signal)) {
  1201. p->exit_state = EXIT_ZOMBIE;
  1202. p = NULL;
  1203. }
  1204. write_unlock_irq(&tasklist_lock);
  1205. }
  1206. if (p != NULL)
  1207. release_task(p);
  1208. return retval;
  1209. }
  1210. static int *task_stopped_code(struct task_struct *p, bool ptrace)
  1211. {
  1212. if (ptrace) {
  1213. if (task_is_stopped_or_traced(p) &&
  1214. !(p->jobctl & JOBCTL_LISTENING))
  1215. return &p->exit_code;
  1216. } else {
  1217. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  1218. return &p->signal->group_exit_code;
  1219. }
  1220. return NULL;
  1221. }
  1222. /**
  1223. * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
  1224. * @wo: wait options
  1225. * @ptrace: is the wait for ptrace
  1226. * @p: task to wait for
  1227. *
  1228. * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
  1229. *
  1230. * CONTEXT:
  1231. * read_lock(&tasklist_lock), which is released if return value is
  1232. * non-zero. Also, grabs and releases @p->sighand->siglock.
  1233. *
  1234. * RETURNS:
  1235. * 0 if wait condition didn't exist and search for other wait conditions
  1236. * should continue. Non-zero return, -errno on failure and @p's pid on
  1237. * success, implies that tasklist_lock is released and wait condition
  1238. * search should terminate.
  1239. */
  1240. static int wait_task_stopped(struct wait_opts *wo,
  1241. int ptrace, struct task_struct *p)
  1242. {
  1243. struct siginfo __user *infop;
  1244. int retval, exit_code, *p_code, why;
  1245. uid_t uid = 0; /* unneeded, required by compiler */
  1246. pid_t pid;
  1247. /*
  1248. * Traditionally we see ptrace'd stopped tasks regardless of options.
  1249. */
  1250. if (!ptrace && !(wo->wo_flags & WUNTRACED))
  1251. return 0;
  1252. if (!task_stopped_code(p, ptrace))
  1253. return 0;
  1254. exit_code = 0;
  1255. spin_lock_irq(&p->sighand->siglock);
  1256. p_code = task_stopped_code(p, ptrace);
  1257. if (unlikely(!p_code))
  1258. goto unlock_sig;
  1259. exit_code = *p_code;
  1260. if (!exit_code)
  1261. goto unlock_sig;
  1262. if (!unlikely(wo->wo_flags & WNOWAIT))
  1263. *p_code = 0;
  1264. uid = from_kuid_munged(current_user_ns(), __task_cred(p)->uid);
  1265. unlock_sig:
  1266. spin_unlock_irq(&p->sighand->siglock);
  1267. if (!exit_code)
  1268. return 0;
  1269. /*
  1270. * Now we are pretty sure this task is interesting.
  1271. * Make sure it doesn't get reaped out from under us while we
  1272. * give up the lock and then examine it below. We don't want to
  1273. * keep holding onto the tasklist_lock while we call getrusage and
  1274. * possibly take page faults for user memory.
  1275. */
  1276. get_task_struct(p);
  1277. pid = task_pid_vnr(p);
  1278. why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
  1279. read_unlock(&tasklist_lock);
  1280. if (unlikely(wo->wo_flags & WNOWAIT))
  1281. return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
  1282. retval = wo->wo_rusage
  1283. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1284. if (!retval && wo->wo_stat)
  1285. retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
  1286. infop = wo->wo_info;
  1287. if (!retval && infop)
  1288. retval = put_user(SIGCHLD, &infop->si_signo);
  1289. if (!retval && infop)
  1290. retval = put_user(0, &infop->si_errno);
  1291. if (!retval && infop)
  1292. retval = put_user((short)why, &infop->si_code);
  1293. if (!retval && infop)
  1294. retval = put_user(exit_code, &infop->si_status);
  1295. if (!retval && infop)
  1296. retval = put_user(pid, &infop->si_pid);
  1297. if (!retval && infop)
  1298. retval = put_user(uid, &infop->si_uid);
  1299. if (!retval)
  1300. retval = pid;
  1301. put_task_struct(p);
  1302. BUG_ON(!retval);
  1303. return retval;
  1304. }
  1305. /*
  1306. * Handle do_wait work for one task in a live, non-stopped state.
  1307. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1308. * the lock and this task is uninteresting. If we return nonzero, we have
  1309. * released the lock and the system call should return.
  1310. */
  1311. static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
  1312. {
  1313. int retval;
  1314. pid_t pid;
  1315. uid_t uid;
  1316. if (!unlikely(wo->wo_flags & WCONTINUED))
  1317. return 0;
  1318. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
  1319. return 0;
  1320. spin_lock_irq(&p->sighand->siglock);
  1321. /* Re-check with the lock held. */
  1322. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
  1323. spin_unlock_irq(&p->sighand->siglock);
  1324. return 0;
  1325. }
  1326. if (!unlikely(wo->wo_flags & WNOWAIT))
  1327. p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
  1328. uid = from_kuid_munged(current_user_ns(), __task_cred(p)->uid);
  1329. spin_unlock_irq(&p->sighand->siglock);
  1330. pid = task_pid_vnr(p);
  1331. get_task_struct(p);
  1332. read_unlock(&tasklist_lock);
  1333. if (!wo->wo_info) {
  1334. retval = wo->wo_rusage
  1335. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1336. put_task_struct(p);
  1337. if (!retval && wo->wo_stat)
  1338. retval = put_user(0xffff, wo->wo_stat);
  1339. if (!retval)
  1340. retval = pid;
  1341. } else {
  1342. retval = wait_noreap_copyout(wo, p, pid, uid,
  1343. CLD_CONTINUED, SIGCONT);
  1344. BUG_ON(retval == 0);
  1345. }
  1346. return retval;
  1347. }
  1348. /*
  1349. * Consider @p for a wait by @parent.
  1350. *
  1351. * -ECHILD should be in ->notask_error before the first call.
  1352. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1353. * Returns zero if the search for a child should continue;
  1354. * then ->notask_error is 0 if @p is an eligible child,
  1355. * or another error from security_task_wait(), or still -ECHILD.
  1356. */
  1357. static int wait_consider_task(struct wait_opts *wo, int ptrace,
  1358. struct task_struct *p)
  1359. {
  1360. int ret = eligible_child(wo, p);
  1361. if (!ret)
  1362. return ret;
  1363. ret = security_task_wait(p);
  1364. if (unlikely(ret < 0)) {
  1365. /*
  1366. * If we have not yet seen any eligible child,
  1367. * then let this error code replace -ECHILD.
  1368. * A permission error will give the user a clue
  1369. * to look for security policy problems, rather
  1370. * than for mysterious wait bugs.
  1371. */
  1372. if (wo->notask_error)
  1373. wo->notask_error = ret;
  1374. return 0;
  1375. }
  1376. /* dead body doesn't have much to contribute */
  1377. if (unlikely(p->exit_state == EXIT_DEAD)) {
  1378. /*
  1379. * But do not ignore this task until the tracer does
  1380. * wait_task_zombie()->do_notify_parent().
  1381. */
  1382. if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
  1383. wo->notask_error = 0;
  1384. return 0;
  1385. }
  1386. /* slay zombie? */
  1387. if (p->exit_state == EXIT_ZOMBIE) {
  1388. /*
  1389. * A zombie ptracee is only visible to its ptracer.
  1390. * Notification and reaping will be cascaded to the real
  1391. * parent when the ptracer detaches.
  1392. */
  1393. if (likely(!ptrace) && unlikely(p->ptrace)) {
  1394. /* it will become visible, clear notask_error */
  1395. wo->notask_error = 0;
  1396. return 0;
  1397. }
  1398. /* we don't reap group leaders with subthreads */
  1399. if (!delay_group_leader(p))
  1400. return wait_task_zombie(wo, p);
  1401. /*
  1402. * Allow access to stopped/continued state via zombie by
  1403. * falling through. Clearing of notask_error is complex.
  1404. *
  1405. * When !@ptrace:
  1406. *
  1407. * If WEXITED is set, notask_error should naturally be
  1408. * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
  1409. * so, if there are live subthreads, there are events to
  1410. * wait for. If all subthreads are dead, it's still safe
  1411. * to clear - this function will be called again in finite
  1412. * amount time once all the subthreads are released and
  1413. * will then return without clearing.
  1414. *
  1415. * When @ptrace:
  1416. *
  1417. * Stopped state is per-task and thus can't change once the
  1418. * target task dies. Only continued and exited can happen.
  1419. * Clear notask_error if WCONTINUED | WEXITED.
  1420. */
  1421. if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
  1422. wo->notask_error = 0;
  1423. } else {
  1424. /*
  1425. * If @p is ptraced by a task in its real parent's group,
  1426. * hide group stop/continued state when looking at @p as
  1427. * the real parent; otherwise, a single stop can be
  1428. * reported twice as group and ptrace stops.
  1429. *
  1430. * If a ptracer wants to distinguish the two events for its
  1431. * own children, it should create a separate process which
  1432. * takes the role of real parent.
  1433. */
  1434. if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
  1435. return 0;
  1436. /*
  1437. * @p is alive and it's gonna stop, continue or exit, so
  1438. * there always is something to wait for.
  1439. */
  1440. wo->notask_error = 0;
  1441. }
  1442. /*
  1443. * Wait for stopped. Depending on @ptrace, different stopped state
  1444. * is used and the two don't interact with each other.
  1445. */
  1446. ret = wait_task_stopped(wo, ptrace, p);
  1447. if (ret)
  1448. return ret;
  1449. /*
  1450. * Wait for continued. There's only one continued state and the
  1451. * ptracer can consume it which can confuse the real parent. Don't
  1452. * use WCONTINUED from ptracer. You don't need or want it.
  1453. */
  1454. return wait_task_continued(wo, p);
  1455. }
  1456. /*
  1457. * Do the work of do_wait() for one thread in the group, @tsk.
  1458. *
  1459. * -ECHILD should be in ->notask_error before the first call.
  1460. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1461. * Returns zero if the search for a child should continue; then
  1462. * ->notask_error is 0 if there were any eligible children,
  1463. * or another error from security_task_wait(), or still -ECHILD.
  1464. */
  1465. static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
  1466. {
  1467. struct task_struct *p;
  1468. list_for_each_entry(p, &tsk->children, sibling) {
  1469. int ret = wait_consider_task(wo, 0, p);
  1470. if (ret)
  1471. return ret;
  1472. }
  1473. return 0;
  1474. }
  1475. static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
  1476. {
  1477. struct task_struct *p;
  1478. list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
  1479. int ret = wait_consider_task(wo, 1, p);
  1480. if (ret)
  1481. return ret;
  1482. }
  1483. return 0;
  1484. }
  1485. static int child_wait_callback(wait_queue_t *wait, unsigned mode,
  1486. int sync, void *key)
  1487. {
  1488. struct wait_opts *wo = container_of(wait, struct wait_opts,
  1489. child_wait);
  1490. struct task_struct *p = key;
  1491. if (!eligible_pid(wo, p))
  1492. return 0;
  1493. if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
  1494. return 0;
  1495. return default_wake_function(wait, mode, sync, key);
  1496. }
  1497. void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
  1498. {
  1499. __wake_up_sync_key(&parent->signal->wait_chldexit,
  1500. TASK_INTERRUPTIBLE, 1, p);
  1501. }
  1502. static long do_wait(struct wait_opts *wo)
  1503. {
  1504. struct task_struct *tsk;
  1505. int retval;
  1506. trace_sched_process_wait(wo->wo_pid);
  1507. init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
  1508. wo->child_wait.private = current;
  1509. add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1510. repeat:
  1511. /*
  1512. * If there is nothing that can match our critiera just get out.
  1513. * We will clear ->notask_error to zero if we see any child that
  1514. * might later match our criteria, even if we are not able to reap
  1515. * it yet.
  1516. */
  1517. wo->notask_error = -ECHILD;
  1518. if ((wo->wo_type < PIDTYPE_MAX) &&
  1519. (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
  1520. goto notask;
  1521. set_current_state(TASK_INTERRUPTIBLE);
  1522. read_lock(&tasklist_lock);
  1523. tsk = current;
  1524. do {
  1525. retval = do_wait_thread(wo, tsk);
  1526. if (retval)
  1527. goto end;
  1528. retval = ptrace_do_wait(wo, tsk);
  1529. if (retval)
  1530. goto end;
  1531. if (wo->wo_flags & __WNOTHREAD)
  1532. break;
  1533. } while_each_thread(current, tsk);
  1534. read_unlock(&tasklist_lock);
  1535. notask:
  1536. retval = wo->notask_error;
  1537. if (!retval && !(wo->wo_flags & WNOHANG)) {
  1538. retval = -ERESTARTSYS;
  1539. if (!signal_pending(current)) {
  1540. schedule();
  1541. goto repeat;
  1542. }
  1543. }
  1544. end:
  1545. __set_current_state(TASK_RUNNING);
  1546. remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1547. return retval;
  1548. }
  1549. SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
  1550. infop, int, options, struct rusage __user *, ru)
  1551. {
  1552. struct wait_opts wo;
  1553. struct pid *pid = NULL;
  1554. enum pid_type type;
  1555. long ret;
  1556. if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
  1557. return -EINVAL;
  1558. if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
  1559. return -EINVAL;
  1560. switch (which) {
  1561. case P_ALL:
  1562. type = PIDTYPE_MAX;
  1563. break;
  1564. case P_PID:
  1565. type = PIDTYPE_PID;
  1566. if (upid <= 0)
  1567. return -EINVAL;
  1568. break;
  1569. case P_PGID:
  1570. type = PIDTYPE_PGID;
  1571. if (upid <= 0)
  1572. return -EINVAL;
  1573. break;
  1574. default:
  1575. return -EINVAL;
  1576. }
  1577. if (type < PIDTYPE_MAX)
  1578. pid = find_get_pid(upid);
  1579. wo.wo_type = type;
  1580. wo.wo_pid = pid;
  1581. wo.wo_flags = options;
  1582. wo.wo_info = infop;
  1583. wo.wo_stat = NULL;
  1584. wo.wo_rusage = ru;
  1585. ret = do_wait(&wo);
  1586. if (ret > 0) {
  1587. ret = 0;
  1588. } else if (infop) {
  1589. /*
  1590. * For a WNOHANG return, clear out all the fields
  1591. * we would set so the user can easily tell the
  1592. * difference.
  1593. */
  1594. if (!ret)
  1595. ret = put_user(0, &infop->si_signo);
  1596. if (!ret)
  1597. ret = put_user(0, &infop->si_errno);
  1598. if (!ret)
  1599. ret = put_user(0, &infop->si_code);
  1600. if (!ret)
  1601. ret = put_user(0, &infop->si_pid);
  1602. if (!ret)
  1603. ret = put_user(0, &infop->si_uid);
  1604. if (!ret)
  1605. ret = put_user(0, &infop->si_status);
  1606. }
  1607. put_pid(pid);
  1608. /* avoid REGPARM breakage on x86: */
  1609. asmlinkage_protect(5, ret, which, upid, infop, options, ru);
  1610. return ret;
  1611. }
  1612. SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
  1613. int, options, struct rusage __user *, ru)
  1614. {
  1615. struct wait_opts wo;
  1616. struct pid *pid = NULL;
  1617. enum pid_type type;
  1618. long ret;
  1619. if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
  1620. __WNOTHREAD|__WCLONE|__WALL))
  1621. return -EINVAL;
  1622. /* -INT_MIN is not defined */
  1623. if (upid == INT_MIN)
  1624. return -ESRCH;
  1625. if (upid == -1)
  1626. type = PIDTYPE_MAX;
  1627. else if (upid < 0) {
  1628. type = PIDTYPE_PGID;
  1629. pid = find_get_pid(-upid);
  1630. } else if (upid == 0) {
  1631. type = PIDTYPE_PGID;
  1632. pid = get_task_pid(current, PIDTYPE_PGID);
  1633. } else /* upid > 0 */ {
  1634. type = PIDTYPE_PID;
  1635. pid = find_get_pid(upid);
  1636. }
  1637. wo.wo_type = type;
  1638. wo.wo_pid = pid;
  1639. wo.wo_flags = options | WEXITED;
  1640. wo.wo_info = NULL;
  1641. wo.wo_stat = stat_addr;
  1642. wo.wo_rusage = ru;
  1643. ret = do_wait(&wo);
  1644. put_pid(pid);
  1645. /* avoid REGPARM breakage on x86: */
  1646. asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
  1647. return ret;
  1648. }
  1649. #ifdef __ARCH_WANT_SYS_WAITPID
  1650. /*
  1651. * sys_waitpid() remains for compatibility. waitpid() should be
  1652. * implemented by calling sys_wait4() from libc.a.
  1653. */
  1654. SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
  1655. {
  1656. return sys_wait4(pid, stat_addr, options, NULL);
  1657. }
  1658. #endif