file.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339
  1. /*
  2. * JFFS2 -- Journalling Flash File System, Version 2.
  3. *
  4. * Copyright © 2001-2007 Red Hat, Inc.
  5. * Copyright © 2004-2010 David Woodhouse <dwmw2@infradead.org>
  6. *
  7. * Created by David Woodhouse <dwmw2@infradead.org>
  8. *
  9. * For licensing information, see the file 'LICENCE' in this directory.
  10. *
  11. */
  12. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13. #include <linux/kernel.h>
  14. #include <linux/fs.h>
  15. #include <linux/time.h>
  16. #include <linux/pagemap.h>
  17. #include <linux/highmem.h>
  18. #include <linux/crc32.h>
  19. #include <linux/jffs2.h>
  20. #include "nodelist.h"
  21. static int jffs2_write_end(struct file *filp, struct address_space *mapping,
  22. loff_t pos, unsigned len, unsigned copied,
  23. struct page *pg, void *fsdata);
  24. static int jffs2_write_begin(struct file *filp, struct address_space *mapping,
  25. loff_t pos, unsigned len, unsigned flags,
  26. struct page **pagep, void **fsdata);
  27. static int jffs2_readpage (struct file *filp, struct page *pg);
  28. int jffs2_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
  29. {
  30. struct inode *inode = filp->f_mapping->host;
  31. struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
  32. int ret;
  33. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  34. if (ret)
  35. return ret;
  36. mutex_lock(&inode->i_mutex);
  37. /* Trigger GC to flush any pending writes for this inode */
  38. jffs2_flush_wbuf_gc(c, inode->i_ino);
  39. mutex_unlock(&inode->i_mutex);
  40. return 0;
  41. }
  42. const struct file_operations jffs2_file_operations =
  43. {
  44. .llseek = generic_file_llseek,
  45. .open = generic_file_open,
  46. .read = do_sync_read,
  47. .aio_read = generic_file_aio_read,
  48. .write = do_sync_write,
  49. .aio_write = generic_file_aio_write,
  50. .unlocked_ioctl=jffs2_ioctl,
  51. .mmap = generic_file_readonly_mmap,
  52. .fsync = jffs2_fsync,
  53. .splice_read = generic_file_splice_read,
  54. };
  55. /* jffs2_file_inode_operations */
  56. const struct inode_operations jffs2_file_inode_operations =
  57. {
  58. .get_acl = jffs2_get_acl,
  59. .setattr = jffs2_setattr,
  60. .setxattr = jffs2_setxattr,
  61. .getxattr = jffs2_getxattr,
  62. .listxattr = jffs2_listxattr,
  63. .removexattr = jffs2_removexattr
  64. };
  65. const struct address_space_operations jffs2_file_address_operations =
  66. {
  67. .readpage = jffs2_readpage,
  68. .write_begin = jffs2_write_begin,
  69. .write_end = jffs2_write_end,
  70. };
  71. static int jffs2_do_readpage_nolock (struct inode *inode, struct page *pg)
  72. {
  73. struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
  74. struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
  75. unsigned char *pg_buf;
  76. int ret;
  77. jffs2_dbg(2, "%s(): ino #%lu, page at offset 0x%lx\n",
  78. __func__, inode->i_ino, pg->index << PAGE_CACHE_SHIFT);
  79. BUG_ON(!PageLocked(pg));
  80. pg_buf = kmap(pg);
  81. /* FIXME: Can kmap fail? */
  82. ret = jffs2_read_inode_range(c, f, pg_buf, pg->index << PAGE_CACHE_SHIFT, PAGE_CACHE_SIZE);
  83. if (ret) {
  84. ClearPageUptodate(pg);
  85. SetPageError(pg);
  86. } else {
  87. SetPageUptodate(pg);
  88. ClearPageError(pg);
  89. }
  90. flush_dcache_page(pg);
  91. kunmap(pg);
  92. jffs2_dbg(2, "readpage finished\n");
  93. return ret;
  94. }
  95. int jffs2_do_readpage_unlock(struct inode *inode, struct page *pg)
  96. {
  97. int ret = jffs2_do_readpage_nolock(inode, pg);
  98. unlock_page(pg);
  99. return ret;
  100. }
  101. static int jffs2_readpage (struct file *filp, struct page *pg)
  102. {
  103. struct jffs2_inode_info *f = JFFS2_INODE_INFO(pg->mapping->host);
  104. int ret;
  105. mutex_lock(&f->sem);
  106. ret = jffs2_do_readpage_unlock(pg->mapping->host, pg);
  107. mutex_unlock(&f->sem);
  108. return ret;
  109. }
  110. static int jffs2_write_begin(struct file *filp, struct address_space *mapping,
  111. loff_t pos, unsigned len, unsigned flags,
  112. struct page **pagep, void **fsdata)
  113. {
  114. struct page *pg;
  115. struct inode *inode = mapping->host;
  116. struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
  117. struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
  118. struct jffs2_raw_inode ri;
  119. uint32_t alloc_len = 0;
  120. pgoff_t index = pos >> PAGE_CACHE_SHIFT;
  121. uint32_t pageofs = index << PAGE_CACHE_SHIFT;
  122. int ret = 0;
  123. jffs2_dbg(1, "%s()\n", __func__);
  124. if (pageofs > inode->i_size) {
  125. ret = jffs2_reserve_space(c, sizeof(ri), &alloc_len,
  126. ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE);
  127. if (ret)
  128. return ret;
  129. }
  130. mutex_lock(&f->sem);
  131. pg = grab_cache_page_write_begin(mapping, index, flags);
  132. if (!pg) {
  133. if (alloc_len)
  134. jffs2_complete_reservation(c);
  135. mutex_unlock(&f->sem);
  136. return -ENOMEM;
  137. }
  138. *pagep = pg;
  139. if (alloc_len) {
  140. /* Make new hole frag from old EOF to new page */
  141. struct jffs2_full_dnode *fn;
  142. jffs2_dbg(1, "Writing new hole frag 0x%x-0x%x between current EOF and new page\n",
  143. (unsigned int)inode->i_size, pageofs);
  144. memset(&ri, 0, sizeof(ri));
  145. ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
  146. ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
  147. ri.totlen = cpu_to_je32(sizeof(ri));
  148. ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
  149. ri.ino = cpu_to_je32(f->inocache->ino);
  150. ri.version = cpu_to_je32(++f->highest_version);
  151. ri.mode = cpu_to_jemode(inode->i_mode);
  152. ri.uid = cpu_to_je16(inode->i_uid);
  153. ri.gid = cpu_to_je16(inode->i_gid);
  154. ri.isize = cpu_to_je32(max((uint32_t)inode->i_size, pageofs));
  155. ri.atime = ri.ctime = ri.mtime = cpu_to_je32(get_seconds());
  156. ri.offset = cpu_to_je32(inode->i_size);
  157. ri.dsize = cpu_to_je32(pageofs - inode->i_size);
  158. ri.csize = cpu_to_je32(0);
  159. ri.compr = JFFS2_COMPR_ZERO;
  160. ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
  161. ri.data_crc = cpu_to_je32(0);
  162. fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_NORMAL);
  163. if (IS_ERR(fn)) {
  164. ret = PTR_ERR(fn);
  165. jffs2_complete_reservation(c);
  166. goto out_page;
  167. }
  168. ret = jffs2_add_full_dnode_to_inode(c, f, fn);
  169. if (f->metadata) {
  170. jffs2_mark_node_obsolete(c, f->metadata->raw);
  171. jffs2_free_full_dnode(f->metadata);
  172. f->metadata = NULL;
  173. }
  174. if (ret) {
  175. jffs2_dbg(1, "Eep. add_full_dnode_to_inode() failed in write_begin, returned %d\n",
  176. ret);
  177. jffs2_mark_node_obsolete(c, fn->raw);
  178. jffs2_free_full_dnode(fn);
  179. jffs2_complete_reservation(c);
  180. goto out_page;
  181. }
  182. jffs2_complete_reservation(c);
  183. inode->i_size = pageofs;
  184. }
  185. /*
  186. * Read in the page if it wasn't already present. Cannot optimize away
  187. * the whole page write case until jffs2_write_end can handle the
  188. * case of a short-copy.
  189. */
  190. if (!PageUptodate(pg)) {
  191. ret = jffs2_do_readpage_nolock(inode, pg);
  192. if (ret)
  193. goto out_page;
  194. }
  195. mutex_unlock(&f->sem);
  196. jffs2_dbg(1, "end write_begin(). pg->flags %lx\n", pg->flags);
  197. return ret;
  198. out_page:
  199. unlock_page(pg);
  200. page_cache_release(pg);
  201. mutex_unlock(&f->sem);
  202. return ret;
  203. }
  204. static int jffs2_write_end(struct file *filp, struct address_space *mapping,
  205. loff_t pos, unsigned len, unsigned copied,
  206. struct page *pg, void *fsdata)
  207. {
  208. /* Actually commit the write from the page cache page we're looking at.
  209. * For now, we write the full page out each time. It sucks, but it's simple
  210. */
  211. struct inode *inode = mapping->host;
  212. struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
  213. struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
  214. struct jffs2_raw_inode *ri;
  215. unsigned start = pos & (PAGE_CACHE_SIZE - 1);
  216. unsigned end = start + copied;
  217. unsigned aligned_start = start & ~3;
  218. int ret = 0;
  219. uint32_t writtenlen = 0;
  220. jffs2_dbg(1, "%s(): ino #%lu, page at 0x%lx, range %d-%d, flags %lx\n",
  221. __func__, inode->i_ino, pg->index << PAGE_CACHE_SHIFT,
  222. start, end, pg->flags);
  223. /* We need to avoid deadlock with page_cache_read() in
  224. jffs2_garbage_collect_pass(). So the page must be
  225. up to date to prevent page_cache_read() from trying
  226. to re-lock it. */
  227. BUG_ON(!PageUptodate(pg));
  228. if (end == PAGE_CACHE_SIZE) {
  229. /* When writing out the end of a page, write out the
  230. _whole_ page. This helps to reduce the number of
  231. nodes in files which have many short writes, like
  232. syslog files. */
  233. aligned_start = 0;
  234. }
  235. ri = jffs2_alloc_raw_inode();
  236. if (!ri) {
  237. jffs2_dbg(1, "%s(): Allocation of raw inode failed\n",
  238. __func__);
  239. unlock_page(pg);
  240. page_cache_release(pg);
  241. return -ENOMEM;
  242. }
  243. /* Set the fields that the generic jffs2_write_inode_range() code can't find */
  244. ri->ino = cpu_to_je32(inode->i_ino);
  245. ri->mode = cpu_to_jemode(inode->i_mode);
  246. ri->uid = cpu_to_je16(inode->i_uid);
  247. ri->gid = cpu_to_je16(inode->i_gid);
  248. ri->isize = cpu_to_je32((uint32_t)inode->i_size);
  249. ri->atime = ri->ctime = ri->mtime = cpu_to_je32(get_seconds());
  250. /* In 2.4, it was already kmapped by generic_file_write(). Doesn't
  251. hurt to do it again. The alternative is ifdefs, which are ugly. */
  252. kmap(pg);
  253. ret = jffs2_write_inode_range(c, f, ri, page_address(pg) + aligned_start,
  254. (pg->index << PAGE_CACHE_SHIFT) + aligned_start,
  255. end - aligned_start, &writtenlen);
  256. kunmap(pg);
  257. if (ret) {
  258. /* There was an error writing. */
  259. SetPageError(pg);
  260. }
  261. /* Adjust writtenlen for the padding we did, so we don't confuse our caller */
  262. writtenlen -= min(writtenlen, (start - aligned_start));
  263. if (writtenlen) {
  264. if (inode->i_size < pos + writtenlen) {
  265. inode->i_size = pos + writtenlen;
  266. inode->i_blocks = (inode->i_size + 511) >> 9;
  267. inode->i_ctime = inode->i_mtime = ITIME(je32_to_cpu(ri->ctime));
  268. }
  269. }
  270. jffs2_free_raw_inode(ri);
  271. if (start+writtenlen < end) {
  272. /* generic_file_write has written more to the page cache than we've
  273. actually written to the medium. Mark the page !Uptodate so that
  274. it gets reread */
  275. jffs2_dbg(1, "%s(): Not all bytes written. Marking page !uptodate\n",
  276. __func__);
  277. SetPageError(pg);
  278. ClearPageUptodate(pg);
  279. }
  280. jffs2_dbg(1, "%s() returning %d\n",
  281. __func__, writtenlen > 0 ? writtenlen : ret);
  282. unlock_page(pg);
  283. page_cache_release(pg);
  284. return writtenlen > 0 ? writtenlen : ret;
  285. }