mcp251x.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223
  1. /*
  2. * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
  3. *
  4. * MCP2510 support and bug fixes by Christian Pellegrin
  5. * <chripell@evolware.org>
  6. *
  7. * Copyright 2009 Christian Pellegrin EVOL S.r.l.
  8. *
  9. * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10. * Written under contract by:
  11. * Chris Elston, Katalix Systems, Ltd.
  12. *
  13. * Based on Microchip MCP251x CAN controller driver written by
  14. * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15. *
  16. * Based on CAN bus driver for the CCAN controller written by
  17. * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18. * - Simon Kallweit, intefo AG
  19. * Copyright 2007
  20. *
  21. * This program is free software; you can redistribute it and/or modify
  22. * it under the terms of the version 2 of the GNU General Public License
  23. * as published by the Free Software Foundation
  24. *
  25. * This program is distributed in the hope that it will be useful,
  26. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28. * GNU General Public License for more details.
  29. *
  30. * You should have received a copy of the GNU General Public License
  31. * along with this program; if not, write to the Free Software
  32. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  33. *
  34. *
  35. *
  36. * Your platform definition file should specify something like:
  37. *
  38. * static struct mcp251x_platform_data mcp251x_info = {
  39. * .oscillator_frequency = 8000000,
  40. * .board_specific_setup = &mcp251x_setup,
  41. * .power_enable = mcp251x_power_enable,
  42. * .transceiver_enable = NULL,
  43. * };
  44. *
  45. * static struct spi_board_info spi_board_info[] = {
  46. * {
  47. * .modalias = "mcp2510",
  48. * // or "mcp2515" depending on your controller
  49. * .platform_data = &mcp251x_info,
  50. * .irq = IRQ_EINT13,
  51. * .max_speed_hz = 2*1000*1000,
  52. * .chip_select = 2,
  53. * },
  54. * };
  55. *
  56. * Please see mcp251x.h for a description of the fields in
  57. * struct mcp251x_platform_data.
  58. *
  59. */
  60. #include <linux/can/core.h>
  61. #include <linux/can/dev.h>
  62. #include <linux/can/platform/mcp251x.h>
  63. #include <linux/completion.h>
  64. #include <linux/delay.h>
  65. #include <linux/device.h>
  66. #include <linux/dma-mapping.h>
  67. #include <linux/freezer.h>
  68. #include <linux/interrupt.h>
  69. #include <linux/io.h>
  70. #include <linux/kernel.h>
  71. #include <linux/module.h>
  72. #include <linux/netdevice.h>
  73. #include <linux/platform_device.h>
  74. #include <linux/slab.h>
  75. #include <linux/spi/spi.h>
  76. #include <linux/uaccess.h>
  77. /* SPI interface instruction set */
  78. #define INSTRUCTION_WRITE 0x02
  79. #define INSTRUCTION_READ 0x03
  80. #define INSTRUCTION_BIT_MODIFY 0x05
  81. #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
  82. #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
  83. #define INSTRUCTION_RESET 0xC0
  84. #define RTS_TXB0 0x01
  85. #define RTS_TXB1 0x02
  86. #define RTS_TXB2 0x04
  87. #define INSTRUCTION_RTS(n) (0x80 | ((n) & 0x07))
  88. /* MPC251x registers */
  89. #define CANSTAT 0x0e
  90. #define CANCTRL 0x0f
  91. # define CANCTRL_REQOP_MASK 0xe0
  92. # define CANCTRL_REQOP_CONF 0x80
  93. # define CANCTRL_REQOP_LISTEN_ONLY 0x60
  94. # define CANCTRL_REQOP_LOOPBACK 0x40
  95. # define CANCTRL_REQOP_SLEEP 0x20
  96. # define CANCTRL_REQOP_NORMAL 0x00
  97. # define CANCTRL_OSM 0x08
  98. # define CANCTRL_ABAT 0x10
  99. #define TEC 0x1c
  100. #define REC 0x1d
  101. #define CNF1 0x2a
  102. # define CNF1_SJW_SHIFT 6
  103. #define CNF2 0x29
  104. # define CNF2_BTLMODE 0x80
  105. # define CNF2_SAM 0x40
  106. # define CNF2_PS1_SHIFT 3
  107. #define CNF3 0x28
  108. # define CNF3_SOF 0x08
  109. # define CNF3_WAKFIL 0x04
  110. # define CNF3_PHSEG2_MASK 0x07
  111. #define CANINTE 0x2b
  112. # define CANINTE_MERRE 0x80
  113. # define CANINTE_WAKIE 0x40
  114. # define CANINTE_ERRIE 0x20
  115. # define CANINTE_TX2IE 0x10
  116. # define CANINTE_TX1IE 0x08
  117. # define CANINTE_TX0IE 0x04
  118. # define CANINTE_RX1IE 0x02
  119. # define CANINTE_RX0IE 0x01
  120. #define CANINTF 0x2c
  121. # define CANINTF_MERRF 0x80
  122. # define CANINTF_WAKIF 0x40
  123. # define CANINTF_ERRIF 0x20
  124. # define CANINTF_TX2IF 0x10
  125. # define CANINTF_TX1IF 0x08
  126. # define CANINTF_TX0IF 0x04
  127. # define CANINTF_RX1IF 0x02
  128. # define CANINTF_RX0IF 0x01
  129. # define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
  130. # define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
  131. # define CANINTF_ERR (CANINTF_ERRIF)
  132. #define EFLG 0x2d
  133. # define EFLG_EWARN 0x01
  134. # define EFLG_RXWAR 0x02
  135. # define EFLG_TXWAR 0x04
  136. # define EFLG_RXEP 0x08
  137. # define EFLG_TXEP 0x10
  138. # define EFLG_TXBO 0x20
  139. # define EFLG_RX0OVR 0x40
  140. # define EFLG_RX1OVR 0x80
  141. #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
  142. # define TXBCTRL_ABTF 0x40
  143. # define TXBCTRL_MLOA 0x20
  144. # define TXBCTRL_TXERR 0x10
  145. # define TXBCTRL_TXREQ 0x08
  146. #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
  147. # define SIDH_SHIFT 3
  148. #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
  149. # define SIDL_SID_MASK 7
  150. # define SIDL_SID_SHIFT 5
  151. # define SIDL_EXIDE_SHIFT 3
  152. # define SIDL_EID_SHIFT 16
  153. # define SIDL_EID_MASK 3
  154. #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
  155. #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
  156. #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
  157. # define DLC_RTR_SHIFT 6
  158. #define TXBCTRL_OFF 0
  159. #define TXBSIDH_OFF 1
  160. #define TXBSIDL_OFF 2
  161. #define TXBEID8_OFF 3
  162. #define TXBEID0_OFF 4
  163. #define TXBDLC_OFF 5
  164. #define TXBDAT_OFF 6
  165. #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
  166. # define RXBCTRL_BUKT 0x04
  167. # define RXBCTRL_RXM0 0x20
  168. # define RXBCTRL_RXM1 0x40
  169. #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
  170. # define RXBSIDH_SHIFT 3
  171. #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
  172. # define RXBSIDL_IDE 0x08
  173. # define RXBSIDL_SRR 0x10
  174. # define RXBSIDL_EID 3
  175. # define RXBSIDL_SHIFT 5
  176. #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
  177. #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
  178. #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
  179. # define RXBDLC_LEN_MASK 0x0f
  180. # define RXBDLC_RTR 0x40
  181. #define RXBCTRL_OFF 0
  182. #define RXBSIDH_OFF 1
  183. #define RXBSIDL_OFF 2
  184. #define RXBEID8_OFF 3
  185. #define RXBEID0_OFF 4
  186. #define RXBDLC_OFF 5
  187. #define RXBDAT_OFF 6
  188. #define RXFSIDH(n) ((n) * 4)
  189. #define RXFSIDL(n) ((n) * 4 + 1)
  190. #define RXFEID8(n) ((n) * 4 + 2)
  191. #define RXFEID0(n) ((n) * 4 + 3)
  192. #define RXMSIDH(n) ((n) * 4 + 0x20)
  193. #define RXMSIDL(n) ((n) * 4 + 0x21)
  194. #define RXMEID8(n) ((n) * 4 + 0x22)
  195. #define RXMEID0(n) ((n) * 4 + 0x23)
  196. #define GET_BYTE(val, byte) \
  197. (((val) >> ((byte) * 8)) & 0xff)
  198. #define SET_BYTE(val, byte) \
  199. (((val) & 0xff) << ((byte) * 8))
  200. /*
  201. * Buffer size required for the largest SPI transfer (i.e., reading a
  202. * frame)
  203. */
  204. #define CAN_FRAME_MAX_DATA_LEN 8
  205. #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
  206. #define CAN_FRAME_MAX_BITS 128
  207. #define TX_ECHO_SKB_MAX 1
  208. #define DEVICE_NAME "mcp251x"
  209. static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
  210. module_param(mcp251x_enable_dma, int, S_IRUGO);
  211. MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
  212. static struct can_bittiming_const mcp251x_bittiming_const = {
  213. .name = DEVICE_NAME,
  214. .tseg1_min = 3,
  215. .tseg1_max = 16,
  216. .tseg2_min = 2,
  217. .tseg2_max = 8,
  218. .sjw_max = 4,
  219. .brp_min = 1,
  220. .brp_max = 64,
  221. .brp_inc = 1,
  222. };
  223. enum mcp251x_model {
  224. CAN_MCP251X_MCP2510 = 0x2510,
  225. CAN_MCP251X_MCP2515 = 0x2515,
  226. };
  227. struct mcp251x_priv {
  228. struct can_priv can;
  229. struct net_device *net;
  230. struct spi_device *spi;
  231. enum mcp251x_model model;
  232. struct mutex mcp_lock; /* SPI device lock */
  233. u8 *spi_tx_buf;
  234. u8 *spi_rx_buf;
  235. dma_addr_t spi_tx_dma;
  236. dma_addr_t spi_rx_dma;
  237. struct sk_buff *tx_skb;
  238. int tx_len;
  239. struct workqueue_struct *wq;
  240. struct work_struct tx_work;
  241. struct work_struct restart_work;
  242. int force_quit;
  243. int after_suspend;
  244. #define AFTER_SUSPEND_UP 1
  245. #define AFTER_SUSPEND_DOWN 2
  246. #define AFTER_SUSPEND_POWER 4
  247. #define AFTER_SUSPEND_RESTART 8
  248. int restart_tx;
  249. };
  250. #define MCP251X_IS(_model) \
  251. static inline int mcp251x_is_##_model(struct spi_device *spi) \
  252. { \
  253. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev); \
  254. return priv->model == CAN_MCP251X_MCP##_model; \
  255. }
  256. MCP251X_IS(2510);
  257. MCP251X_IS(2515);
  258. static void mcp251x_clean(struct net_device *net)
  259. {
  260. struct mcp251x_priv *priv = netdev_priv(net);
  261. if (priv->tx_skb || priv->tx_len)
  262. net->stats.tx_errors++;
  263. if (priv->tx_skb)
  264. dev_kfree_skb(priv->tx_skb);
  265. if (priv->tx_len)
  266. can_free_echo_skb(priv->net, 0);
  267. priv->tx_skb = NULL;
  268. priv->tx_len = 0;
  269. }
  270. /*
  271. * Note about handling of error return of mcp251x_spi_trans: accessing
  272. * registers via SPI is not really different conceptually than using
  273. * normal I/O assembler instructions, although it's much more
  274. * complicated from a practical POV. So it's not advisable to always
  275. * check the return value of this function. Imagine that every
  276. * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
  277. * error();", it would be a great mess (well there are some situation
  278. * when exception handling C++ like could be useful after all). So we
  279. * just check that transfers are OK at the beginning of our
  280. * conversation with the chip and to avoid doing really nasty things
  281. * (like injecting bogus packets in the network stack).
  282. */
  283. static int mcp251x_spi_trans(struct spi_device *spi, int len)
  284. {
  285. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  286. struct spi_transfer t = {
  287. .tx_buf = priv->spi_tx_buf,
  288. .rx_buf = priv->spi_rx_buf,
  289. .len = len,
  290. .cs_change = 0,
  291. };
  292. struct spi_message m;
  293. int ret;
  294. spi_message_init(&m);
  295. if (mcp251x_enable_dma) {
  296. t.tx_dma = priv->spi_tx_dma;
  297. t.rx_dma = priv->spi_rx_dma;
  298. m.is_dma_mapped = 1;
  299. }
  300. spi_message_add_tail(&t, &m);
  301. ret = spi_sync(spi, &m);
  302. if (ret)
  303. dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
  304. return ret;
  305. }
  306. static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
  307. {
  308. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  309. u8 val = 0;
  310. priv->spi_tx_buf[0] = INSTRUCTION_READ;
  311. priv->spi_tx_buf[1] = reg;
  312. mcp251x_spi_trans(spi, 3);
  313. val = priv->spi_rx_buf[2];
  314. return val;
  315. }
  316. static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
  317. uint8_t *v1, uint8_t *v2)
  318. {
  319. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  320. priv->spi_tx_buf[0] = INSTRUCTION_READ;
  321. priv->spi_tx_buf[1] = reg;
  322. mcp251x_spi_trans(spi, 4);
  323. *v1 = priv->spi_rx_buf[2];
  324. *v2 = priv->spi_rx_buf[3];
  325. }
  326. static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
  327. {
  328. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  329. priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
  330. priv->spi_tx_buf[1] = reg;
  331. priv->spi_tx_buf[2] = val;
  332. mcp251x_spi_trans(spi, 3);
  333. }
  334. static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
  335. u8 mask, uint8_t val)
  336. {
  337. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  338. priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
  339. priv->spi_tx_buf[1] = reg;
  340. priv->spi_tx_buf[2] = mask;
  341. priv->spi_tx_buf[3] = val;
  342. mcp251x_spi_trans(spi, 4);
  343. }
  344. static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
  345. int len, int tx_buf_idx)
  346. {
  347. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  348. if (mcp251x_is_2510(spi)) {
  349. int i;
  350. for (i = 1; i < TXBDAT_OFF + len; i++)
  351. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
  352. buf[i]);
  353. } else {
  354. memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
  355. mcp251x_spi_trans(spi, TXBDAT_OFF + len);
  356. }
  357. }
  358. static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
  359. int tx_buf_idx)
  360. {
  361. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  362. u32 sid, eid, exide, rtr;
  363. u8 buf[SPI_TRANSFER_BUF_LEN];
  364. exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
  365. if (exide)
  366. sid = (frame->can_id & CAN_EFF_MASK) >> 18;
  367. else
  368. sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
  369. eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
  370. rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
  371. buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
  372. buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
  373. buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
  374. (exide << SIDL_EXIDE_SHIFT) |
  375. ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
  376. buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
  377. buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
  378. buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
  379. memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
  380. mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
  381. /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
  382. priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
  383. mcp251x_spi_trans(priv->spi, 1);
  384. }
  385. static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
  386. int buf_idx)
  387. {
  388. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  389. if (mcp251x_is_2510(spi)) {
  390. int i, len;
  391. for (i = 1; i < RXBDAT_OFF; i++)
  392. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  393. len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  394. for (; i < (RXBDAT_OFF + len); i++)
  395. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  396. } else {
  397. priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
  398. mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
  399. memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
  400. }
  401. }
  402. static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
  403. {
  404. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  405. struct sk_buff *skb;
  406. struct can_frame *frame;
  407. u8 buf[SPI_TRANSFER_BUF_LEN];
  408. skb = alloc_can_skb(priv->net, &frame);
  409. if (!skb) {
  410. dev_err(&spi->dev, "cannot allocate RX skb\n");
  411. priv->net->stats.rx_dropped++;
  412. return;
  413. }
  414. mcp251x_hw_rx_frame(spi, buf, buf_idx);
  415. if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
  416. /* Extended ID format */
  417. frame->can_id = CAN_EFF_FLAG;
  418. frame->can_id |=
  419. /* Extended ID part */
  420. SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
  421. SET_BYTE(buf[RXBEID8_OFF], 1) |
  422. SET_BYTE(buf[RXBEID0_OFF], 0) |
  423. /* Standard ID part */
  424. (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  425. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
  426. /* Remote transmission request */
  427. if (buf[RXBDLC_OFF] & RXBDLC_RTR)
  428. frame->can_id |= CAN_RTR_FLAG;
  429. } else {
  430. /* Standard ID format */
  431. frame->can_id =
  432. (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  433. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
  434. if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
  435. frame->can_id |= CAN_RTR_FLAG;
  436. }
  437. /* Data length */
  438. frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  439. memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
  440. priv->net->stats.rx_packets++;
  441. priv->net->stats.rx_bytes += frame->can_dlc;
  442. netif_rx_ni(skb);
  443. }
  444. static void mcp251x_hw_sleep(struct spi_device *spi)
  445. {
  446. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
  447. }
  448. static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
  449. struct net_device *net)
  450. {
  451. struct mcp251x_priv *priv = netdev_priv(net);
  452. struct spi_device *spi = priv->spi;
  453. if (priv->tx_skb || priv->tx_len) {
  454. dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
  455. return NETDEV_TX_BUSY;
  456. }
  457. if (can_dropped_invalid_skb(net, skb))
  458. return NETDEV_TX_OK;
  459. netif_stop_queue(net);
  460. priv->tx_skb = skb;
  461. queue_work(priv->wq, &priv->tx_work);
  462. return NETDEV_TX_OK;
  463. }
  464. static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
  465. {
  466. struct mcp251x_priv *priv = netdev_priv(net);
  467. switch (mode) {
  468. case CAN_MODE_START:
  469. mcp251x_clean(net);
  470. /* We have to delay work since SPI I/O may sleep */
  471. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  472. priv->restart_tx = 1;
  473. if (priv->can.restart_ms == 0)
  474. priv->after_suspend = AFTER_SUSPEND_RESTART;
  475. queue_work(priv->wq, &priv->restart_work);
  476. break;
  477. default:
  478. return -EOPNOTSUPP;
  479. }
  480. return 0;
  481. }
  482. static int mcp251x_set_normal_mode(struct spi_device *spi)
  483. {
  484. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  485. unsigned long timeout;
  486. /* Enable interrupts */
  487. mcp251x_write_reg(spi, CANINTE,
  488. CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
  489. CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
  490. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  491. /* Put device into loopback mode */
  492. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
  493. } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
  494. /* Put device into listen-only mode */
  495. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
  496. } else {
  497. /* Put device into normal mode */
  498. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
  499. /* Wait for the device to enter normal mode */
  500. timeout = jiffies + HZ;
  501. while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
  502. schedule();
  503. if (time_after(jiffies, timeout)) {
  504. dev_err(&spi->dev, "MCP251x didn't"
  505. " enter in normal mode\n");
  506. return -EBUSY;
  507. }
  508. }
  509. }
  510. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  511. return 0;
  512. }
  513. static int mcp251x_do_set_bittiming(struct net_device *net)
  514. {
  515. struct mcp251x_priv *priv = netdev_priv(net);
  516. struct can_bittiming *bt = &priv->can.bittiming;
  517. struct spi_device *spi = priv->spi;
  518. mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
  519. (bt->brp - 1));
  520. mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
  521. (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
  522. CNF2_SAM : 0) |
  523. ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
  524. (bt->prop_seg - 1));
  525. mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
  526. (bt->phase_seg2 - 1));
  527. dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
  528. mcp251x_read_reg(spi, CNF1),
  529. mcp251x_read_reg(spi, CNF2),
  530. mcp251x_read_reg(spi, CNF3));
  531. return 0;
  532. }
  533. static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
  534. struct spi_device *spi)
  535. {
  536. mcp251x_do_set_bittiming(net);
  537. mcp251x_write_reg(spi, RXBCTRL(0),
  538. RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
  539. mcp251x_write_reg(spi, RXBCTRL(1),
  540. RXBCTRL_RXM0 | RXBCTRL_RXM1);
  541. return 0;
  542. }
  543. static int mcp251x_hw_reset(struct spi_device *spi)
  544. {
  545. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  546. int ret;
  547. unsigned long timeout;
  548. priv->spi_tx_buf[0] = INSTRUCTION_RESET;
  549. ret = spi_write(spi, priv->spi_tx_buf, 1);
  550. if (ret) {
  551. dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
  552. return -EIO;
  553. }
  554. /* Wait for reset to finish */
  555. timeout = jiffies + HZ;
  556. mdelay(10);
  557. while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
  558. != CANCTRL_REQOP_CONF) {
  559. schedule();
  560. if (time_after(jiffies, timeout)) {
  561. dev_err(&spi->dev, "MCP251x didn't"
  562. " enter in conf mode after reset\n");
  563. return -EBUSY;
  564. }
  565. }
  566. return 0;
  567. }
  568. static int mcp251x_hw_probe(struct spi_device *spi)
  569. {
  570. int st1, st2;
  571. mcp251x_hw_reset(spi);
  572. /*
  573. * Please note that these are "magic values" based on after
  574. * reset defaults taken from data sheet which allows us to see
  575. * if we really have a chip on the bus (we avoid common all
  576. * zeroes or all ones situations)
  577. */
  578. st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
  579. st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
  580. dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
  581. /* Check for power up default values */
  582. return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
  583. }
  584. static void mcp251x_open_clean(struct net_device *net)
  585. {
  586. struct mcp251x_priv *priv = netdev_priv(net);
  587. struct spi_device *spi = priv->spi;
  588. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  589. free_irq(spi->irq, priv);
  590. mcp251x_hw_sleep(spi);
  591. if (pdata->transceiver_enable)
  592. pdata->transceiver_enable(0);
  593. close_candev(net);
  594. }
  595. static int mcp251x_stop(struct net_device *net)
  596. {
  597. struct mcp251x_priv *priv = netdev_priv(net);
  598. struct spi_device *spi = priv->spi;
  599. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  600. close_candev(net);
  601. priv->force_quit = 1;
  602. free_irq(spi->irq, priv);
  603. destroy_workqueue(priv->wq);
  604. priv->wq = NULL;
  605. mutex_lock(&priv->mcp_lock);
  606. /* Disable and clear pending interrupts */
  607. mcp251x_write_reg(spi, CANINTE, 0x00);
  608. mcp251x_write_reg(spi, CANINTF, 0x00);
  609. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  610. mcp251x_clean(net);
  611. mcp251x_hw_sleep(spi);
  612. if (pdata->transceiver_enable)
  613. pdata->transceiver_enable(0);
  614. priv->can.state = CAN_STATE_STOPPED;
  615. mutex_unlock(&priv->mcp_lock);
  616. return 0;
  617. }
  618. static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
  619. {
  620. struct sk_buff *skb;
  621. struct can_frame *frame;
  622. skb = alloc_can_err_skb(net, &frame);
  623. if (skb) {
  624. frame->can_id |= can_id;
  625. frame->data[1] = data1;
  626. netif_rx_ni(skb);
  627. } else {
  628. netdev_err(net, "cannot allocate error skb\n");
  629. }
  630. }
  631. static void mcp251x_tx_work_handler(struct work_struct *ws)
  632. {
  633. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  634. tx_work);
  635. struct spi_device *spi = priv->spi;
  636. struct net_device *net = priv->net;
  637. struct can_frame *frame;
  638. mutex_lock(&priv->mcp_lock);
  639. if (priv->tx_skb) {
  640. if (priv->can.state == CAN_STATE_BUS_OFF) {
  641. mcp251x_clean(net);
  642. } else {
  643. frame = (struct can_frame *)priv->tx_skb->data;
  644. if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
  645. frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
  646. mcp251x_hw_tx(spi, frame, 0);
  647. priv->tx_len = 1 + frame->can_dlc;
  648. can_put_echo_skb(priv->tx_skb, net, 0);
  649. priv->tx_skb = NULL;
  650. }
  651. }
  652. mutex_unlock(&priv->mcp_lock);
  653. }
  654. static void mcp251x_restart_work_handler(struct work_struct *ws)
  655. {
  656. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  657. restart_work);
  658. struct spi_device *spi = priv->spi;
  659. struct net_device *net = priv->net;
  660. mutex_lock(&priv->mcp_lock);
  661. if (priv->after_suspend) {
  662. mdelay(10);
  663. mcp251x_hw_reset(spi);
  664. mcp251x_setup(net, priv, spi);
  665. if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
  666. mcp251x_set_normal_mode(spi);
  667. } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
  668. netif_device_attach(net);
  669. mcp251x_clean(net);
  670. mcp251x_set_normal_mode(spi);
  671. netif_wake_queue(net);
  672. } else {
  673. mcp251x_hw_sleep(spi);
  674. }
  675. priv->after_suspend = 0;
  676. priv->force_quit = 0;
  677. }
  678. if (priv->restart_tx) {
  679. priv->restart_tx = 0;
  680. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  681. mcp251x_clean(net);
  682. netif_wake_queue(net);
  683. mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
  684. }
  685. mutex_unlock(&priv->mcp_lock);
  686. }
  687. static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
  688. {
  689. struct mcp251x_priv *priv = dev_id;
  690. struct spi_device *spi = priv->spi;
  691. struct net_device *net = priv->net;
  692. mutex_lock(&priv->mcp_lock);
  693. while (!priv->force_quit) {
  694. enum can_state new_state;
  695. u8 intf, eflag;
  696. u8 clear_intf = 0;
  697. int can_id = 0, data1 = 0;
  698. mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
  699. /* mask out flags we don't care about */
  700. intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
  701. /* receive buffer 0 */
  702. if (intf & CANINTF_RX0IF) {
  703. mcp251x_hw_rx(spi, 0);
  704. /*
  705. * Free one buffer ASAP
  706. * (The MCP2515 does this automatically.)
  707. */
  708. if (mcp251x_is_2510(spi))
  709. mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
  710. }
  711. /* receive buffer 1 */
  712. if (intf & CANINTF_RX1IF) {
  713. mcp251x_hw_rx(spi, 1);
  714. /* the MCP2515 does this automatically */
  715. if (mcp251x_is_2510(spi))
  716. clear_intf |= CANINTF_RX1IF;
  717. }
  718. /* any error or tx interrupt we need to clear? */
  719. if (intf & (CANINTF_ERR | CANINTF_TX))
  720. clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
  721. if (clear_intf)
  722. mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
  723. if (eflag)
  724. mcp251x_write_bits(spi, EFLG, eflag, 0x00);
  725. /* Update can state */
  726. if (eflag & EFLG_TXBO) {
  727. new_state = CAN_STATE_BUS_OFF;
  728. can_id |= CAN_ERR_BUSOFF;
  729. } else if (eflag & EFLG_TXEP) {
  730. new_state = CAN_STATE_ERROR_PASSIVE;
  731. can_id |= CAN_ERR_CRTL;
  732. data1 |= CAN_ERR_CRTL_TX_PASSIVE;
  733. } else if (eflag & EFLG_RXEP) {
  734. new_state = CAN_STATE_ERROR_PASSIVE;
  735. can_id |= CAN_ERR_CRTL;
  736. data1 |= CAN_ERR_CRTL_RX_PASSIVE;
  737. } else if (eflag & EFLG_TXWAR) {
  738. new_state = CAN_STATE_ERROR_WARNING;
  739. can_id |= CAN_ERR_CRTL;
  740. data1 |= CAN_ERR_CRTL_TX_WARNING;
  741. } else if (eflag & EFLG_RXWAR) {
  742. new_state = CAN_STATE_ERROR_WARNING;
  743. can_id |= CAN_ERR_CRTL;
  744. data1 |= CAN_ERR_CRTL_RX_WARNING;
  745. } else {
  746. new_state = CAN_STATE_ERROR_ACTIVE;
  747. }
  748. /* Update can state statistics */
  749. switch (priv->can.state) {
  750. case CAN_STATE_ERROR_ACTIVE:
  751. if (new_state >= CAN_STATE_ERROR_WARNING &&
  752. new_state <= CAN_STATE_BUS_OFF)
  753. priv->can.can_stats.error_warning++;
  754. case CAN_STATE_ERROR_WARNING: /* fallthrough */
  755. if (new_state >= CAN_STATE_ERROR_PASSIVE &&
  756. new_state <= CAN_STATE_BUS_OFF)
  757. priv->can.can_stats.error_passive++;
  758. break;
  759. default:
  760. break;
  761. }
  762. priv->can.state = new_state;
  763. if (intf & CANINTF_ERRIF) {
  764. /* Handle overflow counters */
  765. if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
  766. if (eflag & EFLG_RX0OVR) {
  767. net->stats.rx_over_errors++;
  768. net->stats.rx_errors++;
  769. }
  770. if (eflag & EFLG_RX1OVR) {
  771. net->stats.rx_over_errors++;
  772. net->stats.rx_errors++;
  773. }
  774. can_id |= CAN_ERR_CRTL;
  775. data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
  776. }
  777. mcp251x_error_skb(net, can_id, data1);
  778. }
  779. if (priv->can.state == CAN_STATE_BUS_OFF) {
  780. if (priv->can.restart_ms == 0) {
  781. priv->force_quit = 1;
  782. can_bus_off(net);
  783. mcp251x_hw_sleep(spi);
  784. break;
  785. }
  786. }
  787. if (intf == 0)
  788. break;
  789. if (intf & CANINTF_TX) {
  790. net->stats.tx_packets++;
  791. net->stats.tx_bytes += priv->tx_len - 1;
  792. if (priv->tx_len) {
  793. can_get_echo_skb(net, 0);
  794. priv->tx_len = 0;
  795. }
  796. netif_wake_queue(net);
  797. }
  798. }
  799. mutex_unlock(&priv->mcp_lock);
  800. return IRQ_HANDLED;
  801. }
  802. static int mcp251x_open(struct net_device *net)
  803. {
  804. struct mcp251x_priv *priv = netdev_priv(net);
  805. struct spi_device *spi = priv->spi;
  806. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  807. int ret;
  808. ret = open_candev(net);
  809. if (ret) {
  810. dev_err(&spi->dev, "unable to set initial baudrate!\n");
  811. return ret;
  812. }
  813. mutex_lock(&priv->mcp_lock);
  814. if (pdata->transceiver_enable)
  815. pdata->transceiver_enable(1);
  816. priv->force_quit = 0;
  817. priv->tx_skb = NULL;
  818. priv->tx_len = 0;
  819. ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
  820. pdata->irq_flags ? pdata->irq_flags : IRQF_TRIGGER_FALLING,
  821. DEVICE_NAME, priv);
  822. if (ret) {
  823. dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
  824. if (pdata->transceiver_enable)
  825. pdata->transceiver_enable(0);
  826. close_candev(net);
  827. goto open_unlock;
  828. }
  829. priv->wq = create_freezable_workqueue("mcp251x_wq");
  830. INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
  831. INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
  832. ret = mcp251x_hw_reset(spi);
  833. if (ret) {
  834. mcp251x_open_clean(net);
  835. goto open_unlock;
  836. }
  837. ret = mcp251x_setup(net, priv, spi);
  838. if (ret) {
  839. mcp251x_open_clean(net);
  840. goto open_unlock;
  841. }
  842. ret = mcp251x_set_normal_mode(spi);
  843. if (ret) {
  844. mcp251x_open_clean(net);
  845. goto open_unlock;
  846. }
  847. netif_wake_queue(net);
  848. open_unlock:
  849. mutex_unlock(&priv->mcp_lock);
  850. return ret;
  851. }
  852. static const struct net_device_ops mcp251x_netdev_ops = {
  853. .ndo_open = mcp251x_open,
  854. .ndo_stop = mcp251x_stop,
  855. .ndo_start_xmit = mcp251x_hard_start_xmit,
  856. };
  857. static int __devinit mcp251x_can_probe(struct spi_device *spi)
  858. {
  859. struct net_device *net;
  860. struct mcp251x_priv *priv;
  861. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  862. int ret = -ENODEV;
  863. if (!pdata)
  864. /* Platform data is required for osc freq */
  865. goto error_out;
  866. /* Allocate can/net device */
  867. net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
  868. if (!net) {
  869. ret = -ENOMEM;
  870. goto error_alloc;
  871. }
  872. net->netdev_ops = &mcp251x_netdev_ops;
  873. net->flags |= IFF_ECHO;
  874. priv = netdev_priv(net);
  875. priv->can.bittiming_const = &mcp251x_bittiming_const;
  876. priv->can.do_set_mode = mcp251x_do_set_mode;
  877. priv->can.clock.freq = pdata->oscillator_frequency / 2;
  878. priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
  879. CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
  880. priv->model = spi_get_device_id(spi)->driver_data;
  881. priv->net = net;
  882. dev_set_drvdata(&spi->dev, priv);
  883. priv->spi = spi;
  884. mutex_init(&priv->mcp_lock);
  885. /* If requested, allocate DMA buffers */
  886. if (mcp251x_enable_dma) {
  887. spi->dev.coherent_dma_mask = ~0;
  888. /*
  889. * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
  890. * that much and share it between Tx and Rx DMA buffers.
  891. */
  892. priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
  893. PAGE_SIZE,
  894. &priv->spi_tx_dma,
  895. GFP_DMA);
  896. if (priv->spi_tx_buf) {
  897. priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
  898. (PAGE_SIZE / 2));
  899. priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
  900. (PAGE_SIZE / 2));
  901. } else {
  902. /* Fall back to non-DMA */
  903. mcp251x_enable_dma = 0;
  904. }
  905. }
  906. /* Allocate non-DMA buffers */
  907. if (!mcp251x_enable_dma) {
  908. priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  909. if (!priv->spi_tx_buf) {
  910. ret = -ENOMEM;
  911. goto error_tx_buf;
  912. }
  913. priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  914. if (!priv->spi_rx_buf) {
  915. ret = -ENOMEM;
  916. goto error_rx_buf;
  917. }
  918. }
  919. if (pdata->power_enable)
  920. pdata->power_enable(1);
  921. /* Call out to platform specific setup */
  922. if (pdata->board_specific_setup)
  923. pdata->board_specific_setup(spi);
  924. SET_NETDEV_DEV(net, &spi->dev);
  925. /* Configure the SPI bus */
  926. spi->mode = SPI_MODE_0;
  927. spi->bits_per_word = 8;
  928. spi_setup(spi);
  929. /* Here is OK to not lock the MCP, no one knows about it yet */
  930. if (!mcp251x_hw_probe(spi)) {
  931. dev_info(&spi->dev, "Probe failed\n");
  932. goto error_probe;
  933. }
  934. mcp251x_hw_sleep(spi);
  935. if (pdata->transceiver_enable)
  936. pdata->transceiver_enable(0);
  937. ret = register_candev(net);
  938. if (!ret) {
  939. dev_info(&spi->dev, "probed\n");
  940. return ret;
  941. }
  942. error_probe:
  943. if (!mcp251x_enable_dma)
  944. kfree(priv->spi_rx_buf);
  945. error_rx_buf:
  946. if (!mcp251x_enable_dma)
  947. kfree(priv->spi_tx_buf);
  948. error_tx_buf:
  949. free_candev(net);
  950. if (mcp251x_enable_dma)
  951. dma_free_coherent(&spi->dev, PAGE_SIZE,
  952. priv->spi_tx_buf, priv->spi_tx_dma);
  953. error_alloc:
  954. if (pdata->power_enable)
  955. pdata->power_enable(0);
  956. dev_err(&spi->dev, "probe failed\n");
  957. error_out:
  958. return ret;
  959. }
  960. static int __devexit mcp251x_can_remove(struct spi_device *spi)
  961. {
  962. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  963. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  964. struct net_device *net = priv->net;
  965. unregister_candev(net);
  966. free_candev(net);
  967. if (mcp251x_enable_dma) {
  968. dma_free_coherent(&spi->dev, PAGE_SIZE,
  969. priv->spi_tx_buf, priv->spi_tx_dma);
  970. } else {
  971. kfree(priv->spi_tx_buf);
  972. kfree(priv->spi_rx_buf);
  973. }
  974. if (pdata->power_enable)
  975. pdata->power_enable(0);
  976. return 0;
  977. }
  978. #ifdef CONFIG_PM
  979. static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
  980. {
  981. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  982. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  983. struct net_device *net = priv->net;
  984. priv->force_quit = 1;
  985. disable_irq(spi->irq);
  986. /*
  987. * Note: at this point neither IST nor workqueues are running.
  988. * open/stop cannot be called anyway so locking is not needed
  989. */
  990. if (netif_running(net)) {
  991. netif_device_detach(net);
  992. mcp251x_hw_sleep(spi);
  993. if (pdata->transceiver_enable)
  994. pdata->transceiver_enable(0);
  995. priv->after_suspend = AFTER_SUSPEND_UP;
  996. } else {
  997. priv->after_suspend = AFTER_SUSPEND_DOWN;
  998. }
  999. if (pdata->power_enable) {
  1000. pdata->power_enable(0);
  1001. priv->after_suspend |= AFTER_SUSPEND_POWER;
  1002. }
  1003. return 0;
  1004. }
  1005. static int mcp251x_can_resume(struct spi_device *spi)
  1006. {
  1007. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  1008. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  1009. if (priv->after_suspend & AFTER_SUSPEND_POWER)
  1010. pdata->power_enable(1);
  1011. if (priv->after_suspend & AFTER_SUSPEND_UP) {
  1012. if (pdata->transceiver_enable)
  1013. pdata->transceiver_enable(1);
  1014. queue_work(priv->wq, &priv->restart_work);
  1015. } else {
  1016. priv->after_suspend = 0;
  1017. }
  1018. priv->force_quit = 0;
  1019. enable_irq(spi->irq);
  1020. return 0;
  1021. }
  1022. #else
  1023. #define mcp251x_can_suspend NULL
  1024. #define mcp251x_can_resume NULL
  1025. #endif
  1026. static const struct spi_device_id mcp251x_id_table[] = {
  1027. { "mcp2510", CAN_MCP251X_MCP2510 },
  1028. { "mcp2515", CAN_MCP251X_MCP2515 },
  1029. { },
  1030. };
  1031. MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
  1032. static struct spi_driver mcp251x_can_driver = {
  1033. .driver = {
  1034. .name = DEVICE_NAME,
  1035. .bus = &spi_bus_type,
  1036. .owner = THIS_MODULE,
  1037. },
  1038. .id_table = mcp251x_id_table,
  1039. .probe = mcp251x_can_probe,
  1040. .remove = __devexit_p(mcp251x_can_remove),
  1041. .suspend = mcp251x_can_suspend,
  1042. .resume = mcp251x_can_resume,
  1043. };
  1044. static int __init mcp251x_can_init(void)
  1045. {
  1046. return spi_register_driver(&mcp251x_can_driver);
  1047. }
  1048. static void __exit mcp251x_can_exit(void)
  1049. {
  1050. spi_unregister_driver(&mcp251x_can_driver);
  1051. }
  1052. module_init(mcp251x_can_init);
  1053. module_exit(mcp251x_can_exit);
  1054. MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
  1055. "Christian Pellegrin <chripell@evolware.org>");
  1056. MODULE_DESCRIPTION("Microchip 251x CAN driver");
  1057. MODULE_LICENSE("GPL v2");