1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153 |
- /*P:700
- * The pagetable code, on the other hand, still shows the scars of
- * previous encounters. It's functional, and as neat as it can be in the
- * circumstances, but be wary, for these things are subtle and break easily.
- * The Guest provides a virtual to physical mapping, but we can neither trust
- * it nor use it: we verify and convert it here then point the CPU to the
- * converted Guest pages when running the Guest.
- :*/
- /* Copyright (C) Rusty Russell IBM Corporation 2006.
- * GPL v2 and any later version */
- #include <linux/mm.h>
- #include <linux/gfp.h>
- #include <linux/types.h>
- #include <linux/spinlock.h>
- #include <linux/random.h>
- #include <linux/percpu.h>
- #include <asm/tlbflush.h>
- #include <asm/uaccess.h>
- #include "lg.h"
- /*M:008
- * We hold reference to pages, which prevents them from being swapped.
- * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
- * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
- * could probably consider launching Guests as non-root.
- :*/
- /*H:300
- * The Page Table Code
- *
- * We use two-level page tables for the Guest, or three-level with PAE. If
- * you're not entirely comfortable with virtual addresses, physical addresses
- * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
- * Table Handling" (with diagrams!).
- *
- * The Guest keeps page tables, but we maintain the actual ones here: these are
- * called "shadow" page tables. Which is a very Guest-centric name: these are
- * the real page tables the CPU uses, although we keep them up to date to
- * reflect the Guest's. (See what I mean about weird naming? Since when do
- * shadows reflect anything?)
- *
- * Anyway, this is the most complicated part of the Host code. There are seven
- * parts to this:
- * (i) Looking up a page table entry when the Guest faults,
- * (ii) Making sure the Guest stack is mapped,
- * (iii) Setting up a page table entry when the Guest tells us one has changed,
- * (iv) Switching page tables,
- * (v) Flushing (throwing away) page tables,
- * (vi) Mapping the Switcher when the Guest is about to run,
- * (vii) Setting up the page tables initially.
- :*/
- /*
- * The Switcher uses the complete top PTE page. That's 1024 PTE entries (4MB)
- * or 512 PTE entries with PAE (2MB).
- */
- #define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
- /*
- * For PAE we need the PMD index as well. We use the last 2MB, so we
- * will need the last pmd entry of the last pmd page.
- */
- #ifdef CONFIG_X86_PAE
- #define SWITCHER_PMD_INDEX (PTRS_PER_PMD - 1)
- #define RESERVE_MEM 2U
- #define CHECK_GPGD_MASK _PAGE_PRESENT
- #else
- #define RESERVE_MEM 4U
- #define CHECK_GPGD_MASK _PAGE_TABLE
- #endif
- /*
- * We actually need a separate PTE page for each CPU. Remember that after the
- * Switcher code itself comes two pages for each CPU, and we don't want this
- * CPU's guest to see the pages of any other CPU.
- */
- static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
- #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
- /*H:320
- * The page table code is curly enough to need helper functions to keep it
- * clear and clean. The kernel itself provides many of them; one advantage
- * of insisting that the Guest and Host use the same CONFIG_PAE setting.
- *
- * There are two functions which return pointers to the shadow (aka "real")
- * page tables.
- *
- * spgd_addr() takes the virtual address and returns a pointer to the top-level
- * page directory entry (PGD) for that address. Since we keep track of several
- * page tables, the "i" argument tells us which one we're interested in (it's
- * usually the current one).
- */
- static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
- {
- unsigned int index = pgd_index(vaddr);
- #ifndef CONFIG_X86_PAE
- /* We kill any Guest trying to touch the Switcher addresses. */
- if (index >= SWITCHER_PGD_INDEX) {
- kill_guest(cpu, "attempt to access switcher pages");
- index = 0;
- }
- #endif
- /* Return a pointer index'th pgd entry for the i'th page table. */
- return &cpu->lg->pgdirs[i].pgdir[index];
- }
- #ifdef CONFIG_X86_PAE
- /*
- * This routine then takes the PGD entry given above, which contains the
- * address of the PMD page. It then returns a pointer to the PMD entry for the
- * given address.
- */
- static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
- {
- unsigned int index = pmd_index(vaddr);
- pmd_t *page;
- /* We kill any Guest trying to touch the Switcher addresses. */
- if (pgd_index(vaddr) == SWITCHER_PGD_INDEX &&
- index >= SWITCHER_PMD_INDEX) {
- kill_guest(cpu, "attempt to access switcher pages");
- index = 0;
- }
- /* You should never call this if the PGD entry wasn't valid */
- BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
- page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
- return &page[index];
- }
- #endif
- /*
- * This routine then takes the page directory entry returned above, which
- * contains the address of the page table entry (PTE) page. It then returns a
- * pointer to the PTE entry for the given address.
- */
- static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
- {
- #ifdef CONFIG_X86_PAE
- pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
- pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
- /* You should never call this if the PMD entry wasn't valid */
- BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
- #else
- pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
- /* You should never call this if the PGD entry wasn't valid */
- BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
- #endif
- return &page[pte_index(vaddr)];
- }
- /*
- * These functions are just like the above, except they access the Guest
- * page tables. Hence they return a Guest address.
- */
- static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
- {
- unsigned int index = vaddr >> (PGDIR_SHIFT);
- return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
- }
- #ifdef CONFIG_X86_PAE
- /* Follow the PGD to the PMD. */
- static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
- {
- unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
- BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
- return gpage + pmd_index(vaddr) * sizeof(pmd_t);
- }
- /* Follow the PMD to the PTE. */
- static unsigned long gpte_addr(struct lg_cpu *cpu,
- pmd_t gpmd, unsigned long vaddr)
- {
- unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
- BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
- return gpage + pte_index(vaddr) * sizeof(pte_t);
- }
- #else
- /* Follow the PGD to the PTE (no mid-level for !PAE). */
- static unsigned long gpte_addr(struct lg_cpu *cpu,
- pgd_t gpgd, unsigned long vaddr)
- {
- unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
- BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
- return gpage + pte_index(vaddr) * sizeof(pte_t);
- }
- #endif
- /*:*/
- /*M:007
- * get_pfn is slow: we could probably try to grab batches of pages here as
- * an optimization (ie. pre-faulting).
- :*/
- /*H:350
- * This routine takes a page number given by the Guest and converts it to
- * an actual, physical page number. It can fail for several reasons: the
- * virtual address might not be mapped by the Launcher, the write flag is set
- * and the page is read-only, or the write flag was set and the page was
- * shared so had to be copied, but we ran out of memory.
- *
- * This holds a reference to the page, so release_pte() is careful to put that
- * back.
- */
- static unsigned long get_pfn(unsigned long virtpfn, int write)
- {
- struct page *page;
- /* gup me one page at this address please! */
- if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
- return page_to_pfn(page);
- /* This value indicates failure. */
- return -1UL;
- }
- /*H:340
- * Converting a Guest page table entry to a shadow (ie. real) page table
- * entry can be a little tricky. The flags are (almost) the same, but the
- * Guest PTE contains a virtual page number: the CPU needs the real page
- * number.
- */
- static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
- {
- unsigned long pfn, base, flags;
- /*
- * The Guest sets the global flag, because it thinks that it is using
- * PGE. We only told it to use PGE so it would tell us whether it was
- * flushing a kernel mapping or a userspace mapping. We don't actually
- * use the global bit, so throw it away.
- */
- flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
- /* The Guest's pages are offset inside the Launcher. */
- base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
- /*
- * We need a temporary "unsigned long" variable to hold the answer from
- * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
- * fit in spte.pfn. get_pfn() finds the real physical number of the
- * page, given the virtual number.
- */
- pfn = get_pfn(base + pte_pfn(gpte), write);
- if (pfn == -1UL) {
- kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
- /*
- * When we destroy the Guest, we'll go through the shadow page
- * tables and release_pte() them. Make sure we don't think
- * this one is valid!
- */
- flags = 0;
- }
- /* Now we assemble our shadow PTE from the page number and flags. */
- return pfn_pte(pfn, __pgprot(flags));
- }
- /*H:460 And to complete the chain, release_pte() looks like this: */
- static void release_pte(pte_t pte)
- {
- /*
- * Remember that get_user_pages_fast() took a reference to the page, in
- * get_pfn()? We have to put it back now.
- */
- if (pte_flags(pte) & _PAGE_PRESENT)
- put_page(pte_page(pte));
- }
- /*:*/
- static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
- {
- if ((pte_flags(gpte) & _PAGE_PSE) ||
- pte_pfn(gpte) >= cpu->lg->pfn_limit)
- kill_guest(cpu, "bad page table entry");
- }
- static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
- {
- if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
- (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
- kill_guest(cpu, "bad page directory entry");
- }
- #ifdef CONFIG_X86_PAE
- static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
- {
- if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
- (pmd_pfn(gpmd) >= cpu->lg->pfn_limit))
- kill_guest(cpu, "bad page middle directory entry");
- }
- #endif
- /*H:330
- * (i) Looking up a page table entry when the Guest faults.
- *
- * We saw this call in run_guest(): when we see a page fault in the Guest, we
- * come here. That's because we only set up the shadow page tables lazily as
- * they're needed, so we get page faults all the time and quietly fix them up
- * and return to the Guest without it knowing.
- *
- * If we fixed up the fault (ie. we mapped the address), this routine returns
- * true. Otherwise, it was a real fault and we need to tell the Guest.
- */
- bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
- {
- pgd_t gpgd;
- pgd_t *spgd;
- unsigned long gpte_ptr;
- pte_t gpte;
- pte_t *spte;
- /* Mid level for PAE. */
- #ifdef CONFIG_X86_PAE
- pmd_t *spmd;
- pmd_t gpmd;
- #endif
- /* First step: get the top-level Guest page table entry. */
- if (unlikely(cpu->linear_pages)) {
- /* Faking up a linear mapping. */
- gpgd = __pgd(CHECK_GPGD_MASK);
- } else {
- gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
- /* Toplevel not present? We can't map it in. */
- if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
- return false;
- }
- /* Now look at the matching shadow entry. */
- spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
- if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
- /* No shadow entry: allocate a new shadow PTE page. */
- unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
- /*
- * This is not really the Guest's fault, but killing it is
- * simple for this corner case.
- */
- if (!ptepage) {
- kill_guest(cpu, "out of memory allocating pte page");
- return false;
- }
- /* We check that the Guest pgd is OK. */
- check_gpgd(cpu, gpgd);
- /*
- * And we copy the flags to the shadow PGD entry. The page
- * number in the shadow PGD is the page we just allocated.
- */
- set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd)));
- }
- #ifdef CONFIG_X86_PAE
- if (unlikely(cpu->linear_pages)) {
- /* Faking up a linear mapping. */
- gpmd = __pmd(_PAGE_TABLE);
- } else {
- gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
- /* Middle level not present? We can't map it in. */
- if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
- return false;
- }
- /* Now look at the matching shadow entry. */
- spmd = spmd_addr(cpu, *spgd, vaddr);
- if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
- /* No shadow entry: allocate a new shadow PTE page. */
- unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
- /*
- * This is not really the Guest's fault, but killing it is
- * simple for this corner case.
- */
- if (!ptepage) {
- kill_guest(cpu, "out of memory allocating pte page");
- return false;
- }
- /* We check that the Guest pmd is OK. */
- check_gpmd(cpu, gpmd);
- /*
- * And we copy the flags to the shadow PMD entry. The page
- * number in the shadow PMD is the page we just allocated.
- */
- set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd)));
- }
- /*
- * OK, now we look at the lower level in the Guest page table: keep its
- * address, because we might update it later.
- */
- gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
- #else
- /*
- * OK, now we look at the lower level in the Guest page table: keep its
- * address, because we might update it later.
- */
- gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
- #endif
- if (unlikely(cpu->linear_pages)) {
- /* Linear? Make up a PTE which points to same page. */
- gpte = __pte((vaddr & PAGE_MASK) | _PAGE_RW | _PAGE_PRESENT);
- } else {
- /* Read the actual PTE value. */
- gpte = lgread(cpu, gpte_ptr, pte_t);
- }
- /* If this page isn't in the Guest page tables, we can't page it in. */
- if (!(pte_flags(gpte) & _PAGE_PRESENT))
- return false;
- /*
- * Check they're not trying to write to a page the Guest wants
- * read-only (bit 2 of errcode == write).
- */
- if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
- return false;
- /* User access to a kernel-only page? (bit 3 == user access) */
- if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
- return false;
- /*
- * Check that the Guest PTE flags are OK, and the page number is below
- * the pfn_limit (ie. not mapping the Launcher binary).
- */
- check_gpte(cpu, gpte);
- /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
- gpte = pte_mkyoung(gpte);
- if (errcode & 2)
- gpte = pte_mkdirty(gpte);
- /* Get the pointer to the shadow PTE entry we're going to set. */
- spte = spte_addr(cpu, *spgd, vaddr);
- /*
- * If there was a valid shadow PTE entry here before, we release it.
- * This can happen with a write to a previously read-only entry.
- */
- release_pte(*spte);
- /*
- * If this is a write, we insist that the Guest page is writable (the
- * final arg to gpte_to_spte()).
- */
- if (pte_dirty(gpte))
- *spte = gpte_to_spte(cpu, gpte, 1);
- else
- /*
- * If this is a read, don't set the "writable" bit in the page
- * table entry, even if the Guest says it's writable. That way
- * we will come back here when a write does actually occur, so
- * we can update the Guest's _PAGE_DIRTY flag.
- */
- set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
- /*
- * Finally, we write the Guest PTE entry back: we've set the
- * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
- */
- if (likely(!cpu->linear_pages))
- lgwrite(cpu, gpte_ptr, pte_t, gpte);
- /*
- * The fault is fixed, the page table is populated, the mapping
- * manipulated, the result returned and the code complete. A small
- * delay and a trace of alliteration are the only indications the Guest
- * has that a page fault occurred at all.
- */
- return true;
- }
- /*H:360
- * (ii) Making sure the Guest stack is mapped.
- *
- * Remember that direct traps into the Guest need a mapped Guest kernel stack.
- * pin_stack_pages() calls us here: we could simply call demand_page(), but as
- * we've seen that logic is quite long, and usually the stack pages are already
- * mapped, so it's overkill.
- *
- * This is a quick version which answers the question: is this virtual address
- * mapped by the shadow page tables, and is it writable?
- */
- static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
- {
- pgd_t *spgd;
- unsigned long flags;
- #ifdef CONFIG_X86_PAE
- pmd_t *spmd;
- #endif
- /* Look at the current top level entry: is it present? */
- spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
- if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
- return false;
- #ifdef CONFIG_X86_PAE
- spmd = spmd_addr(cpu, *spgd, vaddr);
- if (!(pmd_flags(*spmd) & _PAGE_PRESENT))
- return false;
- #endif
- /*
- * Check the flags on the pte entry itself: it must be present and
- * writable.
- */
- flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr)));
- return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
- }
- /*
- * So, when pin_stack_pages() asks us to pin a page, we check if it's already
- * in the page tables, and if not, we call demand_page() with error code 2
- * (meaning "write").
- */
- void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
- {
- if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
- kill_guest(cpu, "bad stack page %#lx", vaddr);
- }
- /*:*/
- #ifdef CONFIG_X86_PAE
- static void release_pmd(pmd_t *spmd)
- {
- /* If the entry's not present, there's nothing to release. */
- if (pmd_flags(*spmd) & _PAGE_PRESENT) {
- unsigned int i;
- pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
- /* For each entry in the page, we might need to release it. */
- for (i = 0; i < PTRS_PER_PTE; i++)
- release_pte(ptepage[i]);
- /* Now we can free the page of PTEs */
- free_page((long)ptepage);
- /* And zero out the PMD entry so we never release it twice. */
- set_pmd(spmd, __pmd(0));
- }
- }
- static void release_pgd(pgd_t *spgd)
- {
- /* If the entry's not present, there's nothing to release. */
- if (pgd_flags(*spgd) & _PAGE_PRESENT) {
- unsigned int i;
- pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
- for (i = 0; i < PTRS_PER_PMD; i++)
- release_pmd(&pmdpage[i]);
- /* Now we can free the page of PMDs */
- free_page((long)pmdpage);
- /* And zero out the PGD entry so we never release it twice. */
- set_pgd(spgd, __pgd(0));
- }
- }
- #else /* !CONFIG_X86_PAE */
- /*H:450
- * If we chase down the release_pgd() code, the non-PAE version looks like
- * this. The PAE version is almost identical, but instead of calling
- * release_pte it calls release_pmd(), which looks much like this.
- */
- static void release_pgd(pgd_t *spgd)
- {
- /* If the entry's not present, there's nothing to release. */
- if (pgd_flags(*spgd) & _PAGE_PRESENT) {
- unsigned int i;
- /*
- * Converting the pfn to find the actual PTE page is easy: turn
- * the page number into a physical address, then convert to a
- * virtual address (easy for kernel pages like this one).
- */
- pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
- /* For each entry in the page, we might need to release it. */
- for (i = 0; i < PTRS_PER_PTE; i++)
- release_pte(ptepage[i]);
- /* Now we can free the page of PTEs */
- free_page((long)ptepage);
- /* And zero out the PGD entry so we never release it twice. */
- *spgd = __pgd(0);
- }
- }
- #endif
- /*H:445
- * We saw flush_user_mappings() twice: once from the flush_user_mappings()
- * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
- * It simply releases every PTE page from 0 up to the Guest's kernel address.
- */
- static void flush_user_mappings(struct lguest *lg, int idx)
- {
- unsigned int i;
- /* Release every pgd entry up to the kernel's address. */
- for (i = 0; i < pgd_index(lg->kernel_address); i++)
- release_pgd(lg->pgdirs[idx].pgdir + i);
- }
- /*H:440
- * (v) Flushing (throwing away) page tables,
- *
- * The Guest has a hypercall to throw away the page tables: it's used when a
- * large number of mappings have been changed.
- */
- void guest_pagetable_flush_user(struct lg_cpu *cpu)
- {
- /* Drop the userspace part of the current page table. */
- flush_user_mappings(cpu->lg, cpu->cpu_pgd);
- }
- /*:*/
- /* We walk down the guest page tables to get a guest-physical address */
- unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
- {
- pgd_t gpgd;
- pte_t gpte;
- #ifdef CONFIG_X86_PAE
- pmd_t gpmd;
- #endif
- /* Still not set up? Just map 1:1. */
- if (unlikely(cpu->linear_pages))
- return vaddr;
- /* First step: get the top-level Guest page table entry. */
- gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
- /* Toplevel not present? We can't map it in. */
- if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) {
- kill_guest(cpu, "Bad address %#lx", vaddr);
- return -1UL;
- }
- #ifdef CONFIG_X86_PAE
- gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
- if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
- kill_guest(cpu, "Bad address %#lx", vaddr);
- gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
- #else
- gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
- #endif
- if (!(pte_flags(gpte) & _PAGE_PRESENT))
- kill_guest(cpu, "Bad address %#lx", vaddr);
- return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
- }
- /*
- * We keep several page tables. This is a simple routine to find the page
- * table (if any) corresponding to this top-level address the Guest has given
- * us.
- */
- static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
- {
- unsigned int i;
- for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
- if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
- break;
- return i;
- }
- /*H:435
- * And this is us, creating the new page directory. If we really do
- * allocate a new one (and so the kernel parts are not there), we set
- * blank_pgdir.
- */
- static unsigned int new_pgdir(struct lg_cpu *cpu,
- unsigned long gpgdir,
- int *blank_pgdir)
- {
- unsigned int next;
- #ifdef CONFIG_X86_PAE
- pmd_t *pmd_table;
- #endif
- /*
- * We pick one entry at random to throw out. Choosing the Least
- * Recently Used might be better, but this is easy.
- */
- next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
- /* If it's never been allocated at all before, try now. */
- if (!cpu->lg->pgdirs[next].pgdir) {
- cpu->lg->pgdirs[next].pgdir =
- (pgd_t *)get_zeroed_page(GFP_KERNEL);
- /* If the allocation fails, just keep using the one we have */
- if (!cpu->lg->pgdirs[next].pgdir)
- next = cpu->cpu_pgd;
- else {
- #ifdef CONFIG_X86_PAE
- /*
- * In PAE mode, allocate a pmd page and populate the
- * last pgd entry.
- */
- pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
- if (!pmd_table) {
- free_page((long)cpu->lg->pgdirs[next].pgdir);
- set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0));
- next = cpu->cpu_pgd;
- } else {
- set_pgd(cpu->lg->pgdirs[next].pgdir +
- SWITCHER_PGD_INDEX,
- __pgd(__pa(pmd_table) | _PAGE_PRESENT));
- /*
- * This is a blank page, so there are no kernel
- * mappings: caller must map the stack!
- */
- *blank_pgdir = 1;
- }
- #else
- *blank_pgdir = 1;
- #endif
- }
- }
- /* Record which Guest toplevel this shadows. */
- cpu->lg->pgdirs[next].gpgdir = gpgdir;
- /* Release all the non-kernel mappings. */
- flush_user_mappings(cpu->lg, next);
- return next;
- }
- /*H:470
- * Finally, a routine which throws away everything: all PGD entries in all
- * the shadow page tables, including the Guest's kernel mappings. This is used
- * when we destroy the Guest.
- */
- static void release_all_pagetables(struct lguest *lg)
- {
- unsigned int i, j;
- /* Every shadow pagetable this Guest has */
- for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
- if (lg->pgdirs[i].pgdir) {
- #ifdef CONFIG_X86_PAE
- pgd_t *spgd;
- pmd_t *pmdpage;
- unsigned int k;
- /* Get the last pmd page. */
- spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
- pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
- /*
- * And release the pmd entries of that pmd page,
- * except for the switcher pmd.
- */
- for (k = 0; k < SWITCHER_PMD_INDEX; k++)
- release_pmd(&pmdpage[k]);
- #endif
- /* Every PGD entry except the Switcher at the top */
- for (j = 0; j < SWITCHER_PGD_INDEX; j++)
- release_pgd(lg->pgdirs[i].pgdir + j);
- }
- }
- /*
- * We also throw away everything when a Guest tells us it's changed a kernel
- * mapping. Since kernel mappings are in every page table, it's easiest to
- * throw them all away. This traps the Guest in amber for a while as
- * everything faults back in, but it's rare.
- */
- void guest_pagetable_clear_all(struct lg_cpu *cpu)
- {
- release_all_pagetables(cpu->lg);
- /* We need the Guest kernel stack mapped again. */
- pin_stack_pages(cpu);
- }
- /*H:430
- * (iv) Switching page tables
- *
- * Now we've seen all the page table setting and manipulation, let's see
- * what happens when the Guest changes page tables (ie. changes the top-level
- * pgdir). This occurs on almost every context switch.
- */
- void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
- {
- int newpgdir, repin = 0;
- /*
- * The very first time they call this, we're actually running without
- * any page tables; we've been making it up. Throw them away now.
- */
- if (unlikely(cpu->linear_pages)) {
- release_all_pagetables(cpu->lg);
- cpu->linear_pages = false;
- /* Force allocation of a new pgdir. */
- newpgdir = ARRAY_SIZE(cpu->lg->pgdirs);
- } else {
- /* Look to see if we have this one already. */
- newpgdir = find_pgdir(cpu->lg, pgtable);
- }
- /*
- * If not, we allocate or mug an existing one: if it's a fresh one,
- * repin gets set to 1.
- */
- if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
- newpgdir = new_pgdir(cpu, pgtable, &repin);
- /* Change the current pgd index to the new one. */
- cpu->cpu_pgd = newpgdir;
- /* If it was completely blank, we map in the Guest kernel stack */
- if (repin)
- pin_stack_pages(cpu);
- }
- /*:*/
- /*M:009
- * Since we throw away all mappings when a kernel mapping changes, our
- * performance sucks for guests using highmem. In fact, a guest with
- * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
- * usually slower than a Guest with less memory.
- *
- * This, of course, cannot be fixed. It would take some kind of... well, I
- * don't know, but the term "puissant code-fu" comes to mind.
- :*/
- /*H:420
- * This is the routine which actually sets the page table entry for then
- * "idx"'th shadow page table.
- *
- * Normally, we can just throw out the old entry and replace it with 0: if they
- * use it demand_page() will put the new entry in. We need to do this anyway:
- * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
- * is read from, and _PAGE_DIRTY when it's written to.
- *
- * But Avi Kivity pointed out that most Operating Systems (Linux included) set
- * these bits on PTEs immediately anyway. This is done to save the CPU from
- * having to update them, but it helps us the same way: if they set
- * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
- * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
- */
- static void do_set_pte(struct lg_cpu *cpu, int idx,
- unsigned long vaddr, pte_t gpte)
- {
- /* Look up the matching shadow page directory entry. */
- pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
- #ifdef CONFIG_X86_PAE
- pmd_t *spmd;
- #endif
- /* If the top level isn't present, there's no entry to update. */
- if (pgd_flags(*spgd) & _PAGE_PRESENT) {
- #ifdef CONFIG_X86_PAE
- spmd = spmd_addr(cpu, *spgd, vaddr);
- if (pmd_flags(*spmd) & _PAGE_PRESENT) {
- #endif
- /* Otherwise, start by releasing the existing entry. */
- pte_t *spte = spte_addr(cpu, *spgd, vaddr);
- release_pte(*spte);
- /*
- * If they're setting this entry as dirty or accessed,
- * we might as well put that entry they've given us in
- * now. This shaves 10% off a copy-on-write
- * micro-benchmark.
- */
- if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
- check_gpte(cpu, gpte);
- set_pte(spte,
- gpte_to_spte(cpu, gpte,
- pte_flags(gpte) & _PAGE_DIRTY));
- } else {
- /*
- * Otherwise kill it and we can demand_page()
- * it in later.
- */
- set_pte(spte, __pte(0));
- }
- #ifdef CONFIG_X86_PAE
- }
- #endif
- }
- }
- /*H:410
- * Updating a PTE entry is a little trickier.
- *
- * We keep track of several different page tables (the Guest uses one for each
- * process, so it makes sense to cache at least a few). Each of these have
- * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
- * all processes. So when the page table above that address changes, we update
- * all the page tables, not just the current one. This is rare.
- *
- * The benefit is that when we have to track a new page table, we can keep all
- * the kernel mappings. This speeds up context switch immensely.
- */
- void guest_set_pte(struct lg_cpu *cpu,
- unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
- {
- /*
- * Kernel mappings must be changed on all top levels. Slow, but doesn't
- * happen often.
- */
- if (vaddr >= cpu->lg->kernel_address) {
- unsigned int i;
- for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
- if (cpu->lg->pgdirs[i].pgdir)
- do_set_pte(cpu, i, vaddr, gpte);
- } else {
- /* Is this page table one we have a shadow for? */
- int pgdir = find_pgdir(cpu->lg, gpgdir);
- if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
- /* If so, do the update. */
- do_set_pte(cpu, pgdir, vaddr, gpte);
- }
- }
- /*H:400
- * (iii) Setting up a page table entry when the Guest tells us one has changed.
- *
- * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
- * with the other side of page tables while we're here: what happens when the
- * Guest asks for a page table to be updated?
- *
- * We already saw that demand_page() will fill in the shadow page tables when
- * needed, so we can simply remove shadow page table entries whenever the Guest
- * tells us they've changed. When the Guest tries to use the new entry it will
- * fault and demand_page() will fix it up.
- *
- * So with that in mind here's our code to update a (top-level) PGD entry:
- */
- void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
- {
- int pgdir;
- if (idx >= SWITCHER_PGD_INDEX)
- return;
- /* If they're talking about a page table we have a shadow for... */
- pgdir = find_pgdir(lg, gpgdir);
- if (pgdir < ARRAY_SIZE(lg->pgdirs))
- /* ... throw it away. */
- release_pgd(lg->pgdirs[pgdir].pgdir + idx);
- }
- #ifdef CONFIG_X86_PAE
- /* For setting a mid-level, we just throw everything away. It's easy. */
- void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
- {
- guest_pagetable_clear_all(&lg->cpus[0]);
- }
- #endif
- /*H:500
- * (vii) Setting up the page tables initially.
- *
- * When a Guest is first created, set initialize a shadow page table which
- * we will populate on future faults. The Guest doesn't have any actual
- * pagetables yet, so we set linear_pages to tell demand_page() to fake it
- * for the moment.
- */
- int init_guest_pagetable(struct lguest *lg)
- {
- struct lg_cpu *cpu = &lg->cpus[0];
- int allocated = 0;
- /* lg (and lg->cpus[]) starts zeroed: this allocates a new pgdir */
- cpu->cpu_pgd = new_pgdir(cpu, 0, &allocated);
- if (!allocated)
- return -ENOMEM;
- /* We start with a linear mapping until the initialize. */
- cpu->linear_pages = true;
- return 0;
- }
- /*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
- void page_table_guest_data_init(struct lg_cpu *cpu)
- {
- /* We get the kernel address: above this is all kernel memory. */
- if (get_user(cpu->lg->kernel_address,
- &cpu->lg->lguest_data->kernel_address)
- /*
- * We tell the Guest that it can't use the top 2 or 4 MB
- * of virtual addresses used by the Switcher.
- */
- || put_user(RESERVE_MEM * 1024 * 1024,
- &cpu->lg->lguest_data->reserve_mem)) {
- kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
- return;
- }
- /*
- * In flush_user_mappings() we loop from 0 to
- * "pgd_index(lg->kernel_address)". This assumes it won't hit the
- * Switcher mappings, so check that now.
- */
- #ifdef CONFIG_X86_PAE
- if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX &&
- pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX)
- #else
- if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
- #endif
- kill_guest(cpu, "bad kernel address %#lx",
- cpu->lg->kernel_address);
- }
- /* When a Guest dies, our cleanup is fairly simple. */
- void free_guest_pagetable(struct lguest *lg)
- {
- unsigned int i;
- /* Throw away all page table pages. */
- release_all_pagetables(lg);
- /* Now free the top levels: free_page() can handle 0 just fine. */
- for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
- free_page((long)lg->pgdirs[i].pgdir);
- }
- /*H:480
- * (vi) Mapping the Switcher when the Guest is about to run.
- *
- * The Switcher and the two pages for this CPU need to be visible in the
- * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
- * for each CPU already set up, we just need to hook them in now we know which
- * Guest is about to run on this CPU.
- */
- void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
- {
- pte_t *switcher_pte_page = __this_cpu_read(switcher_pte_pages);
- pte_t regs_pte;
- #ifdef CONFIG_X86_PAE
- pmd_t switcher_pmd;
- pmd_t *pmd_table;
- switcher_pmd = pfn_pmd(__pa(switcher_pte_page) >> PAGE_SHIFT,
- PAGE_KERNEL_EXEC);
- /* Figure out where the pmd page is, by reading the PGD, and converting
- * it to a virtual address. */
- pmd_table = __va(pgd_pfn(cpu->lg->
- pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
- << PAGE_SHIFT);
- /* Now write it into the shadow page table. */
- set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
- #else
- pgd_t switcher_pgd;
- /*
- * Make the last PGD entry for this Guest point to the Switcher's PTE
- * page for this CPU (with appropriate flags).
- */
- switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
- cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
- #endif
- /*
- * We also change the Switcher PTE page. When we're running the Guest,
- * we want the Guest's "regs" page to appear where the first Switcher
- * page for this CPU is. This is an optimization: when the Switcher
- * saves the Guest registers, it saves them into the first page of this
- * CPU's "struct lguest_pages": if we make sure the Guest's register
- * page is already mapped there, we don't have to copy them out
- * again.
- */
- regs_pte = pfn_pte(__pa(cpu->regs_page) >> PAGE_SHIFT, PAGE_KERNEL);
- set_pte(&switcher_pte_page[pte_index((unsigned long)pages)], regs_pte);
- }
- /*:*/
- static void free_switcher_pte_pages(void)
- {
- unsigned int i;
- for_each_possible_cpu(i)
- free_page((long)switcher_pte_page(i));
- }
- /*H:520
- * Setting up the Switcher PTE page for given CPU is fairly easy, given
- * the CPU number and the "struct page"s for the Switcher code itself.
- *
- * Currently the Switcher is less than a page long, so "pages" is always 1.
- */
- static __init void populate_switcher_pte_page(unsigned int cpu,
- struct page *switcher_page[],
- unsigned int pages)
- {
- unsigned int i;
- pte_t *pte = switcher_pte_page(cpu);
- /* The first entries are easy: they map the Switcher code. */
- for (i = 0; i < pages; i++) {
- set_pte(&pte[i], mk_pte(switcher_page[i],
- __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
- }
- /* The only other thing we map is this CPU's pair of pages. */
- i = pages + cpu*2;
- /* First page (Guest registers) is writable from the Guest */
- set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]),
- __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
- /*
- * The second page contains the "struct lguest_ro_state", and is
- * read-only.
- */
- set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]),
- __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
- }
- /*
- * We've made it through the page table code. Perhaps our tired brains are
- * still processing the details, or perhaps we're simply glad it's over.
- *
- * If nothing else, note that all this complexity in juggling shadow page tables
- * in sync with the Guest's page tables is for one reason: for most Guests this
- * page table dance determines how bad performance will be. This is why Xen
- * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
- * have implemented shadow page table support directly into hardware.
- *
- * There is just one file remaining in the Host.
- */
- /*H:510
- * At boot or module load time, init_pagetables() allocates and populates
- * the Switcher PTE page for each CPU.
- */
- __init int init_pagetables(struct page **switcher_page, unsigned int pages)
- {
- unsigned int i;
- for_each_possible_cpu(i) {
- switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
- if (!switcher_pte_page(i)) {
- free_switcher_pte_pages();
- return -ENOMEM;
- }
- populate_switcher_pte_page(i, switcher_page, pages);
- }
- return 0;
- }
- /*:*/
- /* Cleaning up simply involves freeing the PTE page for each CPU. */
- void free_pagetables(void)
- {
- free_switcher_pte_pages();
- }
|