core.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377
  1. /*P:400
  2. * This contains run_guest() which actually calls into the Host<->Guest
  3. * Switcher and analyzes the return, such as determining if the Guest wants the
  4. * Host to do something. This file also contains useful helper routines.
  5. :*/
  6. #include <linux/module.h>
  7. #include <linux/stringify.h>
  8. #include <linux/stddef.h>
  9. #include <linux/io.h>
  10. #include <linux/mm.h>
  11. #include <linux/vmalloc.h>
  12. #include <linux/cpu.h>
  13. #include <linux/freezer.h>
  14. #include <linux/highmem.h>
  15. #include <linux/slab.h>
  16. #include <asm/paravirt.h>
  17. #include <asm/pgtable.h>
  18. #include <asm/uaccess.h>
  19. #include <asm/poll.h>
  20. #include <asm/asm-offsets.h>
  21. #include "lg.h"
  22. static struct vm_struct *switcher_vma;
  23. static struct page **switcher_page;
  24. /* This One Big lock protects all inter-guest data structures. */
  25. DEFINE_MUTEX(lguest_lock);
  26. /*H:010
  27. * We need to set up the Switcher at a high virtual address. Remember the
  28. * Switcher is a few hundred bytes of assembler code which actually changes the
  29. * CPU to run the Guest, and then changes back to the Host when a trap or
  30. * interrupt happens.
  31. *
  32. * The Switcher code must be at the same virtual address in the Guest as the
  33. * Host since it will be running as the switchover occurs.
  34. *
  35. * Trying to map memory at a particular address is an unusual thing to do, so
  36. * it's not a simple one-liner.
  37. */
  38. static __init int map_switcher(void)
  39. {
  40. int i, err;
  41. struct page **pagep;
  42. /*
  43. * Map the Switcher in to high memory.
  44. *
  45. * It turns out that if we choose the address 0xFFC00000 (4MB under the
  46. * top virtual address), it makes setting up the page tables really
  47. * easy.
  48. */
  49. /*
  50. * We allocate an array of struct page pointers. map_vm_area() wants
  51. * this, rather than just an array of pages.
  52. */
  53. switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
  54. GFP_KERNEL);
  55. if (!switcher_page) {
  56. err = -ENOMEM;
  57. goto out;
  58. }
  59. /*
  60. * Now we actually allocate the pages. The Guest will see these pages,
  61. * so we make sure they're zeroed.
  62. */
  63. for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
  64. switcher_page[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
  65. if (!switcher_page[i]) {
  66. err = -ENOMEM;
  67. goto free_some_pages;
  68. }
  69. }
  70. /*
  71. * First we check that the Switcher won't overlap the fixmap area at
  72. * the top of memory. It's currently nowhere near, but it could have
  73. * very strange effects if it ever happened.
  74. */
  75. if (SWITCHER_ADDR + (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE > FIXADDR_START){
  76. err = -ENOMEM;
  77. printk("lguest: mapping switcher would thwack fixmap\n");
  78. goto free_pages;
  79. }
  80. /*
  81. * Now we reserve the "virtual memory area" we want: 0xFFC00000
  82. * (SWITCHER_ADDR). We might not get it in theory, but in practice
  83. * it's worked so far. The end address needs +1 because __get_vm_area
  84. * allocates an extra guard page, so we need space for that.
  85. */
  86. switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
  87. VM_ALLOC, SWITCHER_ADDR, SWITCHER_ADDR
  88. + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
  89. if (!switcher_vma) {
  90. err = -ENOMEM;
  91. printk("lguest: could not map switcher pages high\n");
  92. goto free_pages;
  93. }
  94. /*
  95. * This code actually sets up the pages we've allocated to appear at
  96. * SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the
  97. * kind of pages we're mapping (kernel pages), and a pointer to our
  98. * array of struct pages. It increments that pointer, but we don't
  99. * care.
  100. */
  101. pagep = switcher_page;
  102. err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
  103. if (err) {
  104. printk("lguest: map_vm_area failed: %i\n", err);
  105. goto free_vma;
  106. }
  107. /*
  108. * Now the Switcher is mapped at the right address, we can't fail!
  109. * Copy in the compiled-in Switcher code (from x86/switcher_32.S).
  110. */
  111. memcpy(switcher_vma->addr, start_switcher_text,
  112. end_switcher_text - start_switcher_text);
  113. printk(KERN_INFO "lguest: mapped switcher at %p\n",
  114. switcher_vma->addr);
  115. /* And we succeeded... */
  116. return 0;
  117. free_vma:
  118. vunmap(switcher_vma->addr);
  119. free_pages:
  120. i = TOTAL_SWITCHER_PAGES;
  121. free_some_pages:
  122. for (--i; i >= 0; i--)
  123. __free_pages(switcher_page[i], 0);
  124. kfree(switcher_page);
  125. out:
  126. return err;
  127. }
  128. /*:*/
  129. /* Cleaning up the mapping when the module is unloaded is almost... too easy. */
  130. static void unmap_switcher(void)
  131. {
  132. unsigned int i;
  133. /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
  134. vunmap(switcher_vma->addr);
  135. /* Now we just need to free the pages we copied the switcher into */
  136. for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
  137. __free_pages(switcher_page[i], 0);
  138. kfree(switcher_page);
  139. }
  140. /*H:032
  141. * Dealing With Guest Memory.
  142. *
  143. * Before we go too much further into the Host, we need to grok the routines
  144. * we use to deal with Guest memory.
  145. *
  146. * When the Guest gives us (what it thinks is) a physical address, we can use
  147. * the normal copy_from_user() & copy_to_user() on the corresponding place in
  148. * the memory region allocated by the Launcher.
  149. *
  150. * But we can't trust the Guest: it might be trying to access the Launcher
  151. * code. We have to check that the range is below the pfn_limit the Launcher
  152. * gave us. We have to make sure that addr + len doesn't give us a false
  153. * positive by overflowing, too.
  154. */
  155. bool lguest_address_ok(const struct lguest *lg,
  156. unsigned long addr, unsigned long len)
  157. {
  158. return addr+len <= lg->pfn_limit * PAGE_SIZE && (addr+len >= addr);
  159. }
  160. /*
  161. * This routine copies memory from the Guest. Here we can see how useful the
  162. * kill_lguest() routine we met in the Launcher can be: we return a random
  163. * value (all zeroes) instead of needing to return an error.
  164. */
  165. void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
  166. {
  167. if (!lguest_address_ok(cpu->lg, addr, bytes)
  168. || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
  169. /* copy_from_user should do this, but as we rely on it... */
  170. memset(b, 0, bytes);
  171. kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
  172. }
  173. }
  174. /* This is the write (copy into Guest) version. */
  175. void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
  176. unsigned bytes)
  177. {
  178. if (!lguest_address_ok(cpu->lg, addr, bytes)
  179. || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
  180. kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
  181. }
  182. /*:*/
  183. /*H:030
  184. * Let's jump straight to the the main loop which runs the Guest.
  185. * Remember, this is called by the Launcher reading /dev/lguest, and we keep
  186. * going around and around until something interesting happens.
  187. */
  188. int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
  189. {
  190. /* We stop running once the Guest is dead. */
  191. while (!cpu->lg->dead) {
  192. unsigned int irq;
  193. bool more;
  194. /* First we run any hypercalls the Guest wants done. */
  195. if (cpu->hcall)
  196. do_hypercalls(cpu);
  197. /*
  198. * It's possible the Guest did a NOTIFY hypercall to the
  199. * Launcher.
  200. */
  201. if (cpu->pending_notify) {
  202. /*
  203. * Does it just needs to write to a registered
  204. * eventfd (ie. the appropriate virtqueue thread)?
  205. */
  206. if (!send_notify_to_eventfd(cpu)) {
  207. /* OK, we tell the main Laucher. */
  208. if (put_user(cpu->pending_notify, user))
  209. return -EFAULT;
  210. return sizeof(cpu->pending_notify);
  211. }
  212. }
  213. /*
  214. * All long-lived kernel loops need to check with this horrible
  215. * thing called the freezer. If the Host is trying to suspend,
  216. * it stops us.
  217. */
  218. try_to_freeze();
  219. /* Check for signals */
  220. if (signal_pending(current))
  221. return -ERESTARTSYS;
  222. /*
  223. * Check if there are any interrupts which can be delivered now:
  224. * if so, this sets up the hander to be executed when we next
  225. * run the Guest.
  226. */
  227. irq = interrupt_pending(cpu, &more);
  228. if (irq < LGUEST_IRQS)
  229. try_deliver_interrupt(cpu, irq, more);
  230. /*
  231. * Just make absolutely sure the Guest is still alive. One of
  232. * those hypercalls could have been fatal, for example.
  233. */
  234. if (cpu->lg->dead)
  235. break;
  236. /*
  237. * If the Guest asked to be stopped, we sleep. The Guest's
  238. * clock timer will wake us.
  239. */
  240. if (cpu->halted) {
  241. set_current_state(TASK_INTERRUPTIBLE);
  242. /*
  243. * Just before we sleep, make sure no interrupt snuck in
  244. * which we should be doing.
  245. */
  246. if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
  247. set_current_state(TASK_RUNNING);
  248. else
  249. schedule();
  250. continue;
  251. }
  252. /*
  253. * OK, now we're ready to jump into the Guest. First we put up
  254. * the "Do Not Disturb" sign:
  255. */
  256. local_irq_disable();
  257. /* Actually run the Guest until something happens. */
  258. lguest_arch_run_guest(cpu);
  259. /* Now we're ready to be interrupted or moved to other CPUs */
  260. local_irq_enable();
  261. /* Now we deal with whatever happened to the Guest. */
  262. lguest_arch_handle_trap(cpu);
  263. }
  264. /* Special case: Guest is 'dead' but wants a reboot. */
  265. if (cpu->lg->dead == ERR_PTR(-ERESTART))
  266. return -ERESTART;
  267. /* The Guest is dead => "No such file or directory" */
  268. return -ENOENT;
  269. }
  270. /*H:000
  271. * Welcome to the Host!
  272. *
  273. * By this point your brain has been tickled by the Guest code and numbed by
  274. * the Launcher code; prepare for it to be stretched by the Host code. This is
  275. * the heart. Let's begin at the initialization routine for the Host's lg
  276. * module.
  277. */
  278. static int __init init(void)
  279. {
  280. int err;
  281. /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
  282. if (get_kernel_rpl() != 0) {
  283. printk("lguest is afraid of being a guest\n");
  284. return -EPERM;
  285. }
  286. /* First we put the Switcher up in very high virtual memory. */
  287. err = map_switcher();
  288. if (err)
  289. goto out;
  290. /* Now we set up the pagetable implementation for the Guests. */
  291. err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
  292. if (err)
  293. goto unmap;
  294. /* We might need to reserve an interrupt vector. */
  295. err = init_interrupts();
  296. if (err)
  297. goto free_pgtables;
  298. /* /dev/lguest needs to be registered. */
  299. err = lguest_device_init();
  300. if (err)
  301. goto free_interrupts;
  302. /* Finally we do some architecture-specific setup. */
  303. lguest_arch_host_init();
  304. /* All good! */
  305. return 0;
  306. free_interrupts:
  307. free_interrupts();
  308. free_pgtables:
  309. free_pagetables();
  310. unmap:
  311. unmap_switcher();
  312. out:
  313. return err;
  314. }
  315. /* Cleaning up is just the same code, backwards. With a little French. */
  316. static void __exit fini(void)
  317. {
  318. lguest_device_remove();
  319. free_interrupts();
  320. free_pagetables();
  321. unmap_switcher();
  322. lguest_arch_host_fini();
  323. }
  324. /*:*/
  325. /*
  326. * The Host side of lguest can be a module. This is a nice way for people to
  327. * play with it.
  328. */
  329. module_init(init);
  330. module_exit(fini);
  331. MODULE_LICENSE("GPL");
  332. MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");