123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377 |
- /*P:400
- * This contains run_guest() which actually calls into the Host<->Guest
- * Switcher and analyzes the return, such as determining if the Guest wants the
- * Host to do something. This file also contains useful helper routines.
- :*/
- #include <linux/module.h>
- #include <linux/stringify.h>
- #include <linux/stddef.h>
- #include <linux/io.h>
- #include <linux/mm.h>
- #include <linux/vmalloc.h>
- #include <linux/cpu.h>
- #include <linux/freezer.h>
- #include <linux/highmem.h>
- #include <linux/slab.h>
- #include <asm/paravirt.h>
- #include <asm/pgtable.h>
- #include <asm/uaccess.h>
- #include <asm/poll.h>
- #include <asm/asm-offsets.h>
- #include "lg.h"
- static struct vm_struct *switcher_vma;
- static struct page **switcher_page;
- /* This One Big lock protects all inter-guest data structures. */
- DEFINE_MUTEX(lguest_lock);
- /*H:010
- * We need to set up the Switcher at a high virtual address. Remember the
- * Switcher is a few hundred bytes of assembler code which actually changes the
- * CPU to run the Guest, and then changes back to the Host when a trap or
- * interrupt happens.
- *
- * The Switcher code must be at the same virtual address in the Guest as the
- * Host since it will be running as the switchover occurs.
- *
- * Trying to map memory at a particular address is an unusual thing to do, so
- * it's not a simple one-liner.
- */
- static __init int map_switcher(void)
- {
- int i, err;
- struct page **pagep;
- /*
- * Map the Switcher in to high memory.
- *
- * It turns out that if we choose the address 0xFFC00000 (4MB under the
- * top virtual address), it makes setting up the page tables really
- * easy.
- */
- /*
- * We allocate an array of struct page pointers. map_vm_area() wants
- * this, rather than just an array of pages.
- */
- switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
- GFP_KERNEL);
- if (!switcher_page) {
- err = -ENOMEM;
- goto out;
- }
- /*
- * Now we actually allocate the pages. The Guest will see these pages,
- * so we make sure they're zeroed.
- */
- for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
- switcher_page[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
- if (!switcher_page[i]) {
- err = -ENOMEM;
- goto free_some_pages;
- }
- }
- /*
- * First we check that the Switcher won't overlap the fixmap area at
- * the top of memory. It's currently nowhere near, but it could have
- * very strange effects if it ever happened.
- */
- if (SWITCHER_ADDR + (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE > FIXADDR_START){
- err = -ENOMEM;
- printk("lguest: mapping switcher would thwack fixmap\n");
- goto free_pages;
- }
- /*
- * Now we reserve the "virtual memory area" we want: 0xFFC00000
- * (SWITCHER_ADDR). We might not get it in theory, but in practice
- * it's worked so far. The end address needs +1 because __get_vm_area
- * allocates an extra guard page, so we need space for that.
- */
- switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
- VM_ALLOC, SWITCHER_ADDR, SWITCHER_ADDR
- + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
- if (!switcher_vma) {
- err = -ENOMEM;
- printk("lguest: could not map switcher pages high\n");
- goto free_pages;
- }
- /*
- * This code actually sets up the pages we've allocated to appear at
- * SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the
- * kind of pages we're mapping (kernel pages), and a pointer to our
- * array of struct pages. It increments that pointer, but we don't
- * care.
- */
- pagep = switcher_page;
- err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
- if (err) {
- printk("lguest: map_vm_area failed: %i\n", err);
- goto free_vma;
- }
- /*
- * Now the Switcher is mapped at the right address, we can't fail!
- * Copy in the compiled-in Switcher code (from x86/switcher_32.S).
- */
- memcpy(switcher_vma->addr, start_switcher_text,
- end_switcher_text - start_switcher_text);
- printk(KERN_INFO "lguest: mapped switcher at %p\n",
- switcher_vma->addr);
- /* And we succeeded... */
- return 0;
- free_vma:
- vunmap(switcher_vma->addr);
- free_pages:
- i = TOTAL_SWITCHER_PAGES;
- free_some_pages:
- for (--i; i >= 0; i--)
- __free_pages(switcher_page[i], 0);
- kfree(switcher_page);
- out:
- return err;
- }
- /*:*/
- /* Cleaning up the mapping when the module is unloaded is almost... too easy. */
- static void unmap_switcher(void)
- {
- unsigned int i;
- /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
- vunmap(switcher_vma->addr);
- /* Now we just need to free the pages we copied the switcher into */
- for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
- __free_pages(switcher_page[i], 0);
- kfree(switcher_page);
- }
- /*H:032
- * Dealing With Guest Memory.
- *
- * Before we go too much further into the Host, we need to grok the routines
- * we use to deal with Guest memory.
- *
- * When the Guest gives us (what it thinks is) a physical address, we can use
- * the normal copy_from_user() & copy_to_user() on the corresponding place in
- * the memory region allocated by the Launcher.
- *
- * But we can't trust the Guest: it might be trying to access the Launcher
- * code. We have to check that the range is below the pfn_limit the Launcher
- * gave us. We have to make sure that addr + len doesn't give us a false
- * positive by overflowing, too.
- */
- bool lguest_address_ok(const struct lguest *lg,
- unsigned long addr, unsigned long len)
- {
- return addr+len <= lg->pfn_limit * PAGE_SIZE && (addr+len >= addr);
- }
- /*
- * This routine copies memory from the Guest. Here we can see how useful the
- * kill_lguest() routine we met in the Launcher can be: we return a random
- * value (all zeroes) instead of needing to return an error.
- */
- void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
- {
- if (!lguest_address_ok(cpu->lg, addr, bytes)
- || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
- /* copy_from_user should do this, but as we rely on it... */
- memset(b, 0, bytes);
- kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
- }
- }
- /* This is the write (copy into Guest) version. */
- void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
- unsigned bytes)
- {
- if (!lguest_address_ok(cpu->lg, addr, bytes)
- || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
- kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
- }
- /*:*/
- /*H:030
- * Let's jump straight to the the main loop which runs the Guest.
- * Remember, this is called by the Launcher reading /dev/lguest, and we keep
- * going around and around until something interesting happens.
- */
- int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
- {
- /* We stop running once the Guest is dead. */
- while (!cpu->lg->dead) {
- unsigned int irq;
- bool more;
- /* First we run any hypercalls the Guest wants done. */
- if (cpu->hcall)
- do_hypercalls(cpu);
- /*
- * It's possible the Guest did a NOTIFY hypercall to the
- * Launcher.
- */
- if (cpu->pending_notify) {
- /*
- * Does it just needs to write to a registered
- * eventfd (ie. the appropriate virtqueue thread)?
- */
- if (!send_notify_to_eventfd(cpu)) {
- /* OK, we tell the main Laucher. */
- if (put_user(cpu->pending_notify, user))
- return -EFAULT;
- return sizeof(cpu->pending_notify);
- }
- }
- /*
- * All long-lived kernel loops need to check with this horrible
- * thing called the freezer. If the Host is trying to suspend,
- * it stops us.
- */
- try_to_freeze();
- /* Check for signals */
- if (signal_pending(current))
- return -ERESTARTSYS;
- /*
- * Check if there are any interrupts which can be delivered now:
- * if so, this sets up the hander to be executed when we next
- * run the Guest.
- */
- irq = interrupt_pending(cpu, &more);
- if (irq < LGUEST_IRQS)
- try_deliver_interrupt(cpu, irq, more);
- /*
- * Just make absolutely sure the Guest is still alive. One of
- * those hypercalls could have been fatal, for example.
- */
- if (cpu->lg->dead)
- break;
- /*
- * If the Guest asked to be stopped, we sleep. The Guest's
- * clock timer will wake us.
- */
- if (cpu->halted) {
- set_current_state(TASK_INTERRUPTIBLE);
- /*
- * Just before we sleep, make sure no interrupt snuck in
- * which we should be doing.
- */
- if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
- set_current_state(TASK_RUNNING);
- else
- schedule();
- continue;
- }
- /*
- * OK, now we're ready to jump into the Guest. First we put up
- * the "Do Not Disturb" sign:
- */
- local_irq_disable();
- /* Actually run the Guest until something happens. */
- lguest_arch_run_guest(cpu);
- /* Now we're ready to be interrupted or moved to other CPUs */
- local_irq_enable();
- /* Now we deal with whatever happened to the Guest. */
- lguest_arch_handle_trap(cpu);
- }
- /* Special case: Guest is 'dead' but wants a reboot. */
- if (cpu->lg->dead == ERR_PTR(-ERESTART))
- return -ERESTART;
- /* The Guest is dead => "No such file or directory" */
- return -ENOENT;
- }
- /*H:000
- * Welcome to the Host!
- *
- * By this point your brain has been tickled by the Guest code and numbed by
- * the Launcher code; prepare for it to be stretched by the Host code. This is
- * the heart. Let's begin at the initialization routine for the Host's lg
- * module.
- */
- static int __init init(void)
- {
- int err;
- /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
- if (get_kernel_rpl() != 0) {
- printk("lguest is afraid of being a guest\n");
- return -EPERM;
- }
- /* First we put the Switcher up in very high virtual memory. */
- err = map_switcher();
- if (err)
- goto out;
- /* Now we set up the pagetable implementation for the Guests. */
- err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
- if (err)
- goto unmap;
- /* We might need to reserve an interrupt vector. */
- err = init_interrupts();
- if (err)
- goto free_pgtables;
- /* /dev/lguest needs to be registered. */
- err = lguest_device_init();
- if (err)
- goto free_interrupts;
- /* Finally we do some architecture-specific setup. */
- lguest_arch_host_init();
- /* All good! */
- return 0;
- free_interrupts:
- free_interrupts();
- free_pgtables:
- free_pagetables();
- unmap:
- unmap_switcher();
- out:
- return err;
- }
- /* Cleaning up is just the same code, backwards. With a little French. */
- static void __exit fini(void)
- {
- lguest_device_remove();
- free_interrupts();
- free_pagetables();
- unmap_switcher();
- lguest_arch_host_fini();
- }
- /*:*/
- /*
- * The Host side of lguest can be a module. This is a nice way for people to
- * play with it.
- */
- module_init(init);
- module_exit(fini);
- MODULE_LICENSE("GPL");
- MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");
|