regcache-rbtree.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431
  1. /*
  2. * Register cache access API - rbtree caching support
  3. *
  4. * Copyright 2011 Wolfson Microelectronics plc
  5. *
  6. * Author: Dimitris Papastamos <dp@opensource.wolfsonmicro.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/device.h>
  14. #include <linux/debugfs.h>
  15. #include <linux/rbtree.h>
  16. #include <linux/seq_file.h>
  17. #include "internal.h"
  18. static int regcache_rbtree_write(struct regmap *map, unsigned int reg,
  19. unsigned int value);
  20. static int regcache_rbtree_exit(struct regmap *map);
  21. struct regcache_rbtree_node {
  22. /* the actual rbtree node holding this block */
  23. struct rb_node node;
  24. /* base register handled by this block */
  25. unsigned int base_reg;
  26. /* block of adjacent registers */
  27. void *block;
  28. /* number of registers available in the block */
  29. unsigned int blklen;
  30. } __attribute__ ((packed));
  31. struct regcache_rbtree_ctx {
  32. struct rb_root root;
  33. struct regcache_rbtree_node *cached_rbnode;
  34. };
  35. static inline void regcache_rbtree_get_base_top_reg(
  36. struct regcache_rbtree_node *rbnode,
  37. unsigned int *base, unsigned int *top)
  38. {
  39. *base = rbnode->base_reg;
  40. *top = rbnode->base_reg + rbnode->blklen - 1;
  41. }
  42. static unsigned int regcache_rbtree_get_register(
  43. struct regcache_rbtree_node *rbnode, unsigned int idx,
  44. unsigned int word_size)
  45. {
  46. return regcache_get_val(rbnode->block, idx, word_size);
  47. }
  48. static void regcache_rbtree_set_register(struct regcache_rbtree_node *rbnode,
  49. unsigned int idx, unsigned int val,
  50. unsigned int word_size)
  51. {
  52. regcache_set_val(rbnode->block, idx, val, word_size);
  53. }
  54. static struct regcache_rbtree_node *regcache_rbtree_lookup(struct regmap *map,
  55. unsigned int reg)
  56. {
  57. struct regcache_rbtree_ctx *rbtree_ctx = map->cache;
  58. struct rb_node *node;
  59. struct regcache_rbtree_node *rbnode;
  60. unsigned int base_reg, top_reg;
  61. rbnode = rbtree_ctx->cached_rbnode;
  62. if (rbnode) {
  63. regcache_rbtree_get_base_top_reg(rbnode, &base_reg, &top_reg);
  64. if (reg >= base_reg && reg <= top_reg)
  65. return rbnode;
  66. }
  67. node = rbtree_ctx->root.rb_node;
  68. while (node) {
  69. rbnode = container_of(node, struct regcache_rbtree_node, node);
  70. regcache_rbtree_get_base_top_reg(rbnode, &base_reg, &top_reg);
  71. if (reg >= base_reg && reg <= top_reg) {
  72. rbtree_ctx->cached_rbnode = rbnode;
  73. return rbnode;
  74. } else if (reg > top_reg) {
  75. node = node->rb_right;
  76. } else if (reg < base_reg) {
  77. node = node->rb_left;
  78. }
  79. }
  80. return NULL;
  81. }
  82. static int regcache_rbtree_insert(struct rb_root *root,
  83. struct regcache_rbtree_node *rbnode)
  84. {
  85. struct rb_node **new, *parent;
  86. struct regcache_rbtree_node *rbnode_tmp;
  87. unsigned int base_reg_tmp, top_reg_tmp;
  88. unsigned int base_reg;
  89. parent = NULL;
  90. new = &root->rb_node;
  91. while (*new) {
  92. rbnode_tmp = container_of(*new, struct regcache_rbtree_node,
  93. node);
  94. /* base and top registers of the current rbnode */
  95. regcache_rbtree_get_base_top_reg(rbnode_tmp, &base_reg_tmp,
  96. &top_reg_tmp);
  97. /* base register of the rbnode to be added */
  98. base_reg = rbnode->base_reg;
  99. parent = *new;
  100. /* if this register has already been inserted, just return */
  101. if (base_reg >= base_reg_tmp &&
  102. base_reg <= top_reg_tmp)
  103. return 0;
  104. else if (base_reg > top_reg_tmp)
  105. new = &((*new)->rb_right);
  106. else if (base_reg < base_reg_tmp)
  107. new = &((*new)->rb_left);
  108. }
  109. /* insert the node into the rbtree */
  110. rb_link_node(&rbnode->node, parent, new);
  111. rb_insert_color(&rbnode->node, root);
  112. return 1;
  113. }
  114. #ifdef CONFIG_DEBUG_FS
  115. static int rbtree_show(struct seq_file *s, void *ignored)
  116. {
  117. struct regmap *map = s->private;
  118. struct regcache_rbtree_ctx *rbtree_ctx = map->cache;
  119. struct regcache_rbtree_node *n;
  120. struct rb_node *node;
  121. unsigned int base, top;
  122. int nodes = 0;
  123. int registers = 0;
  124. int average;
  125. mutex_lock(&map->lock);
  126. for (node = rb_first(&rbtree_ctx->root); node != NULL;
  127. node = rb_next(node)) {
  128. n = container_of(node, struct regcache_rbtree_node, node);
  129. regcache_rbtree_get_base_top_reg(n, &base, &top);
  130. seq_printf(s, "%x-%x (%d)\n", base, top, top - base + 1);
  131. nodes++;
  132. registers += top - base + 1;
  133. }
  134. if (nodes)
  135. average = registers / nodes;
  136. else
  137. average = 0;
  138. seq_printf(s, "%d nodes, %d registers, average %d registers\n",
  139. nodes, registers, average);
  140. mutex_unlock(&map->lock);
  141. return 0;
  142. }
  143. static int rbtree_open(struct inode *inode, struct file *file)
  144. {
  145. return single_open(file, rbtree_show, inode->i_private);
  146. }
  147. static const struct file_operations rbtree_fops = {
  148. .open = rbtree_open,
  149. .read = seq_read,
  150. .llseek = seq_lseek,
  151. .release = single_release,
  152. };
  153. static void rbtree_debugfs_init(struct regmap *map)
  154. {
  155. debugfs_create_file("rbtree", 0400, map->debugfs, map, &rbtree_fops);
  156. }
  157. #else
  158. static void rbtree_debugfs_init(struct regmap *map)
  159. {
  160. }
  161. #endif
  162. static int regcache_rbtree_init(struct regmap *map)
  163. {
  164. struct regcache_rbtree_ctx *rbtree_ctx;
  165. int i;
  166. int ret;
  167. map->cache = kmalloc(sizeof *rbtree_ctx, GFP_KERNEL);
  168. if (!map->cache)
  169. return -ENOMEM;
  170. rbtree_ctx = map->cache;
  171. rbtree_ctx->root = RB_ROOT;
  172. rbtree_ctx->cached_rbnode = NULL;
  173. for (i = 0; i < map->num_reg_defaults; i++) {
  174. ret = regcache_rbtree_write(map,
  175. map->reg_defaults[i].reg,
  176. map->reg_defaults[i].def);
  177. if (ret)
  178. goto err;
  179. }
  180. rbtree_debugfs_init(map);
  181. return 0;
  182. err:
  183. regcache_rbtree_exit(map);
  184. return ret;
  185. }
  186. static int regcache_rbtree_exit(struct regmap *map)
  187. {
  188. struct rb_node *next;
  189. struct regcache_rbtree_ctx *rbtree_ctx;
  190. struct regcache_rbtree_node *rbtree_node;
  191. /* if we've already been called then just return */
  192. rbtree_ctx = map->cache;
  193. if (!rbtree_ctx)
  194. return 0;
  195. /* free up the rbtree */
  196. next = rb_first(&rbtree_ctx->root);
  197. while (next) {
  198. rbtree_node = rb_entry(next, struct regcache_rbtree_node, node);
  199. next = rb_next(&rbtree_node->node);
  200. rb_erase(&rbtree_node->node, &rbtree_ctx->root);
  201. kfree(rbtree_node->block);
  202. kfree(rbtree_node);
  203. }
  204. /* release the resources */
  205. kfree(map->cache);
  206. map->cache = NULL;
  207. return 0;
  208. }
  209. static int regcache_rbtree_read(struct regmap *map,
  210. unsigned int reg, unsigned int *value)
  211. {
  212. struct regcache_rbtree_node *rbnode;
  213. unsigned int reg_tmp;
  214. rbnode = regcache_rbtree_lookup(map, reg);
  215. if (rbnode) {
  216. reg_tmp = reg - rbnode->base_reg;
  217. *value = regcache_rbtree_get_register(rbnode, reg_tmp,
  218. map->cache_word_size);
  219. } else {
  220. return -ENOENT;
  221. }
  222. return 0;
  223. }
  224. static int regcache_rbtree_insert_to_block(struct regcache_rbtree_node *rbnode,
  225. unsigned int pos, unsigned int reg,
  226. unsigned int value, unsigned int word_size)
  227. {
  228. u8 *blk;
  229. blk = krealloc(rbnode->block,
  230. (rbnode->blklen + 1) * word_size, GFP_KERNEL);
  231. if (!blk)
  232. return -ENOMEM;
  233. /* insert the register value in the correct place in the rbnode block */
  234. memmove(blk + (pos + 1) * word_size,
  235. blk + pos * word_size,
  236. (rbnode->blklen - pos) * word_size);
  237. /* update the rbnode block, its size and the base register */
  238. rbnode->block = blk;
  239. rbnode->blklen++;
  240. if (!pos)
  241. rbnode->base_reg = reg;
  242. regcache_rbtree_set_register(rbnode, pos, value, word_size);
  243. return 0;
  244. }
  245. static int regcache_rbtree_write(struct regmap *map, unsigned int reg,
  246. unsigned int value)
  247. {
  248. struct regcache_rbtree_ctx *rbtree_ctx;
  249. struct regcache_rbtree_node *rbnode, *rbnode_tmp;
  250. struct rb_node *node;
  251. unsigned int val;
  252. unsigned int reg_tmp;
  253. unsigned int pos;
  254. int i;
  255. int ret;
  256. rbtree_ctx = map->cache;
  257. /* if we can't locate it in the cached rbnode we'll have
  258. * to traverse the rbtree looking for it.
  259. */
  260. rbnode = regcache_rbtree_lookup(map, reg);
  261. if (rbnode) {
  262. reg_tmp = reg - rbnode->base_reg;
  263. val = regcache_rbtree_get_register(rbnode, reg_tmp,
  264. map->cache_word_size);
  265. if (val == value)
  266. return 0;
  267. regcache_rbtree_set_register(rbnode, reg_tmp, value,
  268. map->cache_word_size);
  269. } else {
  270. /* look for an adjacent register to the one we are about to add */
  271. for (node = rb_first(&rbtree_ctx->root); node;
  272. node = rb_next(node)) {
  273. rbnode_tmp = rb_entry(node, struct regcache_rbtree_node, node);
  274. for (i = 0; i < rbnode_tmp->blklen; i++) {
  275. reg_tmp = rbnode_tmp->base_reg + i;
  276. if (abs(reg_tmp - reg) != 1)
  277. continue;
  278. /* decide where in the block to place our register */
  279. if (reg_tmp + 1 == reg)
  280. pos = i + 1;
  281. else
  282. pos = i;
  283. ret = regcache_rbtree_insert_to_block(rbnode_tmp, pos,
  284. reg, value,
  285. map->cache_word_size);
  286. if (ret)
  287. return ret;
  288. rbtree_ctx->cached_rbnode = rbnode_tmp;
  289. return 0;
  290. }
  291. }
  292. /* we did not manage to find a place to insert it in an existing
  293. * block so create a new rbnode with a single register in its block.
  294. * This block will get populated further if any other adjacent
  295. * registers get modified in the future.
  296. */
  297. rbnode = kzalloc(sizeof *rbnode, GFP_KERNEL);
  298. if (!rbnode)
  299. return -ENOMEM;
  300. rbnode->blklen = 1;
  301. rbnode->base_reg = reg;
  302. rbnode->block = kmalloc(rbnode->blklen * map->cache_word_size,
  303. GFP_KERNEL);
  304. if (!rbnode->block) {
  305. kfree(rbnode);
  306. return -ENOMEM;
  307. }
  308. regcache_rbtree_set_register(rbnode, 0, value, map->cache_word_size);
  309. regcache_rbtree_insert(&rbtree_ctx->root, rbnode);
  310. rbtree_ctx->cached_rbnode = rbnode;
  311. }
  312. return 0;
  313. }
  314. static int regcache_rbtree_sync(struct regmap *map, unsigned int min,
  315. unsigned int max)
  316. {
  317. struct regcache_rbtree_ctx *rbtree_ctx;
  318. struct rb_node *node;
  319. struct regcache_rbtree_node *rbnode;
  320. unsigned int regtmp;
  321. unsigned int val;
  322. int ret;
  323. int i, base, end;
  324. rbtree_ctx = map->cache;
  325. for (node = rb_first(&rbtree_ctx->root); node; node = rb_next(node)) {
  326. rbnode = rb_entry(node, struct regcache_rbtree_node, node);
  327. if (rbnode->base_reg < min)
  328. continue;
  329. if (rbnode->base_reg > max)
  330. break;
  331. if (rbnode->base_reg + rbnode->blklen < min)
  332. continue;
  333. if (min > rbnode->base_reg)
  334. base = min - rbnode->base_reg;
  335. else
  336. base = 0;
  337. if (max < rbnode->base_reg + rbnode->blklen)
  338. end = max - rbnode->base_reg + 1;
  339. else
  340. end = rbnode->blklen;
  341. for (i = base; i < end; i++) {
  342. regtmp = rbnode->base_reg + i;
  343. val = regcache_rbtree_get_register(rbnode, i,
  344. map->cache_word_size);
  345. /* Is this the hardware default? If so skip. */
  346. ret = regcache_lookup_reg(map, regtmp);
  347. if (ret >= 0 && val == map->reg_defaults[ret].def)
  348. continue;
  349. map->cache_bypass = 1;
  350. ret = _regmap_write(map, regtmp, val);
  351. map->cache_bypass = 0;
  352. if (ret)
  353. return ret;
  354. dev_dbg(map->dev, "Synced register %#x, value %#x\n",
  355. regtmp, val);
  356. }
  357. }
  358. return 0;
  359. }
  360. struct regcache_ops regcache_rbtree_ops = {
  361. .type = REGCACHE_RBTREE,
  362. .name = "rbtree",
  363. .init = regcache_rbtree_init,
  364. .exit = regcache_rbtree_exit,
  365. .read = regcache_rbtree_read,
  366. .write = regcache_rbtree_write,
  367. .sync = regcache_rbtree_sync
  368. };