bitops.h 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337
  1. /*
  2. * PowerPC atomic bit operations.
  3. *
  4. * Merged version by David Gibson <david@gibson.dropbear.id.au>.
  5. * Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don
  6. * Reed, Pat McCarthy, Peter Bergner, Anton Blanchard. They
  7. * originally took it from the ppc32 code.
  8. *
  9. * Within a word, bits are numbered LSB first. Lot's of places make
  10. * this assumption by directly testing bits with (val & (1<<nr)).
  11. * This can cause confusion for large (> 1 word) bitmaps on a
  12. * big-endian system because, unlike little endian, the number of each
  13. * bit depends on the word size.
  14. *
  15. * The bitop functions are defined to work on unsigned longs, so for a
  16. * ppc64 system the bits end up numbered:
  17. * |63..............0|127............64|191...........128|255...........196|
  18. * and on ppc32:
  19. * |31.....0|63....31|95....64|127...96|159..128|191..160|223..192|255..224|
  20. *
  21. * There are a few little-endian macros used mostly for filesystem
  22. * bitmaps, these work on similar bit arrays layouts, but
  23. * byte-oriented:
  24. * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
  25. *
  26. * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit
  27. * number field needs to be reversed compared to the big-endian bit
  28. * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b).
  29. *
  30. * This program is free software; you can redistribute it and/or
  31. * modify it under the terms of the GNU General Public License
  32. * as published by the Free Software Foundation; either version
  33. * 2 of the License, or (at your option) any later version.
  34. */
  35. #ifndef _ASM_POWERPC_BITOPS_H
  36. #define _ASM_POWERPC_BITOPS_H
  37. #ifdef __KERNEL__
  38. #ifndef _LINUX_BITOPS_H
  39. #error only <linux/bitops.h> can be included directly
  40. #endif
  41. #include <linux/compiler.h>
  42. #include <asm/asm-compat.h>
  43. #include <asm/synch.h>
  44. /*
  45. * clear_bit doesn't imply a memory barrier
  46. */
  47. #define smp_mb__before_clear_bit() smp_mb()
  48. #define smp_mb__after_clear_bit() smp_mb()
  49. #define BITOP_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
  50. #define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
  51. #define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7)
  52. /* Macro for generating the ***_bits() functions */
  53. #define DEFINE_BITOP(fn, op, prefix, postfix) \
  54. static __inline__ void fn(unsigned long mask, \
  55. volatile unsigned long *_p) \
  56. { \
  57. unsigned long old; \
  58. unsigned long *p = (unsigned long *)_p; \
  59. __asm__ __volatile__ ( \
  60. prefix \
  61. "1:" PPC_LLARX(%0,0,%3,0) "\n" \
  62. stringify_in_c(op) "%0,%0,%2\n" \
  63. PPC405_ERR77(0,%3) \
  64. PPC_STLCX "%0,0,%3\n" \
  65. "bne- 1b\n" \
  66. postfix \
  67. : "=&r" (old), "+m" (*p) \
  68. : "r" (mask), "r" (p) \
  69. : "cc", "memory"); \
  70. }
  71. DEFINE_BITOP(set_bits, or, "", "")
  72. DEFINE_BITOP(clear_bits, andc, "", "")
  73. DEFINE_BITOP(clear_bits_unlock, andc, PPC_RELEASE_BARRIER, "")
  74. DEFINE_BITOP(change_bits, xor, "", "")
  75. static __inline__ void set_bit(int nr, volatile unsigned long *addr)
  76. {
  77. set_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
  78. }
  79. static __inline__ void clear_bit(int nr, volatile unsigned long *addr)
  80. {
  81. clear_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
  82. }
  83. static __inline__ void clear_bit_unlock(int nr, volatile unsigned long *addr)
  84. {
  85. clear_bits_unlock(BITOP_MASK(nr), addr + BITOP_WORD(nr));
  86. }
  87. static __inline__ void change_bit(int nr, volatile unsigned long *addr)
  88. {
  89. change_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
  90. }
  91. /* Like DEFINE_BITOP(), with changes to the arguments to 'op' and the output
  92. * operands. */
  93. #define DEFINE_TESTOP(fn, op, prefix, postfix, eh) \
  94. static __inline__ unsigned long fn( \
  95. unsigned long mask, \
  96. volatile unsigned long *_p) \
  97. { \
  98. unsigned long old, t; \
  99. unsigned long *p = (unsigned long *)_p; \
  100. __asm__ __volatile__ ( \
  101. prefix \
  102. "1:" PPC_LLARX(%0,0,%3,eh) "\n" \
  103. stringify_in_c(op) "%1,%0,%2\n" \
  104. PPC405_ERR77(0,%3) \
  105. PPC_STLCX "%1,0,%3\n" \
  106. "bne- 1b\n" \
  107. postfix \
  108. : "=&r" (old), "=&r" (t) \
  109. : "r" (mask), "r" (p) \
  110. : "cc", "memory"); \
  111. return (old & mask); \
  112. }
  113. DEFINE_TESTOP(test_and_set_bits, or, PPC_ATOMIC_ENTRY_BARRIER,
  114. PPC_ATOMIC_EXIT_BARRIER, 0)
  115. DEFINE_TESTOP(test_and_set_bits_lock, or, "",
  116. PPC_ACQUIRE_BARRIER, 1)
  117. DEFINE_TESTOP(test_and_clear_bits, andc, PPC_ATOMIC_ENTRY_BARRIER,
  118. PPC_ATOMIC_EXIT_BARRIER, 0)
  119. DEFINE_TESTOP(test_and_change_bits, xor, PPC_ATOMIC_ENTRY_BARRIER,
  120. PPC_ATOMIC_EXIT_BARRIER, 0)
  121. static __inline__ int test_and_set_bit(unsigned long nr,
  122. volatile unsigned long *addr)
  123. {
  124. return test_and_set_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
  125. }
  126. static __inline__ int test_and_set_bit_lock(unsigned long nr,
  127. volatile unsigned long *addr)
  128. {
  129. return test_and_set_bits_lock(BITOP_MASK(nr),
  130. addr + BITOP_WORD(nr)) != 0;
  131. }
  132. static __inline__ int test_and_clear_bit(unsigned long nr,
  133. volatile unsigned long *addr)
  134. {
  135. return test_and_clear_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
  136. }
  137. static __inline__ int test_and_change_bit(unsigned long nr,
  138. volatile unsigned long *addr)
  139. {
  140. return test_and_change_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
  141. }
  142. #include <asm-generic/bitops/non-atomic.h>
  143. static __inline__ void __clear_bit_unlock(int nr, volatile unsigned long *addr)
  144. {
  145. __asm__ __volatile__(PPC_RELEASE_BARRIER "" ::: "memory");
  146. __clear_bit(nr, addr);
  147. }
  148. /*
  149. * Return the zero-based bit position (LE, not IBM bit numbering) of
  150. * the most significant 1-bit in a double word.
  151. */
  152. static __inline__ __attribute__((const))
  153. int __ilog2(unsigned long x)
  154. {
  155. int lz;
  156. asm (PPC_CNTLZL "%0,%1" : "=r" (lz) : "r" (x));
  157. return BITS_PER_LONG - 1 - lz;
  158. }
  159. static inline __attribute__((const))
  160. int __ilog2_u32(u32 n)
  161. {
  162. int bit;
  163. asm ("cntlzw %0,%1" : "=r" (bit) : "r" (n));
  164. return 31 - bit;
  165. }
  166. #ifdef __powerpc64__
  167. static inline __attribute__((const))
  168. int __ilog2_u64(u64 n)
  169. {
  170. int bit;
  171. asm ("cntlzd %0,%1" : "=r" (bit) : "r" (n));
  172. return 63 - bit;
  173. }
  174. #endif
  175. /*
  176. * Determines the bit position of the least significant 0 bit in the
  177. * specified double word. The returned bit position will be
  178. * zero-based, starting from the right side (63/31 - 0).
  179. */
  180. static __inline__ unsigned long ffz(unsigned long x)
  181. {
  182. /* no zero exists anywhere in the 8 byte area. */
  183. if ((x = ~x) == 0)
  184. return BITS_PER_LONG;
  185. /*
  186. * Calculate the bit position of the least significant '1' bit in x
  187. * (since x has been changed this will actually be the least significant
  188. * '0' bit in * the original x). Note: (x & -x) gives us a mask that
  189. * is the least significant * (RIGHT-most) 1-bit of the value in x.
  190. */
  191. return __ilog2(x & -x);
  192. }
  193. static __inline__ int __ffs(unsigned long x)
  194. {
  195. return __ilog2(x & -x);
  196. }
  197. /*
  198. * ffs: find first bit set. This is defined the same way as
  199. * the libc and compiler builtin ffs routines, therefore
  200. * differs in spirit from the above ffz (man ffs).
  201. */
  202. static __inline__ int ffs(int x)
  203. {
  204. unsigned long i = (unsigned long)x;
  205. return __ilog2(i & -i) + 1;
  206. }
  207. /*
  208. * fls: find last (most-significant) bit set.
  209. * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
  210. */
  211. static __inline__ int fls(unsigned int x)
  212. {
  213. int lz;
  214. asm ("cntlzw %0,%1" : "=r" (lz) : "r" (x));
  215. return 32 - lz;
  216. }
  217. static __inline__ unsigned long __fls(unsigned long x)
  218. {
  219. return __ilog2(x);
  220. }
  221. /*
  222. * 64-bit can do this using one cntlzd (count leading zeroes doubleword)
  223. * instruction; for 32-bit we use the generic version, which does two
  224. * 32-bit fls calls.
  225. */
  226. #ifdef __powerpc64__
  227. static __inline__ int fls64(__u64 x)
  228. {
  229. int lz;
  230. asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x));
  231. return 64 - lz;
  232. }
  233. #else
  234. #include <asm-generic/bitops/fls64.h>
  235. #endif /* __powerpc64__ */
  236. #ifdef CONFIG_PPC64
  237. unsigned int __arch_hweight8(unsigned int w);
  238. unsigned int __arch_hweight16(unsigned int w);
  239. unsigned int __arch_hweight32(unsigned int w);
  240. unsigned long __arch_hweight64(__u64 w);
  241. #include <asm-generic/bitops/const_hweight.h>
  242. #else
  243. #include <asm-generic/bitops/hweight.h>
  244. #endif
  245. #include <asm-generic/bitops/find.h>
  246. /* Little-endian versions */
  247. static __inline__ int test_bit_le(unsigned long nr,
  248. __const__ void *addr)
  249. {
  250. __const__ unsigned char *tmp = (__const__ unsigned char *) addr;
  251. return (tmp[nr >> 3] >> (nr & 7)) & 1;
  252. }
  253. static inline void __set_bit_le(int nr, void *addr)
  254. {
  255. __set_bit(nr ^ BITOP_LE_SWIZZLE, addr);
  256. }
  257. static inline void __clear_bit_le(int nr, void *addr)
  258. {
  259. __clear_bit(nr ^ BITOP_LE_SWIZZLE, addr);
  260. }
  261. static inline int test_and_set_bit_le(int nr, void *addr)
  262. {
  263. return test_and_set_bit(nr ^ BITOP_LE_SWIZZLE, addr);
  264. }
  265. static inline int test_and_clear_bit_le(int nr, void *addr)
  266. {
  267. return test_and_clear_bit(nr ^ BITOP_LE_SWIZZLE, addr);
  268. }
  269. static inline int __test_and_set_bit_le(int nr, void *addr)
  270. {
  271. return __test_and_set_bit(nr ^ BITOP_LE_SWIZZLE, addr);
  272. }
  273. static inline int __test_and_clear_bit_le(int nr, void *addr)
  274. {
  275. return __test_and_clear_bit(nr ^ BITOP_LE_SWIZZLE, addr);
  276. }
  277. #define find_first_zero_bit_le(addr, size) \
  278. find_next_zero_bit_le((addr), (size), 0)
  279. unsigned long find_next_zero_bit_le(const void *addr,
  280. unsigned long size, unsigned long offset);
  281. unsigned long find_next_bit_le(const void *addr,
  282. unsigned long size, unsigned long offset);
  283. /* Bitmap functions for the ext2 filesystem */
  284. #include <asm-generic/bitops/ext2-atomic-setbit.h>
  285. #include <asm-generic/bitops/sched.h>
  286. #endif /* __KERNEL__ */
  287. #endif /* _ASM_POWERPC_BITOPS_H */