vsyscall_64.c 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358
  1. /*
  2. * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
  3. * Copyright 2003 Andi Kleen, SuSE Labs.
  4. *
  5. * [ NOTE: this mechanism is now deprecated in favor of the vDSO. ]
  6. *
  7. * Thanks to hpa@transmeta.com for some useful hint.
  8. * Special thanks to Ingo Molnar for his early experience with
  9. * a different vsyscall implementation for Linux/IA32 and for the name.
  10. *
  11. * vsyscall 1 is located at -10Mbyte, vsyscall 2 is located
  12. * at virtual address -10Mbyte+1024bytes etc... There are at max 4
  13. * vsyscalls. One vsyscall can reserve more than 1 slot to avoid
  14. * jumping out of line if necessary. We cannot add more with this
  15. * mechanism because older kernels won't return -ENOSYS.
  16. *
  17. * Note: the concept clashes with user mode linux. UML users should
  18. * use the vDSO.
  19. */
  20. #include <linux/time.h>
  21. #include <linux/init.h>
  22. #include <linux/kernel.h>
  23. #include <linux/timer.h>
  24. #include <linux/seqlock.h>
  25. #include <linux/jiffies.h>
  26. #include <linux/sysctl.h>
  27. #include <linux/topology.h>
  28. #include <linux/clocksource.h>
  29. #include <linux/getcpu.h>
  30. #include <linux/cpu.h>
  31. #include <linux/smp.h>
  32. #include <linux/notifier.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/ratelimit.h>
  35. #include <asm/vsyscall.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/compat.h>
  38. #include <asm/page.h>
  39. #include <asm/unistd.h>
  40. #include <asm/fixmap.h>
  41. #include <asm/errno.h>
  42. #include <asm/io.h>
  43. #include <asm/segment.h>
  44. #include <asm/desc.h>
  45. #include <asm/topology.h>
  46. #include <asm/vgtod.h>
  47. #include <asm/traps.h>
  48. #define CREATE_TRACE_POINTS
  49. #include "vsyscall_trace.h"
  50. DEFINE_VVAR(int, vgetcpu_mode);
  51. DEFINE_VVAR(struct vsyscall_gtod_data, vsyscall_gtod_data);
  52. static enum { EMULATE, NATIVE, NONE } vsyscall_mode = EMULATE;
  53. static int __init vsyscall_setup(char *str)
  54. {
  55. if (str) {
  56. if (!strcmp("emulate", str))
  57. vsyscall_mode = EMULATE;
  58. else if (!strcmp("native", str))
  59. vsyscall_mode = NATIVE;
  60. else if (!strcmp("none", str))
  61. vsyscall_mode = NONE;
  62. else
  63. return -EINVAL;
  64. return 0;
  65. }
  66. return -EINVAL;
  67. }
  68. early_param("vsyscall", vsyscall_setup);
  69. void update_vsyscall_tz(void)
  70. {
  71. vsyscall_gtod_data.sys_tz = sys_tz;
  72. }
  73. void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
  74. struct clocksource *clock, u32 mult)
  75. {
  76. struct timespec monotonic;
  77. write_seqcount_begin(&vsyscall_gtod_data.seq);
  78. /* copy vsyscall data */
  79. vsyscall_gtod_data.clock.vclock_mode = clock->archdata.vclock_mode;
  80. vsyscall_gtod_data.clock.cycle_last = clock->cycle_last;
  81. vsyscall_gtod_data.clock.mask = clock->mask;
  82. vsyscall_gtod_data.clock.mult = mult;
  83. vsyscall_gtod_data.clock.shift = clock->shift;
  84. vsyscall_gtod_data.wall_time_sec = wall_time->tv_sec;
  85. vsyscall_gtod_data.wall_time_nsec = wall_time->tv_nsec;
  86. monotonic = timespec_add(*wall_time, *wtm);
  87. vsyscall_gtod_data.monotonic_time_sec = monotonic.tv_sec;
  88. vsyscall_gtod_data.monotonic_time_nsec = monotonic.tv_nsec;
  89. vsyscall_gtod_data.wall_time_coarse = __current_kernel_time();
  90. vsyscall_gtod_data.monotonic_time_coarse =
  91. timespec_add(vsyscall_gtod_data.wall_time_coarse, *wtm);
  92. write_seqcount_end(&vsyscall_gtod_data.seq);
  93. }
  94. static void warn_bad_vsyscall(const char *level, struct pt_regs *regs,
  95. const char *message)
  96. {
  97. static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST);
  98. struct task_struct *tsk;
  99. if (!show_unhandled_signals || !__ratelimit(&rs))
  100. return;
  101. tsk = current;
  102. printk("%s%s[%d] %s ip:%lx cs:%lx sp:%lx ax:%lx si:%lx di:%lx\n",
  103. level, tsk->comm, task_pid_nr(tsk),
  104. message, regs->ip, regs->cs,
  105. regs->sp, regs->ax, regs->si, regs->di);
  106. }
  107. static int addr_to_vsyscall_nr(unsigned long addr)
  108. {
  109. int nr;
  110. if ((addr & ~0xC00UL) != VSYSCALL_START)
  111. return -EINVAL;
  112. nr = (addr & 0xC00UL) >> 10;
  113. if (nr >= 3)
  114. return -EINVAL;
  115. return nr;
  116. }
  117. static bool write_ok_or_segv(unsigned long ptr, size_t size)
  118. {
  119. /*
  120. * XXX: if access_ok, get_user, and put_user handled
  121. * sig_on_uaccess_error, this could go away.
  122. */
  123. if (!access_ok(VERIFY_WRITE, (void __user *)ptr, size)) {
  124. siginfo_t info;
  125. struct thread_struct *thread = &current->thread;
  126. thread->error_code = 6; /* user fault, no page, write */
  127. thread->cr2 = ptr;
  128. thread->trap_nr = X86_TRAP_PF;
  129. memset(&info, 0, sizeof(info));
  130. info.si_signo = SIGSEGV;
  131. info.si_errno = 0;
  132. info.si_code = SEGV_MAPERR;
  133. info.si_addr = (void __user *)ptr;
  134. force_sig_info(SIGSEGV, &info, current);
  135. return false;
  136. } else {
  137. return true;
  138. }
  139. }
  140. bool emulate_vsyscall(struct pt_regs *regs, unsigned long address)
  141. {
  142. struct task_struct *tsk;
  143. unsigned long caller;
  144. int vsyscall_nr;
  145. int prev_sig_on_uaccess_error;
  146. long ret;
  147. /*
  148. * No point in checking CS -- the only way to get here is a user mode
  149. * trap to a high address, which means that we're in 64-bit user code.
  150. */
  151. WARN_ON_ONCE(address != regs->ip);
  152. if (vsyscall_mode == NONE) {
  153. warn_bad_vsyscall(KERN_INFO, regs,
  154. "vsyscall attempted with vsyscall=none");
  155. return false;
  156. }
  157. vsyscall_nr = addr_to_vsyscall_nr(address);
  158. trace_emulate_vsyscall(vsyscall_nr);
  159. if (vsyscall_nr < 0) {
  160. warn_bad_vsyscall(KERN_WARNING, regs,
  161. "misaligned vsyscall (exploit attempt or buggy program) -- look up the vsyscall kernel parameter if you need a workaround");
  162. goto sigsegv;
  163. }
  164. if (get_user(caller, (unsigned long __user *)regs->sp) != 0) {
  165. warn_bad_vsyscall(KERN_WARNING, regs,
  166. "vsyscall with bad stack (exploit attempt?)");
  167. goto sigsegv;
  168. }
  169. tsk = current;
  170. if (seccomp_mode(&tsk->seccomp))
  171. do_exit(SIGKILL);
  172. /*
  173. * With a real vsyscall, page faults cause SIGSEGV. We want to
  174. * preserve that behavior to make writing exploits harder.
  175. */
  176. prev_sig_on_uaccess_error = current_thread_info()->sig_on_uaccess_error;
  177. current_thread_info()->sig_on_uaccess_error = 1;
  178. /*
  179. * NULL is a valid user pointer (in the access_ok sense) on 32-bit and
  180. * 64-bit, so we don't need to special-case it here. For all the
  181. * vsyscalls, NULL means "don't write anything" not "write it at
  182. * address 0".
  183. */
  184. ret = -EFAULT;
  185. switch (vsyscall_nr) {
  186. case 0:
  187. if (!write_ok_or_segv(regs->di, sizeof(struct timeval)) ||
  188. !write_ok_or_segv(regs->si, sizeof(struct timezone)))
  189. break;
  190. ret = sys_gettimeofday(
  191. (struct timeval __user *)regs->di,
  192. (struct timezone __user *)regs->si);
  193. break;
  194. case 1:
  195. if (!write_ok_or_segv(regs->di, sizeof(time_t)))
  196. break;
  197. ret = sys_time((time_t __user *)regs->di);
  198. break;
  199. case 2:
  200. if (!write_ok_or_segv(regs->di, sizeof(unsigned)) ||
  201. !write_ok_or_segv(regs->si, sizeof(unsigned)))
  202. break;
  203. ret = sys_getcpu((unsigned __user *)regs->di,
  204. (unsigned __user *)regs->si,
  205. NULL);
  206. break;
  207. }
  208. current_thread_info()->sig_on_uaccess_error = prev_sig_on_uaccess_error;
  209. if (ret == -EFAULT) {
  210. /* Bad news -- userspace fed a bad pointer to a vsyscall. */
  211. warn_bad_vsyscall(KERN_INFO, regs,
  212. "vsyscall fault (exploit attempt?)");
  213. /*
  214. * If we failed to generate a signal for any reason,
  215. * generate one here. (This should be impossible.)
  216. */
  217. if (WARN_ON_ONCE(!sigismember(&tsk->pending.signal, SIGBUS) &&
  218. !sigismember(&tsk->pending.signal, SIGSEGV)))
  219. goto sigsegv;
  220. return true; /* Don't emulate the ret. */
  221. }
  222. regs->ax = ret;
  223. /* Emulate a ret instruction. */
  224. regs->ip = caller;
  225. regs->sp += 8;
  226. return true;
  227. sigsegv:
  228. force_sig(SIGSEGV, current);
  229. return true;
  230. }
  231. /*
  232. * Assume __initcall executes before all user space. Hopefully kmod
  233. * doesn't violate that. We'll find out if it does.
  234. */
  235. static void __cpuinit vsyscall_set_cpu(int cpu)
  236. {
  237. unsigned long d;
  238. unsigned long node = 0;
  239. #ifdef CONFIG_NUMA
  240. node = cpu_to_node(cpu);
  241. #endif
  242. if (cpu_has(&cpu_data(cpu), X86_FEATURE_RDTSCP))
  243. write_rdtscp_aux((node << 12) | cpu);
  244. /*
  245. * Store cpu number in limit so that it can be loaded quickly
  246. * in user space in vgetcpu. (12 bits for the CPU and 8 bits for the node)
  247. */
  248. d = 0x0f40000000000ULL;
  249. d |= cpu;
  250. d |= (node & 0xf) << 12;
  251. d |= (node >> 4) << 48;
  252. write_gdt_entry(get_cpu_gdt_table(cpu), GDT_ENTRY_PER_CPU, &d, DESCTYPE_S);
  253. }
  254. static void __cpuinit cpu_vsyscall_init(void *arg)
  255. {
  256. /* preemption should be already off */
  257. vsyscall_set_cpu(raw_smp_processor_id());
  258. }
  259. static int __cpuinit
  260. cpu_vsyscall_notifier(struct notifier_block *n, unsigned long action, void *arg)
  261. {
  262. long cpu = (long)arg;
  263. if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
  264. smp_call_function_single(cpu, cpu_vsyscall_init, NULL, 1);
  265. return NOTIFY_DONE;
  266. }
  267. void __init map_vsyscall(void)
  268. {
  269. extern char __vsyscall_page;
  270. unsigned long physaddr_vsyscall = __pa_symbol(&__vsyscall_page);
  271. extern char __vvar_page;
  272. unsigned long physaddr_vvar_page = __pa_symbol(&__vvar_page);
  273. __set_fixmap(VSYSCALL_FIRST_PAGE, physaddr_vsyscall,
  274. vsyscall_mode == NATIVE
  275. ? PAGE_KERNEL_VSYSCALL
  276. : PAGE_KERNEL_VVAR);
  277. BUILD_BUG_ON((unsigned long)__fix_to_virt(VSYSCALL_FIRST_PAGE) !=
  278. (unsigned long)VSYSCALL_START);
  279. __set_fixmap(VVAR_PAGE, physaddr_vvar_page, PAGE_KERNEL_VVAR);
  280. BUILD_BUG_ON((unsigned long)__fix_to_virt(VVAR_PAGE) !=
  281. (unsigned long)VVAR_ADDRESS);
  282. }
  283. static int __init vsyscall_init(void)
  284. {
  285. BUG_ON(VSYSCALL_ADDR(0) != __fix_to_virt(VSYSCALL_FIRST_PAGE));
  286. on_each_cpu(cpu_vsyscall_init, NULL, 1);
  287. /* notifier priority > KVM */
  288. hotcpu_notifier(cpu_vsyscall_notifier, 30);
  289. return 0;
  290. }
  291. __initcall(vsyscall_init);