tsc.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039
  1. #include <linux/kernel.h>
  2. #include <linux/sched.h>
  3. #include <linux/init.h>
  4. #include <linux/module.h>
  5. #include <linux/timer.h>
  6. #include <linux/acpi_pmtmr.h>
  7. #include <linux/cpufreq.h>
  8. #include <linux/delay.h>
  9. #include <linux/clocksource.h>
  10. #include <linux/percpu.h>
  11. #include <linux/timex.h>
  12. #include <asm/hpet.h>
  13. #include <asm/timer.h>
  14. #include <asm/vgtod.h>
  15. #include <asm/time.h>
  16. #include <asm/delay.h>
  17. #include <asm/hypervisor.h>
  18. #include <asm/nmi.h>
  19. #include <asm/x86_init.h>
  20. #include <asm/geode.h>
  21. unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
  22. EXPORT_SYMBOL(cpu_khz);
  23. unsigned int __read_mostly tsc_khz;
  24. EXPORT_SYMBOL(tsc_khz);
  25. /*
  26. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  27. */
  28. static int __read_mostly tsc_unstable;
  29. /* native_sched_clock() is called before tsc_init(), so
  30. we must start with the TSC soft disabled to prevent
  31. erroneous rdtsc usage on !cpu_has_tsc processors */
  32. static int __read_mostly tsc_disabled = -1;
  33. int tsc_clocksource_reliable;
  34. /*
  35. * Scheduler clock - returns current time in nanosec units.
  36. */
  37. u64 native_sched_clock(void)
  38. {
  39. u64 this_offset;
  40. /*
  41. * Fall back to jiffies if there's no TSC available:
  42. * ( But note that we still use it if the TSC is marked
  43. * unstable. We do this because unlike Time Of Day,
  44. * the scheduler clock tolerates small errors and it's
  45. * very important for it to be as fast as the platform
  46. * can achieve it. )
  47. */
  48. if (unlikely(tsc_disabled)) {
  49. /* No locking but a rare wrong value is not a big deal: */
  50. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  51. }
  52. /* read the Time Stamp Counter: */
  53. rdtscll(this_offset);
  54. /* return the value in ns */
  55. return __cycles_2_ns(this_offset);
  56. }
  57. /* We need to define a real function for sched_clock, to override the
  58. weak default version */
  59. #ifdef CONFIG_PARAVIRT
  60. unsigned long long sched_clock(void)
  61. {
  62. return paravirt_sched_clock();
  63. }
  64. #else
  65. unsigned long long
  66. sched_clock(void) __attribute__((alias("native_sched_clock")));
  67. #endif
  68. int check_tsc_unstable(void)
  69. {
  70. return tsc_unstable;
  71. }
  72. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  73. int check_tsc_disabled(void)
  74. {
  75. return tsc_disabled;
  76. }
  77. EXPORT_SYMBOL_GPL(check_tsc_disabled);
  78. #ifdef CONFIG_X86_TSC
  79. int __init notsc_setup(char *str)
  80. {
  81. printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
  82. "cannot disable TSC completely.\n");
  83. tsc_disabled = 1;
  84. return 1;
  85. }
  86. #else
  87. /*
  88. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  89. * in cpu/common.c
  90. */
  91. int __init notsc_setup(char *str)
  92. {
  93. setup_clear_cpu_cap(X86_FEATURE_TSC);
  94. return 1;
  95. }
  96. #endif
  97. __setup("notsc", notsc_setup);
  98. static int no_sched_irq_time;
  99. static int __init tsc_setup(char *str)
  100. {
  101. if (!strcmp(str, "reliable"))
  102. tsc_clocksource_reliable = 1;
  103. if (!strncmp(str, "noirqtime", 9))
  104. no_sched_irq_time = 1;
  105. return 1;
  106. }
  107. __setup("tsc=", tsc_setup);
  108. #define MAX_RETRIES 5
  109. #define SMI_TRESHOLD 50000
  110. /*
  111. * Read TSC and the reference counters. Take care of SMI disturbance
  112. */
  113. static u64 tsc_read_refs(u64 *p, int hpet)
  114. {
  115. u64 t1, t2;
  116. int i;
  117. for (i = 0; i < MAX_RETRIES; i++) {
  118. t1 = get_cycles();
  119. if (hpet)
  120. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  121. else
  122. *p = acpi_pm_read_early();
  123. t2 = get_cycles();
  124. if ((t2 - t1) < SMI_TRESHOLD)
  125. return t2;
  126. }
  127. return ULLONG_MAX;
  128. }
  129. /*
  130. * Calculate the TSC frequency from HPET reference
  131. */
  132. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  133. {
  134. u64 tmp;
  135. if (hpet2 < hpet1)
  136. hpet2 += 0x100000000ULL;
  137. hpet2 -= hpet1;
  138. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  139. do_div(tmp, 1000000);
  140. do_div(deltatsc, tmp);
  141. return (unsigned long) deltatsc;
  142. }
  143. /*
  144. * Calculate the TSC frequency from PMTimer reference
  145. */
  146. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  147. {
  148. u64 tmp;
  149. if (!pm1 && !pm2)
  150. return ULONG_MAX;
  151. if (pm2 < pm1)
  152. pm2 += (u64)ACPI_PM_OVRRUN;
  153. pm2 -= pm1;
  154. tmp = pm2 * 1000000000LL;
  155. do_div(tmp, PMTMR_TICKS_PER_SEC);
  156. do_div(deltatsc, tmp);
  157. return (unsigned long) deltatsc;
  158. }
  159. #define CAL_MS 10
  160. #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
  161. #define CAL_PIT_LOOPS 1000
  162. #define CAL2_MS 50
  163. #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
  164. #define CAL2_PIT_LOOPS 5000
  165. /*
  166. * Try to calibrate the TSC against the Programmable
  167. * Interrupt Timer and return the frequency of the TSC
  168. * in kHz.
  169. *
  170. * Return ULONG_MAX on failure to calibrate.
  171. */
  172. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  173. {
  174. u64 tsc, t1, t2, delta;
  175. unsigned long tscmin, tscmax;
  176. int pitcnt;
  177. /* Set the Gate high, disable speaker */
  178. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  179. /*
  180. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  181. * count mode), binary count. Set the latch register to 50ms
  182. * (LSB then MSB) to begin countdown.
  183. */
  184. outb(0xb0, 0x43);
  185. outb(latch & 0xff, 0x42);
  186. outb(latch >> 8, 0x42);
  187. tsc = t1 = t2 = get_cycles();
  188. pitcnt = 0;
  189. tscmax = 0;
  190. tscmin = ULONG_MAX;
  191. while ((inb(0x61) & 0x20) == 0) {
  192. t2 = get_cycles();
  193. delta = t2 - tsc;
  194. tsc = t2;
  195. if ((unsigned long) delta < tscmin)
  196. tscmin = (unsigned int) delta;
  197. if ((unsigned long) delta > tscmax)
  198. tscmax = (unsigned int) delta;
  199. pitcnt++;
  200. }
  201. /*
  202. * Sanity checks:
  203. *
  204. * If we were not able to read the PIT more than loopmin
  205. * times, then we have been hit by a massive SMI
  206. *
  207. * If the maximum is 10 times larger than the minimum,
  208. * then we got hit by an SMI as well.
  209. */
  210. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  211. return ULONG_MAX;
  212. /* Calculate the PIT value */
  213. delta = t2 - t1;
  214. do_div(delta, ms);
  215. return delta;
  216. }
  217. /*
  218. * This reads the current MSB of the PIT counter, and
  219. * checks if we are running on sufficiently fast and
  220. * non-virtualized hardware.
  221. *
  222. * Our expectations are:
  223. *
  224. * - the PIT is running at roughly 1.19MHz
  225. *
  226. * - each IO is going to take about 1us on real hardware,
  227. * but we allow it to be much faster (by a factor of 10) or
  228. * _slightly_ slower (ie we allow up to a 2us read+counter
  229. * update - anything else implies a unacceptably slow CPU
  230. * or PIT for the fast calibration to work.
  231. *
  232. * - with 256 PIT ticks to read the value, we have 214us to
  233. * see the same MSB (and overhead like doing a single TSC
  234. * read per MSB value etc).
  235. *
  236. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  237. * them each to take about a microsecond on real hardware.
  238. * So we expect a count value of around 100. But we'll be
  239. * generous, and accept anything over 50.
  240. *
  241. * - if the PIT is stuck, and we see *many* more reads, we
  242. * return early (and the next caller of pit_expect_msb()
  243. * then consider it a failure when they don't see the
  244. * next expected value).
  245. *
  246. * These expectations mean that we know that we have seen the
  247. * transition from one expected value to another with a fairly
  248. * high accuracy, and we didn't miss any events. We can thus
  249. * use the TSC value at the transitions to calculate a pretty
  250. * good value for the TSC frequencty.
  251. */
  252. static inline int pit_verify_msb(unsigned char val)
  253. {
  254. /* Ignore LSB */
  255. inb(0x42);
  256. return inb(0x42) == val;
  257. }
  258. static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
  259. {
  260. int count;
  261. u64 tsc = 0, prev_tsc = 0;
  262. for (count = 0; count < 50000; count++) {
  263. if (!pit_verify_msb(val))
  264. break;
  265. prev_tsc = tsc;
  266. tsc = get_cycles();
  267. }
  268. *deltap = get_cycles() - prev_tsc;
  269. *tscp = tsc;
  270. /*
  271. * We require _some_ success, but the quality control
  272. * will be based on the error terms on the TSC values.
  273. */
  274. return count > 5;
  275. }
  276. /*
  277. * How many MSB values do we want to see? We aim for
  278. * a maximum error rate of 500ppm (in practice the
  279. * real error is much smaller), but refuse to spend
  280. * more than 50ms on it.
  281. */
  282. #define MAX_QUICK_PIT_MS 50
  283. #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  284. static unsigned long quick_pit_calibrate(void)
  285. {
  286. int i;
  287. u64 tsc, delta;
  288. unsigned long d1, d2;
  289. /* Set the Gate high, disable speaker */
  290. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  291. /*
  292. * Counter 2, mode 0 (one-shot), binary count
  293. *
  294. * NOTE! Mode 2 decrements by two (and then the
  295. * output is flipped each time, giving the same
  296. * final output frequency as a decrement-by-one),
  297. * so mode 0 is much better when looking at the
  298. * individual counts.
  299. */
  300. outb(0xb0, 0x43);
  301. /* Start at 0xffff */
  302. outb(0xff, 0x42);
  303. outb(0xff, 0x42);
  304. /*
  305. * The PIT starts counting at the next edge, so we
  306. * need to delay for a microsecond. The easiest way
  307. * to do that is to just read back the 16-bit counter
  308. * once from the PIT.
  309. */
  310. pit_verify_msb(0);
  311. if (pit_expect_msb(0xff, &tsc, &d1)) {
  312. for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
  313. if (!pit_expect_msb(0xff-i, &delta, &d2))
  314. break;
  315. /*
  316. * Iterate until the error is less than 500 ppm
  317. */
  318. delta -= tsc;
  319. if (d1+d2 >= delta >> 11)
  320. continue;
  321. /*
  322. * Check the PIT one more time to verify that
  323. * all TSC reads were stable wrt the PIT.
  324. *
  325. * This also guarantees serialization of the
  326. * last cycle read ('d2') in pit_expect_msb.
  327. */
  328. if (!pit_verify_msb(0xfe - i))
  329. break;
  330. goto success;
  331. }
  332. }
  333. printk("Fast TSC calibration failed\n");
  334. return 0;
  335. success:
  336. /*
  337. * Ok, if we get here, then we've seen the
  338. * MSB of the PIT decrement 'i' times, and the
  339. * error has shrunk to less than 500 ppm.
  340. *
  341. * As a result, we can depend on there not being
  342. * any odd delays anywhere, and the TSC reads are
  343. * reliable (within the error).
  344. *
  345. * kHz = ticks / time-in-seconds / 1000;
  346. * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
  347. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
  348. */
  349. delta *= PIT_TICK_RATE;
  350. do_div(delta, i*256*1000);
  351. printk("Fast TSC calibration using PIT\n");
  352. return delta;
  353. }
  354. /**
  355. * native_calibrate_tsc - calibrate the tsc on boot
  356. */
  357. unsigned long native_calibrate_tsc(void)
  358. {
  359. u64 tsc1, tsc2, delta, ref1, ref2;
  360. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  361. unsigned long flags, latch, ms, fast_calibrate;
  362. int hpet = is_hpet_enabled(), i, loopmin;
  363. local_irq_save(flags);
  364. fast_calibrate = quick_pit_calibrate();
  365. local_irq_restore(flags);
  366. if (fast_calibrate)
  367. return fast_calibrate;
  368. /*
  369. * Run 5 calibration loops to get the lowest frequency value
  370. * (the best estimate). We use two different calibration modes
  371. * here:
  372. *
  373. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  374. * load a timeout of 50ms. We read the time right after we
  375. * started the timer and wait until the PIT count down reaches
  376. * zero. In each wait loop iteration we read the TSC and check
  377. * the delta to the previous read. We keep track of the min
  378. * and max values of that delta. The delta is mostly defined
  379. * by the IO time of the PIT access, so we can detect when a
  380. * SMI/SMM disturbance happened between the two reads. If the
  381. * maximum time is significantly larger than the minimum time,
  382. * then we discard the result and have another try.
  383. *
  384. * 2) Reference counter. If available we use the HPET or the
  385. * PMTIMER as a reference to check the sanity of that value.
  386. * We use separate TSC readouts and check inside of the
  387. * reference read for a SMI/SMM disturbance. We dicard
  388. * disturbed values here as well. We do that around the PIT
  389. * calibration delay loop as we have to wait for a certain
  390. * amount of time anyway.
  391. */
  392. /* Preset PIT loop values */
  393. latch = CAL_LATCH;
  394. ms = CAL_MS;
  395. loopmin = CAL_PIT_LOOPS;
  396. for (i = 0; i < 3; i++) {
  397. unsigned long tsc_pit_khz;
  398. /*
  399. * Read the start value and the reference count of
  400. * hpet/pmtimer when available. Then do the PIT
  401. * calibration, which will take at least 50ms, and
  402. * read the end value.
  403. */
  404. local_irq_save(flags);
  405. tsc1 = tsc_read_refs(&ref1, hpet);
  406. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  407. tsc2 = tsc_read_refs(&ref2, hpet);
  408. local_irq_restore(flags);
  409. /* Pick the lowest PIT TSC calibration so far */
  410. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  411. /* hpet or pmtimer available ? */
  412. if (ref1 == ref2)
  413. continue;
  414. /* Check, whether the sampling was disturbed by an SMI */
  415. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  416. continue;
  417. tsc2 = (tsc2 - tsc1) * 1000000LL;
  418. if (hpet)
  419. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  420. else
  421. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  422. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  423. /* Check the reference deviation */
  424. delta = ((u64) tsc_pit_min) * 100;
  425. do_div(delta, tsc_ref_min);
  426. /*
  427. * If both calibration results are inside a 10% window
  428. * then we can be sure, that the calibration
  429. * succeeded. We break out of the loop right away. We
  430. * use the reference value, as it is more precise.
  431. */
  432. if (delta >= 90 && delta <= 110) {
  433. printk(KERN_INFO
  434. "TSC: PIT calibration matches %s. %d loops\n",
  435. hpet ? "HPET" : "PMTIMER", i + 1);
  436. return tsc_ref_min;
  437. }
  438. /*
  439. * Check whether PIT failed more than once. This
  440. * happens in virtualized environments. We need to
  441. * give the virtual PC a slightly longer timeframe for
  442. * the HPET/PMTIMER to make the result precise.
  443. */
  444. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  445. latch = CAL2_LATCH;
  446. ms = CAL2_MS;
  447. loopmin = CAL2_PIT_LOOPS;
  448. }
  449. }
  450. /*
  451. * Now check the results.
  452. */
  453. if (tsc_pit_min == ULONG_MAX) {
  454. /* PIT gave no useful value */
  455. printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
  456. /* We don't have an alternative source, disable TSC */
  457. if (!hpet && !ref1 && !ref2) {
  458. printk("TSC: No reference (HPET/PMTIMER) available\n");
  459. return 0;
  460. }
  461. /* The alternative source failed as well, disable TSC */
  462. if (tsc_ref_min == ULONG_MAX) {
  463. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
  464. "failed.\n");
  465. return 0;
  466. }
  467. /* Use the alternative source */
  468. printk(KERN_INFO "TSC: using %s reference calibration\n",
  469. hpet ? "HPET" : "PMTIMER");
  470. return tsc_ref_min;
  471. }
  472. /* We don't have an alternative source, use the PIT calibration value */
  473. if (!hpet && !ref1 && !ref2) {
  474. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  475. return tsc_pit_min;
  476. }
  477. /* The alternative source failed, use the PIT calibration value */
  478. if (tsc_ref_min == ULONG_MAX) {
  479. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
  480. "Using PIT calibration\n");
  481. return tsc_pit_min;
  482. }
  483. /*
  484. * The calibration values differ too much. In doubt, we use
  485. * the PIT value as we know that there are PMTIMERs around
  486. * running at double speed. At least we let the user know:
  487. */
  488. printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
  489. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  490. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  491. return tsc_pit_min;
  492. }
  493. int recalibrate_cpu_khz(void)
  494. {
  495. #ifndef CONFIG_SMP
  496. unsigned long cpu_khz_old = cpu_khz;
  497. if (cpu_has_tsc) {
  498. tsc_khz = x86_platform.calibrate_tsc();
  499. cpu_khz = tsc_khz;
  500. cpu_data(0).loops_per_jiffy =
  501. cpufreq_scale(cpu_data(0).loops_per_jiffy,
  502. cpu_khz_old, cpu_khz);
  503. return 0;
  504. } else
  505. return -ENODEV;
  506. #else
  507. return -ENODEV;
  508. #endif
  509. }
  510. EXPORT_SYMBOL(recalibrate_cpu_khz);
  511. /* Accelerators for sched_clock()
  512. * convert from cycles(64bits) => nanoseconds (64bits)
  513. * basic equation:
  514. * ns = cycles / (freq / ns_per_sec)
  515. * ns = cycles * (ns_per_sec / freq)
  516. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  517. * ns = cycles * (10^6 / cpu_khz)
  518. *
  519. * Then we use scaling math (suggested by george@mvista.com) to get:
  520. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  521. * ns = cycles * cyc2ns_scale / SC
  522. *
  523. * And since SC is a constant power of two, we can convert the div
  524. * into a shift.
  525. *
  526. * We can use khz divisor instead of mhz to keep a better precision, since
  527. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  528. * (mathieu.desnoyers@polymtl.ca)
  529. *
  530. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  531. */
  532. DEFINE_PER_CPU(unsigned long, cyc2ns);
  533. DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
  534. static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
  535. {
  536. unsigned long long tsc_now, ns_now, *offset;
  537. unsigned long flags, *scale;
  538. local_irq_save(flags);
  539. sched_clock_idle_sleep_event();
  540. scale = &per_cpu(cyc2ns, cpu);
  541. offset = &per_cpu(cyc2ns_offset, cpu);
  542. rdtscll(tsc_now);
  543. ns_now = __cycles_2_ns(tsc_now);
  544. if (cpu_khz) {
  545. *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
  546. *offset = ns_now - mult_frac(tsc_now, *scale,
  547. (1UL << CYC2NS_SCALE_FACTOR));
  548. }
  549. sched_clock_idle_wakeup_event(0);
  550. local_irq_restore(flags);
  551. }
  552. static unsigned long long cyc2ns_suspend;
  553. void tsc_save_sched_clock_state(void)
  554. {
  555. if (!sched_clock_stable)
  556. return;
  557. cyc2ns_suspend = sched_clock();
  558. }
  559. /*
  560. * Even on processors with invariant TSC, TSC gets reset in some the
  561. * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
  562. * arbitrary value (still sync'd across cpu's) during resume from such sleep
  563. * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
  564. * that sched_clock() continues from the point where it was left off during
  565. * suspend.
  566. */
  567. void tsc_restore_sched_clock_state(void)
  568. {
  569. unsigned long long offset;
  570. unsigned long flags;
  571. int cpu;
  572. if (!sched_clock_stable)
  573. return;
  574. local_irq_save(flags);
  575. __this_cpu_write(cyc2ns_offset, 0);
  576. offset = cyc2ns_suspend - sched_clock();
  577. for_each_possible_cpu(cpu)
  578. per_cpu(cyc2ns_offset, cpu) = offset;
  579. local_irq_restore(flags);
  580. }
  581. #ifdef CONFIG_CPU_FREQ
  582. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  583. * changes.
  584. *
  585. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  586. * not that important because current Opteron setups do not support
  587. * scaling on SMP anyroads.
  588. *
  589. * Should fix up last_tsc too. Currently gettimeofday in the
  590. * first tick after the change will be slightly wrong.
  591. */
  592. static unsigned int ref_freq;
  593. static unsigned long loops_per_jiffy_ref;
  594. static unsigned long tsc_khz_ref;
  595. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  596. void *data)
  597. {
  598. struct cpufreq_freqs *freq = data;
  599. unsigned long *lpj;
  600. if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
  601. return 0;
  602. lpj = &boot_cpu_data.loops_per_jiffy;
  603. #ifdef CONFIG_SMP
  604. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  605. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  606. #endif
  607. if (!ref_freq) {
  608. ref_freq = freq->old;
  609. loops_per_jiffy_ref = *lpj;
  610. tsc_khz_ref = tsc_khz;
  611. }
  612. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  613. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  614. (val == CPUFREQ_RESUMECHANGE)) {
  615. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  616. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  617. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  618. mark_tsc_unstable("cpufreq changes");
  619. }
  620. set_cyc2ns_scale(tsc_khz, freq->cpu);
  621. return 0;
  622. }
  623. static struct notifier_block time_cpufreq_notifier_block = {
  624. .notifier_call = time_cpufreq_notifier
  625. };
  626. static int __init cpufreq_tsc(void)
  627. {
  628. if (!cpu_has_tsc)
  629. return 0;
  630. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  631. return 0;
  632. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  633. CPUFREQ_TRANSITION_NOTIFIER);
  634. return 0;
  635. }
  636. core_initcall(cpufreq_tsc);
  637. #endif /* CONFIG_CPU_FREQ */
  638. /* clocksource code */
  639. static struct clocksource clocksource_tsc;
  640. /*
  641. * We compare the TSC to the cycle_last value in the clocksource
  642. * structure to avoid a nasty time-warp. This can be observed in a
  643. * very small window right after one CPU updated cycle_last under
  644. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  645. * is smaller than the cycle_last reference value due to a TSC which
  646. * is slighty behind. This delta is nowhere else observable, but in
  647. * that case it results in a forward time jump in the range of hours
  648. * due to the unsigned delta calculation of the time keeping core
  649. * code, which is necessary to support wrapping clocksources like pm
  650. * timer.
  651. */
  652. static cycle_t read_tsc(struct clocksource *cs)
  653. {
  654. cycle_t ret = (cycle_t)get_cycles();
  655. return ret >= clocksource_tsc.cycle_last ?
  656. ret : clocksource_tsc.cycle_last;
  657. }
  658. static void resume_tsc(struct clocksource *cs)
  659. {
  660. clocksource_tsc.cycle_last = 0;
  661. }
  662. static struct clocksource clocksource_tsc = {
  663. .name = "tsc",
  664. .rating = 300,
  665. .read = read_tsc,
  666. .resume = resume_tsc,
  667. .mask = CLOCKSOURCE_MASK(64),
  668. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  669. CLOCK_SOURCE_MUST_VERIFY,
  670. #ifdef CONFIG_X86_64
  671. .archdata = { .vclock_mode = VCLOCK_TSC },
  672. #endif
  673. };
  674. void mark_tsc_unstable(char *reason)
  675. {
  676. if (!tsc_unstable) {
  677. tsc_unstable = 1;
  678. sched_clock_stable = 0;
  679. disable_sched_clock_irqtime();
  680. printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
  681. /* Change only the rating, when not registered */
  682. if (clocksource_tsc.mult)
  683. clocksource_mark_unstable(&clocksource_tsc);
  684. else {
  685. clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
  686. clocksource_tsc.rating = 0;
  687. }
  688. }
  689. }
  690. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  691. static void __init check_system_tsc_reliable(void)
  692. {
  693. #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
  694. if (is_geode_lx()) {
  695. /* RTSC counts during suspend */
  696. #define RTSC_SUSP 0x100
  697. unsigned long res_low, res_high;
  698. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  699. /* Geode_LX - the OLPC CPU has a very reliable TSC */
  700. if (res_low & RTSC_SUSP)
  701. tsc_clocksource_reliable = 1;
  702. }
  703. #endif
  704. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  705. tsc_clocksource_reliable = 1;
  706. }
  707. /*
  708. * Make an educated guess if the TSC is trustworthy and synchronized
  709. * over all CPUs.
  710. */
  711. __cpuinit int unsynchronized_tsc(void)
  712. {
  713. if (!cpu_has_tsc || tsc_unstable)
  714. return 1;
  715. #ifdef CONFIG_SMP
  716. if (apic_is_clustered_box())
  717. return 1;
  718. #endif
  719. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  720. return 0;
  721. if (tsc_clocksource_reliable)
  722. return 0;
  723. /*
  724. * Intel systems are normally all synchronized.
  725. * Exceptions must mark TSC as unstable:
  726. */
  727. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  728. /* assume multi socket systems are not synchronized: */
  729. if (num_possible_cpus() > 1)
  730. return 1;
  731. }
  732. return 0;
  733. }
  734. static void tsc_refine_calibration_work(struct work_struct *work);
  735. static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
  736. /**
  737. * tsc_refine_calibration_work - Further refine tsc freq calibration
  738. * @work - ignored.
  739. *
  740. * This functions uses delayed work over a period of a
  741. * second to further refine the TSC freq value. Since this is
  742. * timer based, instead of loop based, we don't block the boot
  743. * process while this longer calibration is done.
  744. *
  745. * If there are any calibration anomalies (too many SMIs, etc),
  746. * or the refined calibration is off by 1% of the fast early
  747. * calibration, we throw out the new calibration and use the
  748. * early calibration.
  749. */
  750. static void tsc_refine_calibration_work(struct work_struct *work)
  751. {
  752. static u64 tsc_start = -1, ref_start;
  753. static int hpet;
  754. u64 tsc_stop, ref_stop, delta;
  755. unsigned long freq;
  756. /* Don't bother refining TSC on unstable systems */
  757. if (check_tsc_unstable())
  758. goto out;
  759. /*
  760. * Since the work is started early in boot, we may be
  761. * delayed the first time we expire. So set the workqueue
  762. * again once we know timers are working.
  763. */
  764. if (tsc_start == -1) {
  765. /*
  766. * Only set hpet once, to avoid mixing hardware
  767. * if the hpet becomes enabled later.
  768. */
  769. hpet = is_hpet_enabled();
  770. schedule_delayed_work(&tsc_irqwork, HZ);
  771. tsc_start = tsc_read_refs(&ref_start, hpet);
  772. return;
  773. }
  774. tsc_stop = tsc_read_refs(&ref_stop, hpet);
  775. /* hpet or pmtimer available ? */
  776. if (ref_start == ref_stop)
  777. goto out;
  778. /* Check, whether the sampling was disturbed by an SMI */
  779. if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
  780. goto out;
  781. delta = tsc_stop - tsc_start;
  782. delta *= 1000000LL;
  783. if (hpet)
  784. freq = calc_hpet_ref(delta, ref_start, ref_stop);
  785. else
  786. freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
  787. /* Make sure we're within 1% */
  788. if (abs(tsc_khz - freq) > tsc_khz/100)
  789. goto out;
  790. tsc_khz = freq;
  791. printk(KERN_INFO "Refined TSC clocksource calibration: "
  792. "%lu.%03lu MHz.\n", (unsigned long)tsc_khz / 1000,
  793. (unsigned long)tsc_khz % 1000);
  794. out:
  795. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  796. }
  797. static int __init init_tsc_clocksource(void)
  798. {
  799. if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
  800. return 0;
  801. if (tsc_clocksource_reliable)
  802. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  803. /* lower the rating if we already know its unstable: */
  804. if (check_tsc_unstable()) {
  805. clocksource_tsc.rating = 0;
  806. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  807. }
  808. /*
  809. * Trust the results of the earlier calibration on systems
  810. * exporting a reliable TSC.
  811. */
  812. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
  813. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  814. return 0;
  815. }
  816. schedule_delayed_work(&tsc_irqwork, 0);
  817. return 0;
  818. }
  819. /*
  820. * We use device_initcall here, to ensure we run after the hpet
  821. * is fully initialized, which may occur at fs_initcall time.
  822. */
  823. device_initcall(init_tsc_clocksource);
  824. void __init tsc_init(void)
  825. {
  826. u64 lpj;
  827. int cpu;
  828. x86_init.timers.tsc_pre_init();
  829. if (!cpu_has_tsc) {
  830. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  831. return;
  832. }
  833. tsc_khz = x86_platform.calibrate_tsc();
  834. cpu_khz = tsc_khz;
  835. if (!tsc_khz) {
  836. mark_tsc_unstable("could not calculate TSC khz");
  837. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  838. return;
  839. }
  840. printk("Detected %lu.%03lu MHz processor.\n",
  841. (unsigned long)cpu_khz / 1000,
  842. (unsigned long)cpu_khz % 1000);
  843. /*
  844. * Secondary CPUs do not run through tsc_init(), so set up
  845. * all the scale factors for all CPUs, assuming the same
  846. * speed as the bootup CPU. (cpufreq notifiers will fix this
  847. * up if their speed diverges)
  848. */
  849. for_each_possible_cpu(cpu)
  850. set_cyc2ns_scale(cpu_khz, cpu);
  851. if (tsc_disabled > 0)
  852. return;
  853. /* now allow native_sched_clock() to use rdtsc */
  854. tsc_disabled = 0;
  855. if (!no_sched_irq_time)
  856. enable_sched_clock_irqtime();
  857. lpj = ((u64)tsc_khz * 1000);
  858. do_div(lpj, HZ);
  859. lpj_fine = lpj;
  860. use_tsc_delay();
  861. if (unsynchronized_tsc())
  862. mark_tsc_unstable("TSCs unsynchronized");
  863. check_system_tsc_reliable();
  864. }
  865. #ifdef CONFIG_SMP
  866. /*
  867. * If we have a constant TSC and are using the TSC for the delay loop,
  868. * we can skip clock calibration if another cpu in the same socket has already
  869. * been calibrated. This assumes that CONSTANT_TSC applies to all
  870. * cpus in the socket - this should be a safe assumption.
  871. */
  872. unsigned long __cpuinit calibrate_delay_is_known(void)
  873. {
  874. int i, cpu = smp_processor_id();
  875. if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
  876. return 0;
  877. for_each_online_cpu(i)
  878. if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
  879. return cpu_data(i).loops_per_jiffy;
  880. return 0;
  881. }
  882. #endif