pgtable.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507
  1. /* MN10300 Page table manipulators and constants
  2. *
  3. * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
  4. * Written by David Howells (dhowells@redhat.com)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public Licence
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the Licence, or (at your option) any later version.
  10. *
  11. *
  12. * The Linux memory management assumes a three-level page table setup. On
  13. * the i386, we use that, but "fold" the mid level into the top-level page
  14. * table, so that we physically have the same two-level page table as the
  15. * i386 mmu expects.
  16. *
  17. * This file contains the functions and defines necessary to modify and use
  18. * the i386 page table tree for the purposes of the MN10300 TLB handler
  19. * functions.
  20. */
  21. #ifndef _ASM_PGTABLE_H
  22. #define _ASM_PGTABLE_H
  23. #include <asm/cpu-regs.h>
  24. #ifndef __ASSEMBLY__
  25. #include <asm/processor.h>
  26. #include <asm/cache.h>
  27. #include <linux/threads.h>
  28. #include <asm/bitops.h>
  29. #include <linux/slab.h>
  30. #include <linux/list.h>
  31. #include <linux/spinlock.h>
  32. /*
  33. * ZERO_PAGE is a global shared page that is always zero: used
  34. * for zero-mapped memory areas etc..
  35. */
  36. #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
  37. extern unsigned long empty_zero_page[1024];
  38. extern spinlock_t pgd_lock;
  39. extern struct page *pgd_list;
  40. extern void pmd_ctor(void *, struct kmem_cache *, unsigned long);
  41. extern void pgtable_cache_init(void);
  42. extern void paging_init(void);
  43. #endif /* !__ASSEMBLY__ */
  44. /*
  45. * The Linux mn10300 paging architecture only implements both the traditional
  46. * 2-level page tables
  47. */
  48. #define PGDIR_SHIFT 22
  49. #define PTRS_PER_PGD 1024
  50. #define PTRS_PER_PUD 1 /* we don't really have any PUD physically */
  51. #define PTRS_PER_PMD 1 /* we don't really have any PMD physically */
  52. #define PTRS_PER_PTE 1024
  53. #define PGD_SIZE PAGE_SIZE
  54. #define PMD_SIZE (1UL << PMD_SHIFT)
  55. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  56. #define PGDIR_MASK (~(PGDIR_SIZE - 1))
  57. #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
  58. #define FIRST_USER_ADDRESS 0
  59. #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
  60. #define KERNEL_PGD_PTRS (PTRS_PER_PGD - USER_PGD_PTRS)
  61. #define TWOLEVEL_PGDIR_SHIFT 22
  62. #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
  63. #define BOOT_KERNEL_PGD_PTRS (1024 - BOOT_USER_PGD_PTRS)
  64. #ifndef __ASSEMBLY__
  65. extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
  66. #endif
  67. /*
  68. * Unfortunately, due to the way the MMU works on the MN10300, the vmalloc VM
  69. * area has to be in the lower half of the virtual address range (the upper
  70. * half is not translated through the TLB).
  71. *
  72. * So in this case, the vmalloc area goes at the bottom of the address map
  73. * (leaving a hole at the very bottom to catch addressing errors), and
  74. * userspace starts immediately above.
  75. *
  76. * The vmalloc() routines also leaves a hole of 4kB between each vmalloced
  77. * area to catch addressing errors.
  78. */
  79. #ifndef __ASSEMBLY__
  80. #define VMALLOC_OFFSET (8UL * 1024 * 1024)
  81. #define VMALLOC_START (0x70000000UL)
  82. #define VMALLOC_END (0x7C000000UL)
  83. #else
  84. #define VMALLOC_OFFSET (8 * 1024 * 1024)
  85. #define VMALLOC_START (0x70000000)
  86. #define VMALLOC_END (0x7C000000)
  87. #endif
  88. #ifndef __ASSEMBLY__
  89. extern pte_t kernel_vmalloc_ptes[(VMALLOC_END - VMALLOC_START) / PAGE_SIZE];
  90. #endif
  91. /* IPTEL2/DPTEL2 bit assignments */
  92. #define _PAGE_BIT_VALID xPTEL2_V_BIT
  93. #define _PAGE_BIT_CACHE xPTEL2_C_BIT
  94. #define _PAGE_BIT_PRESENT xPTEL2_PV_BIT
  95. #define _PAGE_BIT_DIRTY xPTEL2_D_BIT
  96. #define _PAGE_BIT_GLOBAL xPTEL2_G_BIT
  97. #define _PAGE_BIT_ACCESSED xPTEL2_UNUSED1_BIT /* mustn't be loaded into IPTEL2/DPTEL2 */
  98. #define _PAGE_VALID xPTEL2_V
  99. #define _PAGE_CACHE xPTEL2_C
  100. #define _PAGE_PRESENT xPTEL2_PV
  101. #define _PAGE_DIRTY xPTEL2_D
  102. #define _PAGE_PROT xPTEL2_PR
  103. #define _PAGE_PROT_RKNU xPTEL2_PR_ROK
  104. #define _PAGE_PROT_WKNU xPTEL2_PR_RWK
  105. #define _PAGE_PROT_RKRU xPTEL2_PR_ROK_ROU
  106. #define _PAGE_PROT_WKRU xPTEL2_PR_RWK_ROU
  107. #define _PAGE_PROT_WKWU xPTEL2_PR_RWK_RWU
  108. #define _PAGE_GLOBAL xPTEL2_G
  109. #define _PAGE_PS_MASK xPTEL2_PS
  110. #define _PAGE_PS_4Kb xPTEL2_PS_4Kb
  111. #define _PAGE_PS_128Kb xPTEL2_PS_128Kb
  112. #define _PAGE_PS_1Kb xPTEL2_PS_1Kb
  113. #define _PAGE_PS_4Mb xPTEL2_PS_4Mb
  114. #define _PAGE_PSE xPTEL2_PS_4Mb /* 4MB page */
  115. #define _PAGE_CACHE_WT xPTEL2_CWT
  116. #define _PAGE_ACCESSED xPTEL2_UNUSED1
  117. #define _PAGE_NX 0 /* no-execute bit */
  118. /* If _PAGE_VALID is clear, we use these: */
  119. #define _PAGE_FILE xPTEL2_C /* set:pagecache unset:swap */
  120. #define _PAGE_PROTNONE 0x000 /* If not present */
  121. #define __PAGE_PROT_UWAUX 0x010
  122. #define __PAGE_PROT_USER 0x020
  123. #define __PAGE_PROT_WRITE 0x040
  124. #define _PAGE_PRESENTV (_PAGE_PRESENT|_PAGE_VALID)
  125. #ifndef __ASSEMBLY__
  126. #define VMALLOC_VMADDR(x) ((unsigned long)(x))
  127. #define _PAGE_TABLE (_PAGE_PRESENTV | _PAGE_PROT_WKNU | _PAGE_ACCESSED | _PAGE_DIRTY)
  128. #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
  129. #define __PAGE_NONE (_PAGE_PRESENTV | _PAGE_PROT_RKNU | _PAGE_ACCESSED | _PAGE_CACHE)
  130. #define __PAGE_SHARED (_PAGE_PRESENTV | _PAGE_PROT_WKWU | _PAGE_ACCESSED | _PAGE_CACHE)
  131. #define __PAGE_COPY (_PAGE_PRESENTV | _PAGE_PROT_RKRU | _PAGE_ACCESSED | _PAGE_CACHE)
  132. #define __PAGE_READONLY (_PAGE_PRESENTV | _PAGE_PROT_RKRU | _PAGE_ACCESSED | _PAGE_CACHE)
  133. #define PAGE_NONE __pgprot(__PAGE_NONE | _PAGE_NX)
  134. #define PAGE_SHARED_NOEXEC __pgprot(__PAGE_SHARED | _PAGE_NX)
  135. #define PAGE_COPY_NOEXEC __pgprot(__PAGE_COPY | _PAGE_NX)
  136. #define PAGE_READONLY_NOEXEC __pgprot(__PAGE_READONLY | _PAGE_NX)
  137. #define PAGE_SHARED_EXEC __pgprot(__PAGE_SHARED)
  138. #define PAGE_COPY_EXEC __pgprot(__PAGE_COPY)
  139. #define PAGE_READONLY_EXEC __pgprot(__PAGE_READONLY)
  140. #define PAGE_COPY PAGE_COPY_NOEXEC
  141. #define PAGE_READONLY PAGE_READONLY_NOEXEC
  142. #define PAGE_SHARED PAGE_SHARED_EXEC
  143. #define __PAGE_KERNEL_BASE (_PAGE_PRESENTV | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_GLOBAL)
  144. #define __PAGE_KERNEL (__PAGE_KERNEL_BASE | _PAGE_PROT_WKNU | _PAGE_CACHE | _PAGE_NX)
  145. #define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL_BASE | _PAGE_PROT_WKNU | _PAGE_NX)
  146. #define __PAGE_KERNEL_EXEC (__PAGE_KERNEL & ~_PAGE_NX)
  147. #define __PAGE_KERNEL_RO (__PAGE_KERNEL_BASE | _PAGE_PROT_RKNU | _PAGE_CACHE | _PAGE_NX)
  148. #define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE)
  149. #define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)
  150. #define PAGE_KERNEL __pgprot(__PAGE_KERNEL)
  151. #define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO)
  152. #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
  153. #define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE)
  154. #define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE)
  155. #define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC)
  156. #define __PAGE_USERIO (__PAGE_KERNEL_BASE | _PAGE_PROT_WKWU | _PAGE_NX)
  157. #define PAGE_USERIO __pgprot(__PAGE_USERIO)
  158. /*
  159. * Whilst the MN10300 can do page protection for execute (given separate data
  160. * and insn TLBs), we are not supporting it at the moment. Write permission,
  161. * however, always implies read permission (but not execute permission).
  162. */
  163. #define __P000 PAGE_NONE
  164. #define __P001 PAGE_READONLY_NOEXEC
  165. #define __P010 PAGE_COPY_NOEXEC
  166. #define __P011 PAGE_COPY_NOEXEC
  167. #define __P100 PAGE_READONLY_EXEC
  168. #define __P101 PAGE_READONLY_EXEC
  169. #define __P110 PAGE_COPY_EXEC
  170. #define __P111 PAGE_COPY_EXEC
  171. #define __S000 PAGE_NONE
  172. #define __S001 PAGE_READONLY_NOEXEC
  173. #define __S010 PAGE_SHARED_NOEXEC
  174. #define __S011 PAGE_SHARED_NOEXEC
  175. #define __S100 PAGE_READONLY_EXEC
  176. #define __S101 PAGE_READONLY_EXEC
  177. #define __S110 PAGE_SHARED_EXEC
  178. #define __S111 PAGE_SHARED_EXEC
  179. /*
  180. * Define this to warn about kernel memory accesses that are
  181. * done without a 'verify_area(VERIFY_WRITE,..)'
  182. */
  183. #undef TEST_VERIFY_AREA
  184. #define pte_present(x) (pte_val(x) & _PAGE_VALID)
  185. #define pte_clear(mm, addr, xp) \
  186. do { \
  187. set_pte_at((mm), (addr), (xp), __pte(0)); \
  188. } while (0)
  189. #define pmd_none(x) (!pmd_val(x))
  190. #define pmd_present(x) (!pmd_none(x))
  191. #define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0)
  192. #define pmd_bad(x) 0
  193. #define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT))
  194. #ifndef __ASSEMBLY__
  195. /*
  196. * The following only work if pte_present() is true.
  197. * Undefined behaviour if not..
  198. */
  199. static inline int pte_user(pte_t pte) { return pte_val(pte) & __PAGE_PROT_USER; }
  200. static inline int pte_read(pte_t pte) { return pte_val(pte) & __PAGE_PROT_USER; }
  201. static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
  202. static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
  203. static inline int pte_write(pte_t pte) { return pte_val(pte) & __PAGE_PROT_WRITE; }
  204. static inline int pte_special(pte_t pte){ return 0; }
  205. /*
  206. * The following only works if pte_present() is not true.
  207. */
  208. static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
  209. static inline pte_t pte_rdprotect(pte_t pte)
  210. {
  211. pte_val(pte) &= ~(__PAGE_PROT_USER|__PAGE_PROT_UWAUX); return pte;
  212. }
  213. static inline pte_t pte_exprotect(pte_t pte)
  214. {
  215. pte_val(pte) |= _PAGE_NX; return pte;
  216. }
  217. static inline pte_t pte_wrprotect(pte_t pte)
  218. {
  219. pte_val(pte) &= ~(__PAGE_PROT_WRITE|__PAGE_PROT_UWAUX); return pte;
  220. }
  221. static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
  222. static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
  223. static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
  224. static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
  225. static inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) &= ~_PAGE_NX; return pte; }
  226. static inline pte_t pte_mkread(pte_t pte)
  227. {
  228. pte_val(pte) |= __PAGE_PROT_USER;
  229. if (pte_write(pte))
  230. pte_val(pte) |= __PAGE_PROT_UWAUX;
  231. return pte;
  232. }
  233. static inline pte_t pte_mkwrite(pte_t pte)
  234. {
  235. pte_val(pte) |= __PAGE_PROT_WRITE;
  236. if (pte_val(pte) & __PAGE_PROT_USER)
  237. pte_val(pte) |= __PAGE_PROT_UWAUX;
  238. return pte;
  239. }
  240. static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
  241. #define pte_ERROR(e) \
  242. printk(KERN_ERR "%s:%d: bad pte %08lx.\n", \
  243. __FILE__, __LINE__, pte_val(e))
  244. #define pgd_ERROR(e) \
  245. printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
  246. __FILE__, __LINE__, pgd_val(e))
  247. /*
  248. * The "pgd_xxx()" functions here are trivial for a folded two-level
  249. * setup: the pgd is never bad, and a pmd always exists (as it's folded
  250. * into the pgd entry)
  251. */
  252. #define pgd_clear(xp) do { } while (0)
  253. /*
  254. * Certain architectures need to do special things when PTEs
  255. * within a page table are directly modified. Thus, the following
  256. * hook is made available.
  257. */
  258. #define set_pte(pteptr, pteval) (*(pteptr) = pteval)
  259. #define set_pte_at(mm, addr, ptep, pteval) set_pte((ptep), (pteval))
  260. #define set_pte_atomic(pteptr, pteval) set_pte((pteptr), (pteval))
  261. /*
  262. * (pmds are folded into pgds so this doesn't get actually called,
  263. * but the define is needed for a generic inline function.)
  264. */
  265. #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
  266. #define ptep_get_and_clear(mm, addr, ptep) \
  267. __pte(xchg(&(ptep)->pte, 0))
  268. #define pte_same(a, b) (pte_val(a) == pte_val(b))
  269. #define pte_page(x) pfn_to_page(pte_pfn(x))
  270. #define pte_none(x) (!pte_val(x))
  271. #define pte_pfn(x) ((unsigned long) (pte_val(x) >> PAGE_SHIFT))
  272. #define __pfn_addr(pfn) ((pfn) << PAGE_SHIFT)
  273. #define pfn_pte(pfn, prot) __pte(__pfn_addr(pfn) | pgprot_val(prot))
  274. #define pfn_pmd(pfn, prot) __pmd(__pfn_addr(pfn) | pgprot_val(prot))
  275. /*
  276. * All present user pages are user-executable:
  277. */
  278. static inline int pte_exec(pte_t pte)
  279. {
  280. return pte_user(pte);
  281. }
  282. /*
  283. * All present pages are kernel-executable:
  284. */
  285. static inline int pte_exec_kernel(pte_t pte)
  286. {
  287. return 1;
  288. }
  289. #define PTE_FILE_MAX_BITS 30
  290. #define pte_to_pgoff(pte) (pte_val(pte) >> 2)
  291. #define pgoff_to_pte(off) __pte((off) << 2 | _PAGE_FILE)
  292. /* Encode and de-code a swap entry */
  293. #define __swp_type(x) (((x).val >> 2) & 0x3f)
  294. #define __swp_offset(x) ((x).val >> 8)
  295. #define __swp_entry(type, offset) \
  296. ((swp_entry_t) { ((type) << 2) | ((offset) << 8) })
  297. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  298. #define __swp_entry_to_pte(x) __pte((x).val)
  299. static inline
  300. int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr,
  301. pte_t *ptep)
  302. {
  303. if (!pte_dirty(*ptep))
  304. return 0;
  305. return test_and_clear_bit(_PAGE_BIT_DIRTY, &ptep->pte);
  306. }
  307. static inline
  308. int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
  309. pte_t *ptep)
  310. {
  311. if (!pte_young(*ptep))
  312. return 0;
  313. return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte);
  314. }
  315. static inline
  316. void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  317. {
  318. pte_val(*ptep) &= ~(__PAGE_PROT_WRITE|__PAGE_PROT_UWAUX);
  319. }
  320. static inline void ptep_mkdirty(pte_t *ptep)
  321. {
  322. set_bit(_PAGE_BIT_DIRTY, &ptep->pte);
  323. }
  324. /*
  325. * Macro to mark a page protection value as "uncacheable". On processors which
  326. * do not support it, this is a no-op.
  327. */
  328. #define pgprot_noncached(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHE)
  329. /*
  330. * Macro to mark a page protection value as "Write-Through".
  331. * On processors which do not support it, this is a no-op.
  332. */
  333. #define pgprot_through(prot) __pgprot(pgprot_val(prot) | _PAGE_CACHE_WT)
  334. /*
  335. * Conversion functions: convert a page and protection to a page entry,
  336. * and a page entry and page directory to the page they refer to.
  337. */
  338. #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
  339. #define mk_pte_huge(entry) \
  340. ((entry).pte |= _PAGE_PRESENT | _PAGE_PSE | _PAGE_VALID)
  341. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  342. {
  343. pte_val(pte) &= _PAGE_CHG_MASK;
  344. pte_val(pte) |= pgprot_val(newprot);
  345. return pte;
  346. }
  347. #define page_pte(page) page_pte_prot((page), __pgprot(0))
  348. #define pmd_page_kernel(pmd) \
  349. ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
  350. #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
  351. #define pmd_large(pmd) \
  352. ((pmd_val(pmd) & (_PAGE_PSE | _PAGE_PRESENT)) == \
  353. (_PAGE_PSE | _PAGE_PRESENT))
  354. /*
  355. * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
  356. *
  357. * this macro returns the index of the entry in the pgd page which would
  358. * control the given virtual address
  359. */
  360. #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
  361. /*
  362. * pgd_offset() returns a (pgd_t *)
  363. * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
  364. */
  365. #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
  366. /*
  367. * a shortcut which implies the use of the kernel's pgd, instead
  368. * of a process's
  369. */
  370. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  371. /*
  372. * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
  373. *
  374. * this macro returns the index of the entry in the pmd page which would
  375. * control the given virtual address
  376. */
  377. #define pmd_index(address) \
  378. (((address) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
  379. /*
  380. * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
  381. *
  382. * this macro returns the index of the entry in the pte page which would
  383. * control the given virtual address
  384. */
  385. #define pte_index(address) \
  386. (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
  387. #define pte_offset_kernel(dir, address) \
  388. ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(address))
  389. /*
  390. * Make a given kernel text page executable/non-executable.
  391. * Returns the previous executability setting of that page (which
  392. * is used to restore the previous state). Used by the SMP bootup code.
  393. * NOTE: this is an __init function for security reasons.
  394. */
  395. static inline int set_kernel_exec(unsigned long vaddr, int enable)
  396. {
  397. return 0;
  398. }
  399. #define pte_offset_map(dir, address) \
  400. ((pte_t *) page_address(pmd_page(*(dir))) + pte_index(address))
  401. #define pte_unmap(pte) do {} while (0)
  402. /*
  403. * The MN10300 has external MMU info in the form of a TLB: this is adapted from
  404. * the kernel page tables containing the necessary information by tlb-mn10300.S
  405. */
  406. extern void update_mmu_cache(struct vm_area_struct *vma,
  407. unsigned long address, pte_t *ptep);
  408. #endif /* !__ASSEMBLY__ */
  409. #define kern_addr_valid(addr) (1)
  410. #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
  411. remap_pfn_range((vma), (vaddr), (pfn), (size), (prot))
  412. #define MK_IOSPACE_PFN(space, pfn) (pfn)
  413. #define GET_IOSPACE(pfn) 0
  414. #define GET_PFN(pfn) (pfn)
  415. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  416. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
  417. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  418. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  419. #define __HAVE_ARCH_PTEP_MKDIRTY
  420. #define __HAVE_ARCH_PTE_SAME
  421. #include <asm-generic/pgtable.h>
  422. #endif /* !__ASSEMBLY__ */
  423. #endif /* _ASM_PGTABLE_H */