sysfs-interface 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747
  1. Naming and data format standards for sysfs files
  2. ------------------------------------------------
  3. The libsensors library offers an interface to the raw sensors data
  4. through the sysfs interface. Since lm-sensors 3.0.0, libsensors is
  5. completely chip-independent. It assumes that all the kernel drivers
  6. implement the standard sysfs interface described in this document.
  7. This makes adding or updating support for any given chip very easy, as
  8. libsensors, and applications using it, do not need to be modified.
  9. This is a major improvement compared to lm-sensors 2.
  10. Note that motherboards vary widely in the connections to sensor chips.
  11. There is no standard that ensures, for example, that the second
  12. temperature sensor is connected to the CPU, or that the second fan is on
  13. the CPU. Also, some values reported by the chips need some computation
  14. before they make full sense. For example, most chips can only measure
  15. voltages between 0 and +4V. Other voltages are scaled back into that
  16. range using external resistors. Since the values of these resistors
  17. can change from motherboard to motherboard, the conversions cannot be
  18. hard coded into the driver and have to be done in user space.
  19. For this reason, even if we aim at a chip-independent libsensors, it will
  20. still require a configuration file (e.g. /etc/sensors.conf) for proper
  21. values conversion, labeling of inputs and hiding of unused inputs.
  22. An alternative method that some programs use is to access the sysfs
  23. files directly. This document briefly describes the standards that the
  24. drivers follow, so that an application program can scan for entries and
  25. access this data in a simple and consistent way. That said, such programs
  26. will have to implement conversion, labeling and hiding of inputs. For
  27. this reason, it is still not recommended to bypass the library.
  28. Each chip gets its own directory in the sysfs /sys/devices tree. To
  29. find all sensor chips, it is easier to follow the device symlinks from
  30. /sys/class/hwmon/hwmon*.
  31. Up to lm-sensors 3.0.0, libsensors looks for hardware monitoring attributes
  32. in the "physical" device directory. Since lm-sensors 3.0.1, attributes found
  33. in the hwmon "class" device directory are also supported. Complex drivers
  34. (e.g. drivers for multifunction chips) may want to use this possibility to
  35. avoid namespace pollution. The only drawback will be that older versions of
  36. libsensors won't support the driver in question.
  37. All sysfs values are fixed point numbers.
  38. There is only one value per file, unlike the older /proc specification.
  39. The common scheme for files naming is: <type><number>_<item>. Usual
  40. types for sensor chips are "in" (voltage), "temp" (temperature) and
  41. "fan" (fan). Usual items are "input" (measured value), "max" (high
  42. threshold, "min" (low threshold). Numbering usually starts from 1,
  43. except for voltages which start from 0 (because most data sheets use
  44. this). A number is always used for elements that can be present more
  45. than once, even if there is a single element of the given type on the
  46. specific chip. Other files do not refer to a specific element, so
  47. they have a simple name, and no number.
  48. Alarms are direct indications read from the chips. The drivers do NOT
  49. make comparisons of readings to thresholds. This allows violations
  50. between readings to be caught and alarmed. The exact definition of an
  51. alarm (for example, whether a threshold must be met or must be exceeded
  52. to cause an alarm) is chip-dependent.
  53. When setting values of hwmon sysfs attributes, the string representation of
  54. the desired value must be written, note that strings which are not a number
  55. are interpreted as 0! For more on how written strings are interpreted see the
  56. "sysfs attribute writes interpretation" section at the end of this file.
  57. -------------------------------------------------------------------------
  58. [0-*] denotes any positive number starting from 0
  59. [1-*] denotes any positive number starting from 1
  60. RO read only value
  61. WO write only value
  62. RW read/write value
  63. Read/write values may be read-only for some chips, depending on the
  64. hardware implementation.
  65. All entries (except name) are optional, and should only be created in a
  66. given driver if the chip has the feature.
  67. *********************
  68. * Global attributes *
  69. *********************
  70. name The chip name.
  71. This should be a short, lowercase string, not containing
  72. spaces nor dashes, representing the chip name. This is
  73. the only mandatory attribute.
  74. I2C devices get this attribute created automatically.
  75. RO
  76. update_interval The interval at which the chip will update readings.
  77. Unit: millisecond
  78. RW
  79. Some devices have a variable update rate or interval.
  80. This attribute can be used to change it to the desired value.
  81. ************
  82. * Voltages *
  83. ************
  84. in[0-*]_min Voltage min value.
  85. Unit: millivolt
  86. RW
  87. in[0-*]_lcrit Voltage critical min value.
  88. Unit: millivolt
  89. RW
  90. If voltage drops to or below this limit, the system may
  91. take drastic action such as power down or reset. At the very
  92. least, it should report a fault.
  93. in[0-*]_max Voltage max value.
  94. Unit: millivolt
  95. RW
  96. in[0-*]_crit Voltage critical max value.
  97. Unit: millivolt
  98. RW
  99. If voltage reaches or exceeds this limit, the system may
  100. take drastic action such as power down or reset. At the very
  101. least, it should report a fault.
  102. in[0-*]_input Voltage input value.
  103. Unit: millivolt
  104. RO
  105. Voltage measured on the chip pin.
  106. Actual voltage depends on the scaling resistors on the
  107. motherboard, as recommended in the chip datasheet.
  108. This varies by chip and by motherboard.
  109. Because of this variation, values are generally NOT scaled
  110. by the chip driver, and must be done by the application.
  111. However, some drivers (notably lm87 and via686a)
  112. do scale, because of internal resistors built into a chip.
  113. These drivers will output the actual voltage. Rule of
  114. thumb: drivers should report the voltage values at the
  115. "pins" of the chip.
  116. in[0-*]_average
  117. Average voltage
  118. Unit: millivolt
  119. RO
  120. in[0-*]_lowest
  121. Historical minimum voltage
  122. Unit: millivolt
  123. RO
  124. in[0-*]_highest
  125. Historical maximum voltage
  126. Unit: millivolt
  127. RO
  128. in[0-*]_reset_history
  129. Reset inX_lowest and inX_highest
  130. WO
  131. in_reset_history
  132. Reset inX_lowest and inX_highest for all sensors
  133. WO
  134. in[0-*]_label Suggested voltage channel label.
  135. Text string
  136. Should only be created if the driver has hints about what
  137. this voltage channel is being used for, and user-space
  138. doesn't. In all other cases, the label is provided by
  139. user-space.
  140. RO
  141. cpu[0-*]_vid CPU core reference voltage.
  142. Unit: millivolt
  143. RO
  144. Not always correct.
  145. vrm Voltage Regulator Module version number.
  146. RW (but changing it should no more be necessary)
  147. Originally the VRM standard version multiplied by 10, but now
  148. an arbitrary number, as not all standards have a version
  149. number.
  150. Affects the way the driver calculates the CPU core reference
  151. voltage from the vid pins.
  152. Also see the Alarms section for status flags associated with voltages.
  153. ********
  154. * Fans *
  155. ********
  156. fan[1-*]_min Fan minimum value
  157. Unit: revolution/min (RPM)
  158. RW
  159. fan[1-*]_max Fan maximum value
  160. Unit: revolution/min (RPM)
  161. Only rarely supported by the hardware.
  162. RW
  163. fan[1-*]_input Fan input value.
  164. Unit: revolution/min (RPM)
  165. RO
  166. fan[1-*]_div Fan divisor.
  167. Integer value in powers of two (1, 2, 4, 8, 16, 32, 64, 128).
  168. RW
  169. Some chips only support values 1, 2, 4 and 8.
  170. Note that this is actually an internal clock divisor, which
  171. affects the measurable speed range, not the read value.
  172. fan[1-*]_pulses Number of tachometer pulses per fan revolution.
  173. Integer value, typically between 1 and 4.
  174. RW
  175. This value is a characteristic of the fan connected to the
  176. device's input, so it has to be set in accordance with the fan
  177. model.
  178. Should only be created if the chip has a register to configure
  179. the number of pulses. In the absence of such a register (and
  180. thus attribute) the value assumed by all devices is 2 pulses
  181. per fan revolution.
  182. fan[1-*]_target
  183. Desired fan speed
  184. Unit: revolution/min (RPM)
  185. RW
  186. Only makes sense if the chip supports closed-loop fan speed
  187. control based on the measured fan speed.
  188. fan[1-*]_label Suggested fan channel label.
  189. Text string
  190. Should only be created if the driver has hints about what
  191. this fan channel is being used for, and user-space doesn't.
  192. In all other cases, the label is provided by user-space.
  193. RO
  194. Also see the Alarms section for status flags associated with fans.
  195. *******
  196. * PWM *
  197. *******
  198. pwm[1-*] Pulse width modulation fan control.
  199. Integer value in the range 0 to 255
  200. RW
  201. 255 is max or 100%.
  202. pwm[1-*]_enable
  203. Fan speed control method:
  204. 0: no fan speed control (i.e. fan at full speed)
  205. 1: manual fan speed control enabled (using pwm[1-*])
  206. 2+: automatic fan speed control enabled
  207. Check individual chip documentation files for automatic mode
  208. details.
  209. RW
  210. pwm[1-*]_mode 0: DC mode (direct current)
  211. 1: PWM mode (pulse-width modulation)
  212. RW
  213. pwm[1-*]_freq Base PWM frequency in Hz.
  214. Only possibly available when pwmN_mode is PWM, but not always
  215. present even then.
  216. RW
  217. pwm[1-*]_auto_channels_temp
  218. Select which temperature channels affect this PWM output in
  219. auto mode. Bitfield, 1 is temp1, 2 is temp2, 4 is temp3 etc...
  220. Which values are possible depend on the chip used.
  221. RW
  222. pwm[1-*]_auto_point[1-*]_pwm
  223. pwm[1-*]_auto_point[1-*]_temp
  224. pwm[1-*]_auto_point[1-*]_temp_hyst
  225. Define the PWM vs temperature curve. Number of trip points is
  226. chip-dependent. Use this for chips which associate trip points
  227. to PWM output channels.
  228. RW
  229. temp[1-*]_auto_point[1-*]_pwm
  230. temp[1-*]_auto_point[1-*]_temp
  231. temp[1-*]_auto_point[1-*]_temp_hyst
  232. Define the PWM vs temperature curve. Number of trip points is
  233. chip-dependent. Use this for chips which associate trip points
  234. to temperature channels.
  235. RW
  236. There is a third case where trip points are associated to both PWM output
  237. channels and temperature channels: the PWM values are associated to PWM
  238. output channels while the temperature values are associated to temperature
  239. channels. In that case, the result is determined by the mapping between
  240. temperature inputs and PWM outputs. When several temperature inputs are
  241. mapped to a given PWM output, this leads to several candidate PWM values.
  242. The actual result is up to the chip, but in general the highest candidate
  243. value (fastest fan speed) wins.
  244. ****************
  245. * Temperatures *
  246. ****************
  247. temp[1-*]_type Sensor type selection.
  248. Integers 1 to 6
  249. RW
  250. 1: CPU embedded diode
  251. 2: 3904 transistor
  252. 3: thermal diode
  253. 4: thermistor
  254. 5: AMD AMDSI
  255. 6: Intel PECI
  256. Not all types are supported by all chips
  257. temp[1-*]_max Temperature max value.
  258. Unit: millidegree Celsius (or millivolt, see below)
  259. RW
  260. temp[1-*]_min Temperature min value.
  261. Unit: millidegree Celsius
  262. RW
  263. temp[1-*]_max_hyst
  264. Temperature hysteresis value for max limit.
  265. Unit: millidegree Celsius
  266. Must be reported as an absolute temperature, NOT a delta
  267. from the max value.
  268. RW
  269. temp[1-*]_input Temperature input value.
  270. Unit: millidegree Celsius
  271. RO
  272. temp[1-*]_crit Temperature critical max value, typically greater than
  273. corresponding temp_max values.
  274. Unit: millidegree Celsius
  275. RW
  276. temp[1-*]_crit_hyst
  277. Temperature hysteresis value for critical limit.
  278. Unit: millidegree Celsius
  279. Must be reported as an absolute temperature, NOT a delta
  280. from the critical value.
  281. RW
  282. temp[1-*]_emergency
  283. Temperature emergency max value, for chips supporting more than
  284. two upper temperature limits. Must be equal or greater than
  285. corresponding temp_crit values.
  286. Unit: millidegree Celsius
  287. RW
  288. temp[1-*]_emergency_hyst
  289. Temperature hysteresis value for emergency limit.
  290. Unit: millidegree Celsius
  291. Must be reported as an absolute temperature, NOT a delta
  292. from the emergency value.
  293. RW
  294. temp[1-*]_lcrit Temperature critical min value, typically lower than
  295. corresponding temp_min values.
  296. Unit: millidegree Celsius
  297. RW
  298. temp[1-*]_offset
  299. Temperature offset which is added to the temperature reading
  300. by the chip.
  301. Unit: millidegree Celsius
  302. Read/Write value.
  303. temp[1-*]_label Suggested temperature channel label.
  304. Text string
  305. Should only be created if the driver has hints about what
  306. this temperature channel is being used for, and user-space
  307. doesn't. In all other cases, the label is provided by
  308. user-space.
  309. RO
  310. temp[1-*]_lowest
  311. Historical minimum temperature
  312. Unit: millidegree Celsius
  313. RO
  314. temp[1-*]_highest
  315. Historical maximum temperature
  316. Unit: millidegree Celsius
  317. RO
  318. temp[1-*]_reset_history
  319. Reset temp_lowest and temp_highest
  320. WO
  321. temp_reset_history
  322. Reset temp_lowest and temp_highest for all sensors
  323. WO
  324. Some chips measure temperature using external thermistors and an ADC, and
  325. report the temperature measurement as a voltage. Converting this voltage
  326. back to a temperature (or the other way around for limits) requires
  327. mathematical functions not available in the kernel, so the conversion
  328. must occur in user space. For these chips, all temp* files described
  329. above should contain values expressed in millivolt instead of millidegree
  330. Celsius. In other words, such temperature channels are handled as voltage
  331. channels by the driver.
  332. Also see the Alarms section for status flags associated with temperatures.
  333. ************
  334. * Currents *
  335. ************
  336. curr[1-*]_max Current max value
  337. Unit: milliampere
  338. RW
  339. curr[1-*]_min Current min value.
  340. Unit: milliampere
  341. RW
  342. curr[1-*]_lcrit Current critical low value
  343. Unit: milliampere
  344. RW
  345. curr[1-*]_crit Current critical high value.
  346. Unit: milliampere
  347. RW
  348. curr[1-*]_input Current input value
  349. Unit: milliampere
  350. RO
  351. curr[1-*]_average
  352. Average current use
  353. Unit: milliampere
  354. RO
  355. curr[1-*]_lowest
  356. Historical minimum current
  357. Unit: milliampere
  358. RO
  359. curr[1-*]_highest
  360. Historical maximum current
  361. Unit: milliampere
  362. RO
  363. curr[1-*]_reset_history
  364. Reset currX_lowest and currX_highest
  365. WO
  366. curr_reset_history
  367. Reset currX_lowest and currX_highest for all sensors
  368. WO
  369. Also see the Alarms section for status flags associated with currents.
  370. *********
  371. * Power *
  372. *********
  373. power[1-*]_average Average power use
  374. Unit: microWatt
  375. RO
  376. power[1-*]_average_interval Power use averaging interval. A poll
  377. notification is sent to this file if the
  378. hardware changes the averaging interval.
  379. Unit: milliseconds
  380. RW
  381. power[1-*]_average_interval_max Maximum power use averaging interval
  382. Unit: milliseconds
  383. RO
  384. power[1-*]_average_interval_min Minimum power use averaging interval
  385. Unit: milliseconds
  386. RO
  387. power[1-*]_average_highest Historical average maximum power use
  388. Unit: microWatt
  389. RO
  390. power[1-*]_average_lowest Historical average minimum power use
  391. Unit: microWatt
  392. RO
  393. power[1-*]_average_max A poll notification is sent to
  394. power[1-*]_average when power use
  395. rises above this value.
  396. Unit: microWatt
  397. RW
  398. power[1-*]_average_min A poll notification is sent to
  399. power[1-*]_average when power use
  400. sinks below this value.
  401. Unit: microWatt
  402. RW
  403. power[1-*]_input Instantaneous power use
  404. Unit: microWatt
  405. RO
  406. power[1-*]_input_highest Historical maximum power use
  407. Unit: microWatt
  408. RO
  409. power[1-*]_input_lowest Historical minimum power use
  410. Unit: microWatt
  411. RO
  412. power[1-*]_reset_history Reset input_highest, input_lowest,
  413. average_highest and average_lowest.
  414. WO
  415. power[1-*]_accuracy Accuracy of the power meter.
  416. Unit: Percent
  417. RO
  418. power[1-*]_cap If power use rises above this limit, the
  419. system should take action to reduce power use.
  420. A poll notification is sent to this file if the
  421. cap is changed by the hardware. The *_cap
  422. files only appear if the cap is known to be
  423. enforced by hardware.
  424. Unit: microWatt
  425. RW
  426. power[1-*]_cap_hyst Margin of hysteresis built around capping and
  427. notification.
  428. Unit: microWatt
  429. RW
  430. power[1-*]_cap_max Maximum cap that can be set.
  431. Unit: microWatt
  432. RO
  433. power[1-*]_cap_min Minimum cap that can be set.
  434. Unit: microWatt
  435. RO
  436. power[1-*]_max Maximum power.
  437. Unit: microWatt
  438. RW
  439. power[1-*]_crit Critical maximum power.
  440. If power rises to or above this limit, the
  441. system is expected take drastic action to reduce
  442. power consumption, such as a system shutdown or
  443. a forced powerdown of some devices.
  444. Unit: microWatt
  445. RW
  446. Also see the Alarms section for status flags associated with power readings.
  447. **********
  448. * Energy *
  449. **********
  450. energy[1-*]_input Cumulative energy use
  451. Unit: microJoule
  452. RO
  453. ************
  454. * Humidity *
  455. ************
  456. humidity[1-*]_input Humidity
  457. Unit: milli-percent (per cent mille, pcm)
  458. RO
  459. **********
  460. * Alarms *
  461. **********
  462. Each channel or limit may have an associated alarm file, containing a
  463. boolean value. 1 means than an alarm condition exists, 0 means no alarm.
  464. Usually a given chip will either use channel-related alarms, or
  465. limit-related alarms, not both. The driver should just reflect the hardware
  466. implementation.
  467. in[0-*]_alarm
  468. curr[1-*]_alarm
  469. power[1-*]_alarm
  470. fan[1-*]_alarm
  471. temp[1-*]_alarm
  472. Channel alarm
  473. 0: no alarm
  474. 1: alarm
  475. RO
  476. OR
  477. in[0-*]_min_alarm
  478. in[0-*]_max_alarm
  479. in[0-*]_lcrit_alarm
  480. in[0-*]_crit_alarm
  481. curr[1-*]_min_alarm
  482. curr[1-*]_max_alarm
  483. curr[1-*]_lcrit_alarm
  484. curr[1-*]_crit_alarm
  485. power[1-*]_cap_alarm
  486. power[1-*]_max_alarm
  487. power[1-*]_crit_alarm
  488. fan[1-*]_min_alarm
  489. fan[1-*]_max_alarm
  490. temp[1-*]_min_alarm
  491. temp[1-*]_max_alarm
  492. temp[1-*]_lcrit_alarm
  493. temp[1-*]_crit_alarm
  494. temp[1-*]_emergency_alarm
  495. Limit alarm
  496. 0: no alarm
  497. 1: alarm
  498. RO
  499. Each input channel may have an associated fault file. This can be used
  500. to notify open diodes, unconnected fans etc. where the hardware
  501. supports it. When this boolean has value 1, the measurement for that
  502. channel should not be trusted.
  503. fan[1-*]_fault
  504. temp[1-*]_fault
  505. Input fault condition
  506. 0: no fault occurred
  507. 1: fault condition
  508. RO
  509. Some chips also offer the possibility to get beeped when an alarm occurs:
  510. beep_enable Master beep enable
  511. 0: no beeps
  512. 1: beeps
  513. RW
  514. in[0-*]_beep
  515. curr[1-*]_beep
  516. fan[1-*]_beep
  517. temp[1-*]_beep
  518. Channel beep
  519. 0: disable
  520. 1: enable
  521. RW
  522. In theory, a chip could provide per-limit beep masking, but no such chip
  523. was seen so far.
  524. Old drivers provided a different, non-standard interface to alarms and
  525. beeps. These interface files are deprecated, but will be kept around
  526. for compatibility reasons:
  527. alarms Alarm bitmask.
  528. RO
  529. Integer representation of one to four bytes.
  530. A '1' bit means an alarm.
  531. Chips should be programmed for 'comparator' mode so that
  532. the alarm will 'come back' after you read the register
  533. if it is still valid.
  534. Generally a direct representation of a chip's internal
  535. alarm registers; there is no standard for the position
  536. of individual bits. For this reason, the use of this
  537. interface file for new drivers is discouraged. Use
  538. individual *_alarm and *_fault files instead.
  539. Bits are defined in kernel/include/sensors.h.
  540. beep_mask Bitmask for beep.
  541. Same format as 'alarms' with the same bit locations,
  542. use discouraged for the same reason. Use individual
  543. *_beep files instead.
  544. RW
  545. ***********************
  546. * Intrusion detection *
  547. ***********************
  548. intrusion[0-*]_alarm
  549. Chassis intrusion detection
  550. 0: OK
  551. 1: intrusion detected
  552. RW
  553. Contrary to regular alarm flags which clear themselves
  554. automatically when read, this one sticks until cleared by
  555. the user. This is done by writing 0 to the file. Writing
  556. other values is unsupported.
  557. intrusion[0-*]_beep
  558. Chassis intrusion beep
  559. 0: disable
  560. 1: enable
  561. RW
  562. sysfs attribute writes interpretation
  563. -------------------------------------
  564. hwmon sysfs attributes always contain numbers, so the first thing to do is to
  565. convert the input to a number, there are 2 ways todo this depending whether
  566. the number can be negative or not:
  567. unsigned long u = simple_strtoul(buf, NULL, 10);
  568. long s = simple_strtol(buf, NULL, 10);
  569. With buf being the buffer with the user input being passed by the kernel.
  570. Notice that we do not use the second argument of strto[u]l, and thus cannot
  571. tell when 0 is returned, if this was really 0 or is caused by invalid input.
  572. This is done deliberately as checking this everywhere would add a lot of
  573. code to the kernel.
  574. Notice that it is important to always store the converted value in an
  575. unsigned long or long, so that no wrap around can happen before any further
  576. checking.
  577. After the input string is converted to an (unsigned) long, the value should be
  578. checked if its acceptable. Be careful with further conversions on the value
  579. before checking it for validity, as these conversions could still cause a wrap
  580. around before the check. For example do not multiply the result, and only
  581. add/subtract if it has been divided before the add/subtract.
  582. What to do if a value is found to be invalid, depends on the type of the
  583. sysfs attribute that is being set. If it is a continuous setting like a
  584. tempX_max or inX_max attribute, then the value should be clamped to its
  585. limits using SENSORS_LIMIT(value, min_limit, max_limit). If it is not
  586. continuous like for example a tempX_type, then when an invalid value is
  587. written, -EINVAL should be returned.
  588. Example1, temp1_max, register is a signed 8 bit value (-128 - 127 degrees):
  589. long v = simple_strtol(buf, NULL, 10) / 1000;
  590. v = SENSORS_LIMIT(v, -128, 127);
  591. /* write v to register */
  592. Example2, fan divider setting, valid values 2, 4 and 8:
  593. unsigned long v = simple_strtoul(buf, NULL, 10);
  594. switch (v) {
  595. case 2: v = 1; break;
  596. case 4: v = 2; break;
  597. case 8: v = 3; break;
  598. default:
  599. return -EINVAL;
  600. }
  601. /* write v to register */