tcp_cubic.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542
  1. /*
  2. * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
  3. * Home page:
  4. * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
  5. * This is from the implementation of CUBIC TCP in
  6. * Sangtae Ha, Injong Rhee and Lisong Xu,
  7. * "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
  8. * in ACM SIGOPS Operating System Review, July 2008.
  9. * Available from:
  10. * http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
  11. *
  12. * CUBIC integrates a new slow start algorithm, called HyStart.
  13. * The details of HyStart are presented in
  14. * Sangtae Ha and Injong Rhee,
  15. * "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
  16. * Available from:
  17. * http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
  18. *
  19. * All testing results are available from:
  20. * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
  21. *
  22. * Unless CUBIC is enabled and congestion window is large
  23. * this behaves the same as the original Reno.
  24. */
  25. #include <linux/mm.h>
  26. #include <linux/module.h>
  27. #include <linux/math64.h>
  28. #include <net/tcp.h>
  29. #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
  30. * max_cwnd = snd_cwnd * beta
  31. */
  32. #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
  33. /* Two methods of hybrid slow start */
  34. #define HYSTART_ACK_TRAIN 0x1
  35. #define HYSTART_DELAY 0x2
  36. /* Number of delay samples for detecting the increase of delay */
  37. #define HYSTART_MIN_SAMPLES 8
  38. #define HYSTART_DELAY_MIN (4U<<3)
  39. #define HYSTART_DELAY_MAX (16U<<3)
  40. #define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
  41. static int fast_convergence __read_mostly = 1;
  42. static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */
  43. static int initial_ssthresh __read_mostly;
  44. static int bic_scale __read_mostly = 41;
  45. static int tcp_friendliness __read_mostly = 1;
  46. static int hystart __read_mostly = 1;
  47. static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
  48. static int hystart_low_window __read_mostly = 16;
  49. static int hystart_ack_delta __read_mostly = 2;
  50. static u32 cube_rtt_scale __read_mostly;
  51. static u32 beta_scale __read_mostly;
  52. static u64 cube_factor __read_mostly;
  53. /* Note parameters that are used for precomputing scale factors are read-only */
  54. module_param(fast_convergence, int, 0644);
  55. MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
  56. module_param(beta, int, 0644);
  57. MODULE_PARM_DESC(beta, "beta for multiplicative increase");
  58. module_param(initial_ssthresh, int, 0644);
  59. MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
  60. module_param(bic_scale, int, 0444);
  61. MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
  62. module_param(tcp_friendliness, int, 0644);
  63. MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
  64. module_param(hystart, int, 0644);
  65. MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
  66. module_param(hystart_detect, int, 0644);
  67. MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms"
  68. " 1: packet-train 2: delay 3: both packet-train and delay");
  69. module_param(hystart_low_window, int, 0644);
  70. MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
  71. module_param(hystart_ack_delta, int, 0644);
  72. MODULE_PARM_DESC(hystart_ack_delta, "spacing between ack's indicating train (msecs)");
  73. /* BIC TCP Parameters */
  74. struct bictcp {
  75. u32 cnt; /* increase cwnd by 1 after ACKs */
  76. u32 last_max_cwnd; /* last maximum snd_cwnd */
  77. u32 loss_cwnd; /* congestion window at last loss */
  78. u32 last_cwnd; /* the last snd_cwnd */
  79. u32 last_time; /* time when updated last_cwnd */
  80. u32 bic_origin_point;/* origin point of bic function */
  81. u32 bic_K; /* time to origin point
  82. from the beginning of the current epoch */
  83. u32 delay_min; /* min delay (msec << 3) */
  84. u32 epoch_start; /* beginning of an epoch */
  85. u32 ack_cnt; /* number of acks */
  86. u32 tcp_cwnd; /* estimated tcp cwnd */
  87. #define ACK_RATIO_SHIFT 4
  88. #define ACK_RATIO_LIMIT (32u << ACK_RATIO_SHIFT)
  89. u16 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */
  90. u8 sample_cnt; /* number of samples to decide curr_rtt */
  91. u8 found; /* the exit point is found? */
  92. u32 round_start; /* beginning of each round */
  93. u32 end_seq; /* end_seq of the round */
  94. u32 last_ack; /* last time when the ACK spacing is close */
  95. u32 curr_rtt; /* the minimum rtt of current round */
  96. };
  97. static inline void bictcp_reset(struct bictcp *ca)
  98. {
  99. ca->cnt = 0;
  100. ca->last_max_cwnd = 0;
  101. ca->last_cwnd = 0;
  102. ca->last_time = 0;
  103. ca->bic_origin_point = 0;
  104. ca->bic_K = 0;
  105. ca->delay_min = 0;
  106. ca->epoch_start = 0;
  107. ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
  108. ca->ack_cnt = 0;
  109. ca->tcp_cwnd = 0;
  110. ca->found = 0;
  111. }
  112. static inline u32 bictcp_clock(void)
  113. {
  114. #if HZ < 1000
  115. return ktime_to_ms(ktime_get_real());
  116. #else
  117. return jiffies_to_msecs(jiffies);
  118. #endif
  119. }
  120. static inline void bictcp_hystart_reset(struct sock *sk)
  121. {
  122. struct tcp_sock *tp = tcp_sk(sk);
  123. struct bictcp *ca = inet_csk_ca(sk);
  124. ca->round_start = ca->last_ack = bictcp_clock();
  125. ca->end_seq = tp->snd_nxt;
  126. ca->curr_rtt = 0;
  127. ca->sample_cnt = 0;
  128. }
  129. static void bictcp_init(struct sock *sk)
  130. {
  131. struct bictcp *ca = inet_csk_ca(sk);
  132. bictcp_reset(ca);
  133. ca->loss_cwnd = 0;
  134. if (hystart)
  135. bictcp_hystart_reset(sk);
  136. if (!hystart && initial_ssthresh)
  137. tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
  138. }
  139. static void bictcp_cwnd_event(struct sock *sk, enum tcp_ca_event event)
  140. {
  141. if (event == CA_EVENT_TX_START) {
  142. struct bictcp *ca = inet_csk_ca(sk);
  143. u32 now = tcp_time_stamp;
  144. s32 delta;
  145. delta = now - tcp_sk(sk)->lsndtime;
  146. /* We were application limited (idle) for a while.
  147. * Shift epoch_start to keep cwnd growth to cubic curve.
  148. */
  149. if (ca->epoch_start && delta > 0) {
  150. ca->epoch_start += delta;
  151. if (after(ca->epoch_start, now))
  152. ca->epoch_start = now;
  153. }
  154. return;
  155. }
  156. }
  157. /* calculate the cubic root of x using a table lookup followed by one
  158. * Newton-Raphson iteration.
  159. * Avg err ~= 0.195%
  160. */
  161. static u32 cubic_root(u64 a)
  162. {
  163. u32 x, b, shift;
  164. /*
  165. * cbrt(x) MSB values for x MSB values in [0..63].
  166. * Precomputed then refined by hand - Willy Tarreau
  167. *
  168. * For x in [0..63],
  169. * v = cbrt(x << 18) - 1
  170. * cbrt(x) = (v[x] + 10) >> 6
  171. */
  172. static const u8 v[] = {
  173. /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
  174. /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
  175. /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
  176. /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
  177. /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
  178. /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
  179. /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
  180. /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
  181. };
  182. b = fls64(a);
  183. if (b < 7) {
  184. /* a in [0..63] */
  185. return ((u32)v[(u32)a] + 35) >> 6;
  186. }
  187. b = ((b * 84) >> 8) - 1;
  188. shift = (a >> (b * 3));
  189. x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
  190. /*
  191. * Newton-Raphson iteration
  192. * 2
  193. * x = ( 2 * x + a / x ) / 3
  194. * k+1 k k
  195. */
  196. x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
  197. x = ((x * 341) >> 10);
  198. return x;
  199. }
  200. /*
  201. * Compute congestion window to use.
  202. */
  203. static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
  204. {
  205. u32 delta, bic_target, max_cnt;
  206. u64 offs, t;
  207. ca->ack_cnt++; /* count the number of ACKs */
  208. if (ca->last_cwnd == cwnd &&
  209. (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
  210. return;
  211. /* The CUBIC function can update ca->cnt at most once per jiffy.
  212. * On all cwnd reduction events, ca->epoch_start is set to 0,
  213. * which will force a recalculation of ca->cnt.
  214. */
  215. if (ca->epoch_start && tcp_time_stamp == ca->last_time)
  216. goto tcp_friendliness;
  217. ca->last_cwnd = cwnd;
  218. ca->last_time = tcp_time_stamp;
  219. if (ca->epoch_start == 0) {
  220. ca->epoch_start = tcp_time_stamp; /* record beginning */
  221. ca->ack_cnt = 1; /* start counting */
  222. ca->tcp_cwnd = cwnd; /* syn with cubic */
  223. if (ca->last_max_cwnd <= cwnd) {
  224. ca->bic_K = 0;
  225. ca->bic_origin_point = cwnd;
  226. } else {
  227. /* Compute new K based on
  228. * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
  229. */
  230. ca->bic_K = cubic_root(cube_factor
  231. * (ca->last_max_cwnd - cwnd));
  232. ca->bic_origin_point = ca->last_max_cwnd;
  233. }
  234. }
  235. /* cubic function - calc*/
  236. /* calculate c * time^3 / rtt,
  237. * while considering overflow in calculation of time^3
  238. * (so time^3 is done by using 64 bit)
  239. * and without the support of division of 64bit numbers
  240. * (so all divisions are done by using 32 bit)
  241. * also NOTE the unit of those veriables
  242. * time = (t - K) / 2^bictcp_HZ
  243. * c = bic_scale >> 10
  244. * rtt = (srtt >> 3) / HZ
  245. * !!! The following code does not have overflow problems,
  246. * if the cwnd < 1 million packets !!!
  247. */
  248. t = (s32)(tcp_time_stamp - ca->epoch_start);
  249. t += msecs_to_jiffies(ca->delay_min >> 3);
  250. /* change the unit from HZ to bictcp_HZ */
  251. t <<= BICTCP_HZ;
  252. do_div(t, HZ);
  253. if (t < ca->bic_K) /* t - K */
  254. offs = ca->bic_K - t;
  255. else
  256. offs = t - ca->bic_K;
  257. /* c/rtt * (t-K)^3 */
  258. delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
  259. if (t < ca->bic_K) /* below origin*/
  260. bic_target = ca->bic_origin_point - delta;
  261. else /* above origin*/
  262. bic_target = ca->bic_origin_point + delta;
  263. /* cubic function - calc bictcp_cnt*/
  264. if (bic_target > cwnd) {
  265. ca->cnt = cwnd / (bic_target - cwnd);
  266. } else {
  267. ca->cnt = 100 * cwnd; /* very small increment*/
  268. }
  269. /*
  270. * The initial growth of cubic function may be too conservative
  271. * when the available bandwidth is still unknown.
  272. */
  273. if (ca->last_max_cwnd == 0 && ca->cnt > 20)
  274. ca->cnt = 20; /* increase cwnd 5% per RTT */
  275. tcp_friendliness:
  276. /* TCP Friendly */
  277. if (tcp_friendliness) {
  278. u32 scale = beta_scale;
  279. delta = (cwnd * scale) >> 3;
  280. while (ca->ack_cnt > delta) { /* update tcp cwnd */
  281. ca->ack_cnt -= delta;
  282. ca->tcp_cwnd++;
  283. }
  284. if (ca->tcp_cwnd > cwnd) { /* if bic is slower than tcp */
  285. delta = ca->tcp_cwnd - cwnd;
  286. max_cnt = cwnd / delta;
  287. if (ca->cnt > max_cnt)
  288. ca->cnt = max_cnt;
  289. }
  290. }
  291. ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
  292. if (ca->cnt == 0) /* cannot be zero */
  293. ca->cnt = 1;
  294. }
  295. static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  296. {
  297. struct tcp_sock *tp = tcp_sk(sk);
  298. struct bictcp *ca = inet_csk_ca(sk);
  299. if (!tcp_is_cwnd_limited(sk, in_flight))
  300. return;
  301. if (tp->snd_cwnd <= tp->snd_ssthresh) {
  302. if (hystart && after(ack, ca->end_seq))
  303. bictcp_hystart_reset(sk);
  304. tcp_slow_start(tp);
  305. } else {
  306. bictcp_update(ca, tp->snd_cwnd);
  307. tcp_cong_avoid_ai(tp, ca->cnt);
  308. }
  309. }
  310. static u32 bictcp_recalc_ssthresh(struct sock *sk)
  311. {
  312. const struct tcp_sock *tp = tcp_sk(sk);
  313. struct bictcp *ca = inet_csk_ca(sk);
  314. ca->epoch_start = 0; /* end of epoch */
  315. /* Wmax and fast convergence */
  316. if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
  317. ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
  318. / (2 * BICTCP_BETA_SCALE);
  319. else
  320. ca->last_max_cwnd = tp->snd_cwnd;
  321. ca->loss_cwnd = tp->snd_cwnd;
  322. return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
  323. }
  324. static u32 bictcp_undo_cwnd(struct sock *sk)
  325. {
  326. struct bictcp *ca = inet_csk_ca(sk);
  327. return max(tcp_sk(sk)->snd_cwnd, ca->loss_cwnd);
  328. }
  329. static void bictcp_state(struct sock *sk, u8 new_state)
  330. {
  331. if (new_state == TCP_CA_Loss) {
  332. bictcp_reset(inet_csk_ca(sk));
  333. bictcp_hystart_reset(sk);
  334. }
  335. }
  336. static void hystart_update(struct sock *sk, u32 delay)
  337. {
  338. struct tcp_sock *tp = tcp_sk(sk);
  339. struct bictcp *ca = inet_csk_ca(sk);
  340. if (ca->found & hystart_detect)
  341. return;
  342. if (hystart_detect & HYSTART_ACK_TRAIN) {
  343. u32 now = bictcp_clock();
  344. /* first detection parameter - ack-train detection */
  345. if ((s32)(now - ca->last_ack) <= hystart_ack_delta) {
  346. ca->last_ack = now;
  347. if ((s32)(now - ca->round_start) > ca->delay_min >> 4) {
  348. ca->found |= HYSTART_ACK_TRAIN;
  349. NET_INC_STATS_BH(sock_net(sk),
  350. LINUX_MIB_TCPHYSTARTTRAINDETECT);
  351. NET_ADD_STATS_BH(sock_net(sk),
  352. LINUX_MIB_TCPHYSTARTTRAINCWND,
  353. tp->snd_cwnd);
  354. tp->snd_ssthresh = tp->snd_cwnd;
  355. }
  356. }
  357. }
  358. if (hystart_detect & HYSTART_DELAY) {
  359. /* obtain the minimum delay of more than sampling packets */
  360. if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
  361. if (ca->curr_rtt == 0 || ca->curr_rtt > delay)
  362. ca->curr_rtt = delay;
  363. ca->sample_cnt++;
  364. } else {
  365. if (ca->curr_rtt > ca->delay_min +
  366. HYSTART_DELAY_THRESH(ca->delay_min >> 3)) {
  367. ca->found |= HYSTART_DELAY;
  368. NET_INC_STATS_BH(sock_net(sk),
  369. LINUX_MIB_TCPHYSTARTDELAYDETECT);
  370. NET_ADD_STATS_BH(sock_net(sk),
  371. LINUX_MIB_TCPHYSTARTDELAYCWND,
  372. tp->snd_cwnd);
  373. tp->snd_ssthresh = tp->snd_cwnd;
  374. }
  375. }
  376. }
  377. }
  378. /* Track delayed acknowledgment ratio using sliding window
  379. * ratio = (15*ratio + sample) / 16
  380. */
  381. static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us)
  382. {
  383. const struct inet_connection_sock *icsk = inet_csk(sk);
  384. const struct tcp_sock *tp = tcp_sk(sk);
  385. struct bictcp *ca = inet_csk_ca(sk);
  386. u32 delay;
  387. if (icsk->icsk_ca_state == TCP_CA_Open) {
  388. u32 ratio = ca->delayed_ack;
  389. ratio -= ca->delayed_ack >> ACK_RATIO_SHIFT;
  390. ratio += cnt;
  391. ca->delayed_ack = clamp(ratio, 1U, ACK_RATIO_LIMIT);
  392. }
  393. /* Some calls are for duplicates without timetamps */
  394. if (rtt_us < 0)
  395. return;
  396. /* Discard delay samples right after fast recovery */
  397. if (ca->epoch_start && (s32)(tcp_time_stamp - ca->epoch_start) < HZ)
  398. return;
  399. delay = (rtt_us << 3) / USEC_PER_MSEC;
  400. if (delay == 0)
  401. delay = 1;
  402. /* first time call or link delay decreases */
  403. if (ca->delay_min == 0 || ca->delay_min > delay)
  404. ca->delay_min = delay;
  405. /* hystart triggers when cwnd is larger than some threshold */
  406. if (hystart && tp->snd_cwnd <= tp->snd_ssthresh &&
  407. tp->snd_cwnd >= hystart_low_window)
  408. hystart_update(sk, delay);
  409. }
  410. static struct tcp_congestion_ops cubictcp __read_mostly = {
  411. .init = bictcp_init,
  412. .ssthresh = bictcp_recalc_ssthresh,
  413. .cong_avoid = bictcp_cong_avoid,
  414. .set_state = bictcp_state,
  415. .undo_cwnd = bictcp_undo_cwnd,
  416. .cwnd_event = bictcp_cwnd_event,
  417. .pkts_acked = bictcp_acked,
  418. .owner = THIS_MODULE,
  419. .name = "cubic",
  420. };
  421. static int __init cubictcp_register(void)
  422. {
  423. BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
  424. /* Precompute a bunch of the scaling factors that are used per-packet
  425. * based on SRTT of 100ms
  426. */
  427. beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3
  428. / (BICTCP_BETA_SCALE - beta);
  429. cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */
  430. /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
  431. * so K = cubic_root( (wmax-cwnd)*rtt/c )
  432. * the unit of K is bictcp_HZ=2^10, not HZ
  433. *
  434. * c = bic_scale >> 10
  435. * rtt = 100ms
  436. *
  437. * the following code has been designed and tested for
  438. * cwnd < 1 million packets
  439. * RTT < 100 seconds
  440. * HZ < 1,000,00 (corresponding to 10 nano-second)
  441. */
  442. /* 1/c * 2^2*bictcp_HZ * srtt */
  443. cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
  444. /* divide by bic_scale and by constant Srtt (100ms) */
  445. do_div(cube_factor, bic_scale * 10);
  446. /* hystart needs ms clock resolution */
  447. if (hystart && HZ < 1000)
  448. cubictcp.flags |= TCP_CONG_RTT_STAMP;
  449. return tcp_register_congestion_control(&cubictcp);
  450. }
  451. static void __exit cubictcp_unregister(void)
  452. {
  453. tcp_unregister_congestion_control(&cubictcp);
  454. }
  455. module_init(cubictcp_register);
  456. module_exit(cubictcp_unregister);
  457. MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
  458. MODULE_LICENSE("GPL");
  459. MODULE_DESCRIPTION("CUBIC TCP");
  460. MODULE_VERSION("2.3");