inode.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411
  1. /*
  2. * fs/logfs/inode.c - inode handling code
  3. *
  4. * As should be obvious for Linux kernel code, license is GPLv2
  5. *
  6. * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
  7. */
  8. #include "logfs.h"
  9. #include <linux/slab.h>
  10. #include <linux/writeback.h>
  11. #include <linux/backing-dev.h>
  12. /*
  13. * How soon to reuse old inode numbers? LogFS doesn't store deleted inodes
  14. * on the medium. It therefore also lacks a method to store the previous
  15. * generation number for deleted inodes. Instead a single generation number
  16. * is stored which will be used for new inodes. Being just a 32bit counter,
  17. * this can obvious wrap relatively quickly. So we only reuse inodes if we
  18. * know that a fair number of inodes can be created before we have to increment
  19. * the generation again - effectively adding some bits to the counter.
  20. * But being too aggressive here means we keep a very large and very sparse
  21. * inode file, wasting space on indirect blocks.
  22. * So what is a good value? Beats me. 64k seems moderately bad on both
  23. * fronts, so let's use that for now...
  24. *
  25. * NFS sucks, as everyone already knows.
  26. */
  27. #define INOS_PER_WRAP (0x10000)
  28. /*
  29. * Logfs' requirement to read inodes for garbage collection makes life a bit
  30. * harder. GC may have to read inodes that are in I_FREEING state, when they
  31. * are being written out - and waiting for GC to make progress, naturally.
  32. *
  33. * So we cannot just call iget() or some variant of it, but first have to check
  34. * wether the inode in question might be in I_FREEING state. Therefore we
  35. * maintain our own per-sb list of "almost deleted" inodes and check against
  36. * that list first. Normally this should be at most 1-2 entries long.
  37. *
  38. * Also, inodes have logfs-specific reference counting on top of what the vfs
  39. * does. When .destroy_inode is called, normally the reference count will drop
  40. * to zero and the inode gets deleted. But if GC accessed the inode, its
  41. * refcount will remain nonzero and final deletion will have to wait.
  42. *
  43. * As a result we have two sets of functions to get/put inodes:
  44. * logfs_safe_iget/logfs_safe_iput - safe to call from GC context
  45. * logfs_iget/iput - normal version
  46. */
  47. static struct kmem_cache *logfs_inode_cache;
  48. static DEFINE_SPINLOCK(logfs_inode_lock);
  49. static void logfs_inode_setops(struct inode *inode)
  50. {
  51. switch (inode->i_mode & S_IFMT) {
  52. case S_IFDIR:
  53. inode->i_op = &logfs_dir_iops;
  54. inode->i_fop = &logfs_dir_fops;
  55. inode->i_mapping->a_ops = &logfs_reg_aops;
  56. break;
  57. case S_IFREG:
  58. inode->i_op = &logfs_reg_iops;
  59. inode->i_fop = &logfs_reg_fops;
  60. inode->i_mapping->a_ops = &logfs_reg_aops;
  61. break;
  62. case S_IFLNK:
  63. inode->i_op = &logfs_symlink_iops;
  64. inode->i_mapping->a_ops = &logfs_reg_aops;
  65. break;
  66. case S_IFSOCK: /* fall through */
  67. case S_IFBLK: /* fall through */
  68. case S_IFCHR: /* fall through */
  69. case S_IFIFO:
  70. init_special_inode(inode, inode->i_mode, inode->i_rdev);
  71. break;
  72. default:
  73. BUG();
  74. }
  75. }
  76. static struct inode *__logfs_iget(struct super_block *sb, ino_t ino)
  77. {
  78. struct inode *inode = iget_locked(sb, ino);
  79. int err;
  80. if (!inode)
  81. return ERR_PTR(-ENOMEM);
  82. if (!(inode->i_state & I_NEW))
  83. return inode;
  84. err = logfs_read_inode(inode);
  85. if (err || inode->i_nlink == 0) {
  86. /* inode->i_nlink == 0 can be true when called from
  87. * block validator */
  88. /* set i_nlink to 0 to prevent caching */
  89. clear_nlink(inode);
  90. logfs_inode(inode)->li_flags |= LOGFS_IF_ZOMBIE;
  91. iget_failed(inode);
  92. if (!err)
  93. err = -ENOENT;
  94. return ERR_PTR(err);
  95. }
  96. logfs_inode_setops(inode);
  97. unlock_new_inode(inode);
  98. return inode;
  99. }
  100. struct inode *logfs_iget(struct super_block *sb, ino_t ino)
  101. {
  102. BUG_ON(ino == LOGFS_INO_MASTER);
  103. BUG_ON(ino == LOGFS_INO_SEGFILE);
  104. return __logfs_iget(sb, ino);
  105. }
  106. /*
  107. * is_cached is set to 1 if we hand out a cached inode, 0 otherwise.
  108. * this allows logfs_iput to do the right thing later
  109. */
  110. struct inode *logfs_safe_iget(struct super_block *sb, ino_t ino, int *is_cached)
  111. {
  112. struct logfs_super *super = logfs_super(sb);
  113. struct logfs_inode *li;
  114. if (ino == LOGFS_INO_MASTER)
  115. return super->s_master_inode;
  116. if (ino == LOGFS_INO_SEGFILE)
  117. return super->s_segfile_inode;
  118. spin_lock(&logfs_inode_lock);
  119. list_for_each_entry(li, &super->s_freeing_list, li_freeing_list)
  120. if (li->vfs_inode.i_ino == ino) {
  121. li->li_refcount++;
  122. spin_unlock(&logfs_inode_lock);
  123. *is_cached = 1;
  124. return &li->vfs_inode;
  125. }
  126. spin_unlock(&logfs_inode_lock);
  127. *is_cached = 0;
  128. return __logfs_iget(sb, ino);
  129. }
  130. static void logfs_i_callback(struct rcu_head *head)
  131. {
  132. struct inode *inode = container_of(head, struct inode, i_rcu);
  133. kmem_cache_free(logfs_inode_cache, logfs_inode(inode));
  134. }
  135. static void __logfs_destroy_inode(struct inode *inode)
  136. {
  137. struct logfs_inode *li = logfs_inode(inode);
  138. BUG_ON(li->li_block);
  139. list_del(&li->li_freeing_list);
  140. call_rcu(&inode->i_rcu, logfs_i_callback);
  141. }
  142. static void logfs_destroy_inode(struct inode *inode)
  143. {
  144. struct logfs_inode *li = logfs_inode(inode);
  145. BUG_ON(list_empty(&li->li_freeing_list));
  146. spin_lock(&logfs_inode_lock);
  147. li->li_refcount--;
  148. if (li->li_refcount == 0)
  149. __logfs_destroy_inode(inode);
  150. spin_unlock(&logfs_inode_lock);
  151. }
  152. void logfs_safe_iput(struct inode *inode, int is_cached)
  153. {
  154. if (inode->i_ino == LOGFS_INO_MASTER)
  155. return;
  156. if (inode->i_ino == LOGFS_INO_SEGFILE)
  157. return;
  158. if (is_cached) {
  159. logfs_destroy_inode(inode);
  160. return;
  161. }
  162. iput(inode);
  163. }
  164. static void logfs_init_inode(struct super_block *sb, struct inode *inode)
  165. {
  166. struct logfs_inode *li = logfs_inode(inode);
  167. int i;
  168. li->li_flags = 0;
  169. li->li_height = 0;
  170. li->li_used_bytes = 0;
  171. li->li_block = NULL;
  172. inode->i_uid = 0;
  173. inode->i_gid = 0;
  174. inode->i_size = 0;
  175. inode->i_blocks = 0;
  176. inode->i_ctime = CURRENT_TIME;
  177. inode->i_mtime = CURRENT_TIME;
  178. li->li_refcount = 1;
  179. INIT_LIST_HEAD(&li->li_freeing_list);
  180. for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
  181. li->li_data[i] = 0;
  182. return;
  183. }
  184. static struct inode *logfs_alloc_inode(struct super_block *sb)
  185. {
  186. struct logfs_inode *li;
  187. li = kmem_cache_alloc(logfs_inode_cache, GFP_NOFS);
  188. if (!li)
  189. return NULL;
  190. logfs_init_inode(sb, &li->vfs_inode);
  191. return &li->vfs_inode;
  192. }
  193. /*
  194. * In logfs inodes are written to an inode file. The inode file, like any
  195. * other file, is managed with a inode. The inode file's inode, aka master
  196. * inode, requires special handling in several respects. First, it cannot be
  197. * written to the inode file, so it is stored in the journal instead.
  198. *
  199. * Secondly, this inode cannot be written back and destroyed before all other
  200. * inodes have been written. The ordering is important. Linux' VFS is happily
  201. * unaware of the ordering constraint and would ordinarily destroy the master
  202. * inode at umount time while other inodes are still in use and dirty. Not
  203. * good.
  204. *
  205. * So logfs makes sure the master inode is not written until all other inodes
  206. * have been destroyed. Sadly, this method has another side-effect. The VFS
  207. * will notice one remaining inode and print a frightening warning message.
  208. * Worse, it is impossible to judge whether such a warning was caused by the
  209. * master inode or any other inodes have leaked as well.
  210. *
  211. * Our attempt of solving this is with logfs_new_meta_inode() below. Its
  212. * purpose is to create a new inode that will not trigger the warning if such
  213. * an inode is still in use. An ugly hack, no doubt. Suggections for
  214. * improvement are welcome.
  215. *
  216. * AV: that's what ->put_super() is for...
  217. */
  218. struct inode *logfs_new_meta_inode(struct super_block *sb, u64 ino)
  219. {
  220. struct inode *inode;
  221. inode = new_inode(sb);
  222. if (!inode)
  223. return ERR_PTR(-ENOMEM);
  224. inode->i_mode = S_IFREG;
  225. inode->i_ino = ino;
  226. inode->i_data.a_ops = &logfs_reg_aops;
  227. mapping_set_gfp_mask(&inode->i_data, GFP_NOFS);
  228. return inode;
  229. }
  230. struct inode *logfs_read_meta_inode(struct super_block *sb, u64 ino)
  231. {
  232. struct inode *inode;
  233. int err;
  234. inode = logfs_new_meta_inode(sb, ino);
  235. if (IS_ERR(inode))
  236. return inode;
  237. err = logfs_read_inode(inode);
  238. if (err) {
  239. iput(inode);
  240. return ERR_PTR(err);
  241. }
  242. logfs_inode_setops(inode);
  243. return inode;
  244. }
  245. static int logfs_write_inode(struct inode *inode, struct writeback_control *wbc)
  246. {
  247. int ret;
  248. long flags = WF_LOCK;
  249. /* Can only happen if creat() failed. Safe to skip. */
  250. if (logfs_inode(inode)->li_flags & LOGFS_IF_STILLBORN)
  251. return 0;
  252. ret = __logfs_write_inode(inode, NULL, flags);
  253. LOGFS_BUG_ON(ret, inode->i_sb);
  254. return ret;
  255. }
  256. /* called with inode->i_lock held */
  257. static int logfs_drop_inode(struct inode *inode)
  258. {
  259. struct logfs_super *super = logfs_super(inode->i_sb);
  260. struct logfs_inode *li = logfs_inode(inode);
  261. spin_lock(&logfs_inode_lock);
  262. list_move(&li->li_freeing_list, &super->s_freeing_list);
  263. spin_unlock(&logfs_inode_lock);
  264. return generic_drop_inode(inode);
  265. }
  266. static void logfs_set_ino_generation(struct super_block *sb,
  267. struct inode *inode)
  268. {
  269. struct logfs_super *super = logfs_super(sb);
  270. u64 ino;
  271. mutex_lock(&super->s_journal_mutex);
  272. ino = logfs_seek_hole(super->s_master_inode, super->s_last_ino + 1);
  273. super->s_last_ino = ino;
  274. super->s_inos_till_wrap--;
  275. if (super->s_inos_till_wrap < 0) {
  276. super->s_last_ino = LOGFS_RESERVED_INOS;
  277. super->s_generation++;
  278. super->s_inos_till_wrap = INOS_PER_WRAP;
  279. }
  280. inode->i_ino = ino;
  281. inode->i_generation = super->s_generation;
  282. mutex_unlock(&super->s_journal_mutex);
  283. }
  284. struct inode *logfs_new_inode(struct inode *dir, umode_t mode)
  285. {
  286. struct super_block *sb = dir->i_sb;
  287. struct inode *inode;
  288. inode = new_inode(sb);
  289. if (!inode)
  290. return ERR_PTR(-ENOMEM);
  291. logfs_init_inode(sb, inode);
  292. /* inherit parent flags */
  293. logfs_inode(inode)->li_flags |=
  294. logfs_inode(dir)->li_flags & LOGFS_FL_INHERITED;
  295. inode->i_mode = mode;
  296. logfs_set_ino_generation(sb, inode);
  297. inode_init_owner(inode, dir, mode);
  298. logfs_inode_setops(inode);
  299. insert_inode_hash(inode);
  300. return inode;
  301. }
  302. static void logfs_init_once(void *_li)
  303. {
  304. struct logfs_inode *li = _li;
  305. int i;
  306. li->li_flags = 0;
  307. li->li_used_bytes = 0;
  308. li->li_refcount = 1;
  309. for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
  310. li->li_data[i] = 0;
  311. inode_init_once(&li->vfs_inode);
  312. }
  313. static int logfs_sync_fs(struct super_block *sb, int wait)
  314. {
  315. logfs_get_wblocks(sb, NULL, WF_LOCK);
  316. logfs_write_anchor(sb);
  317. logfs_put_wblocks(sb, NULL, WF_LOCK);
  318. return 0;
  319. }
  320. static void logfs_put_super(struct super_block *sb)
  321. {
  322. struct logfs_super *super = logfs_super(sb);
  323. /* kill the meta-inodes */
  324. iput(super->s_master_inode);
  325. iput(super->s_segfile_inode);
  326. iput(super->s_mapping_inode);
  327. }
  328. const struct super_operations logfs_super_operations = {
  329. .alloc_inode = logfs_alloc_inode,
  330. .destroy_inode = logfs_destroy_inode,
  331. .evict_inode = logfs_evict_inode,
  332. .drop_inode = logfs_drop_inode,
  333. .put_super = logfs_put_super,
  334. .write_inode = logfs_write_inode,
  335. .statfs = logfs_statfs,
  336. .sync_fs = logfs_sync_fs,
  337. };
  338. int logfs_init_inode_cache(void)
  339. {
  340. logfs_inode_cache = kmem_cache_create("logfs_inode_cache",
  341. sizeof(struct logfs_inode), 0, SLAB_RECLAIM_ACCOUNT,
  342. logfs_init_once);
  343. if (!logfs_inode_cache)
  344. return -ENOMEM;
  345. return 0;
  346. }
  347. void logfs_destroy_inode_cache(void)
  348. {
  349. /*
  350. * Make sure all delayed rcu free inodes are flushed before we
  351. * destroy cache.
  352. */
  353. rcu_barrier();
  354. kmem_cache_destroy(logfs_inode_cache);
  355. }