ctree.c 112 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include "ctree.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "print-tree.h"
  24. #include "locking.h"
  25. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_path *path, int level);
  27. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  28. *root, struct btrfs_key *ins_key,
  29. struct btrfs_path *path, int data_size, int extend);
  30. static int push_node_left(struct btrfs_trans_handle *trans,
  31. struct btrfs_root *root, struct extent_buffer *dst,
  32. struct extent_buffer *src, int empty);
  33. static int balance_node_right(struct btrfs_trans_handle *trans,
  34. struct btrfs_root *root,
  35. struct extent_buffer *dst_buf,
  36. struct extent_buffer *src_buf);
  37. static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  38. struct btrfs_path *path, int level, int slot);
  39. struct btrfs_path *btrfs_alloc_path(void)
  40. {
  41. struct btrfs_path *path;
  42. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  43. return path;
  44. }
  45. /*
  46. * set all locked nodes in the path to blocking locks. This should
  47. * be done before scheduling
  48. */
  49. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  50. {
  51. int i;
  52. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  53. if (!p->nodes[i] || !p->locks[i])
  54. continue;
  55. btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  56. if (p->locks[i] == BTRFS_READ_LOCK)
  57. p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  58. else if (p->locks[i] == BTRFS_WRITE_LOCK)
  59. p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  60. }
  61. }
  62. /*
  63. * reset all the locked nodes in the patch to spinning locks.
  64. *
  65. * held is used to keep lockdep happy, when lockdep is enabled
  66. * we set held to a blocking lock before we go around and
  67. * retake all the spinlocks in the path. You can safely use NULL
  68. * for held
  69. */
  70. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  71. struct extent_buffer *held, int held_rw)
  72. {
  73. int i;
  74. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  75. /* lockdep really cares that we take all of these spinlocks
  76. * in the right order. If any of the locks in the path are not
  77. * currently blocking, it is going to complain. So, make really
  78. * really sure by forcing the path to blocking before we clear
  79. * the path blocking.
  80. */
  81. if (held) {
  82. btrfs_set_lock_blocking_rw(held, held_rw);
  83. if (held_rw == BTRFS_WRITE_LOCK)
  84. held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  85. else if (held_rw == BTRFS_READ_LOCK)
  86. held_rw = BTRFS_READ_LOCK_BLOCKING;
  87. }
  88. btrfs_set_path_blocking(p);
  89. #endif
  90. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  91. if (p->nodes[i] && p->locks[i]) {
  92. btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  93. if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  94. p->locks[i] = BTRFS_WRITE_LOCK;
  95. else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  96. p->locks[i] = BTRFS_READ_LOCK;
  97. }
  98. }
  99. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  100. if (held)
  101. btrfs_clear_lock_blocking_rw(held, held_rw);
  102. #endif
  103. }
  104. /* this also releases the path */
  105. void btrfs_free_path(struct btrfs_path *p)
  106. {
  107. if (!p)
  108. return;
  109. btrfs_release_path(p);
  110. kmem_cache_free(btrfs_path_cachep, p);
  111. }
  112. /*
  113. * path release drops references on the extent buffers in the path
  114. * and it drops any locks held by this path
  115. *
  116. * It is safe to call this on paths that no locks or extent buffers held.
  117. */
  118. noinline void btrfs_release_path(struct btrfs_path *p)
  119. {
  120. int i;
  121. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  122. p->slots[i] = 0;
  123. if (!p->nodes[i])
  124. continue;
  125. if (p->locks[i]) {
  126. btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
  127. p->locks[i] = 0;
  128. }
  129. free_extent_buffer(p->nodes[i]);
  130. p->nodes[i] = NULL;
  131. }
  132. }
  133. /*
  134. * safely gets a reference on the root node of a tree. A lock
  135. * is not taken, so a concurrent writer may put a different node
  136. * at the root of the tree. See btrfs_lock_root_node for the
  137. * looping required.
  138. *
  139. * The extent buffer returned by this has a reference taken, so
  140. * it won't disappear. It may stop being the root of the tree
  141. * at any time because there are no locks held.
  142. */
  143. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  144. {
  145. struct extent_buffer *eb;
  146. while (1) {
  147. rcu_read_lock();
  148. eb = rcu_dereference(root->node);
  149. /*
  150. * RCU really hurts here, we could free up the root node because
  151. * it was cow'ed but we may not get the new root node yet so do
  152. * the inc_not_zero dance and if it doesn't work then
  153. * synchronize_rcu and try again.
  154. */
  155. if (atomic_inc_not_zero(&eb->refs)) {
  156. rcu_read_unlock();
  157. break;
  158. }
  159. rcu_read_unlock();
  160. synchronize_rcu();
  161. }
  162. return eb;
  163. }
  164. /* loop around taking references on and locking the root node of the
  165. * tree until you end up with a lock on the root. A locked buffer
  166. * is returned, with a reference held.
  167. */
  168. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  169. {
  170. struct extent_buffer *eb;
  171. while (1) {
  172. eb = btrfs_root_node(root);
  173. btrfs_tree_lock(eb);
  174. if (eb == root->node)
  175. break;
  176. btrfs_tree_unlock(eb);
  177. free_extent_buffer(eb);
  178. }
  179. return eb;
  180. }
  181. /* loop around taking references on and locking the root node of the
  182. * tree until you end up with a lock on the root. A locked buffer
  183. * is returned, with a reference held.
  184. */
  185. struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
  186. {
  187. struct extent_buffer *eb;
  188. while (1) {
  189. eb = btrfs_root_node(root);
  190. btrfs_tree_read_lock(eb);
  191. if (eb == root->node)
  192. break;
  193. btrfs_tree_read_unlock(eb);
  194. free_extent_buffer(eb);
  195. }
  196. return eb;
  197. }
  198. /* cowonly root (everything not a reference counted cow subvolume), just get
  199. * put onto a simple dirty list. transaction.c walks this to make sure they
  200. * get properly updated on disk.
  201. */
  202. static void add_root_to_dirty_list(struct btrfs_root *root)
  203. {
  204. spin_lock(&root->fs_info->trans_lock);
  205. if (root->track_dirty && list_empty(&root->dirty_list)) {
  206. list_add(&root->dirty_list,
  207. &root->fs_info->dirty_cowonly_roots);
  208. }
  209. spin_unlock(&root->fs_info->trans_lock);
  210. }
  211. /*
  212. * used by snapshot creation to make a copy of a root for a tree with
  213. * a given objectid. The buffer with the new root node is returned in
  214. * cow_ret, and this func returns zero on success or a negative error code.
  215. */
  216. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  217. struct btrfs_root *root,
  218. struct extent_buffer *buf,
  219. struct extent_buffer **cow_ret, u64 new_root_objectid)
  220. {
  221. struct extent_buffer *cow;
  222. int ret = 0;
  223. int level;
  224. struct btrfs_disk_key disk_key;
  225. WARN_ON(root->ref_cows && trans->transid !=
  226. root->fs_info->running_transaction->transid);
  227. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  228. level = btrfs_header_level(buf);
  229. if (level == 0)
  230. btrfs_item_key(buf, &disk_key, 0);
  231. else
  232. btrfs_node_key(buf, &disk_key, 0);
  233. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  234. new_root_objectid, &disk_key, level,
  235. buf->start, 0, 1);
  236. if (IS_ERR(cow))
  237. return PTR_ERR(cow);
  238. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  239. btrfs_set_header_bytenr(cow, cow->start);
  240. btrfs_set_header_generation(cow, trans->transid);
  241. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  242. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  243. BTRFS_HEADER_FLAG_RELOC);
  244. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  245. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  246. else
  247. btrfs_set_header_owner(cow, new_root_objectid);
  248. write_extent_buffer(cow, root->fs_info->fsid,
  249. (unsigned long)btrfs_header_fsid(cow),
  250. BTRFS_FSID_SIZE);
  251. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  252. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  253. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  254. else
  255. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  256. if (ret)
  257. return ret;
  258. btrfs_mark_buffer_dirty(cow);
  259. *cow_ret = cow;
  260. return 0;
  261. }
  262. /*
  263. * check if the tree block can be shared by multiple trees
  264. */
  265. int btrfs_block_can_be_shared(struct btrfs_root *root,
  266. struct extent_buffer *buf)
  267. {
  268. /*
  269. * Tree blocks not in refernece counted trees and tree roots
  270. * are never shared. If a block was allocated after the last
  271. * snapshot and the block was not allocated by tree relocation,
  272. * we know the block is not shared.
  273. */
  274. if (root->ref_cows &&
  275. buf != root->node && buf != root->commit_root &&
  276. (btrfs_header_generation(buf) <=
  277. btrfs_root_last_snapshot(&root->root_item) ||
  278. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  279. return 1;
  280. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  281. if (root->ref_cows &&
  282. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  283. return 1;
  284. #endif
  285. return 0;
  286. }
  287. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  288. struct btrfs_root *root,
  289. struct extent_buffer *buf,
  290. struct extent_buffer *cow,
  291. int *last_ref)
  292. {
  293. u64 refs;
  294. u64 owner;
  295. u64 flags;
  296. u64 new_flags = 0;
  297. int ret;
  298. /*
  299. * Backrefs update rules:
  300. *
  301. * Always use full backrefs for extent pointers in tree block
  302. * allocated by tree relocation.
  303. *
  304. * If a shared tree block is no longer referenced by its owner
  305. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  306. * use full backrefs for extent pointers in tree block.
  307. *
  308. * If a tree block is been relocating
  309. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  310. * use full backrefs for extent pointers in tree block.
  311. * The reason for this is some operations (such as drop tree)
  312. * are only allowed for blocks use full backrefs.
  313. */
  314. if (btrfs_block_can_be_shared(root, buf)) {
  315. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  316. buf->len, &refs, &flags);
  317. if (ret)
  318. return ret;
  319. if (refs == 0) {
  320. ret = -EROFS;
  321. btrfs_std_error(root->fs_info, ret);
  322. return ret;
  323. }
  324. } else {
  325. refs = 1;
  326. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  327. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  328. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  329. else
  330. flags = 0;
  331. }
  332. owner = btrfs_header_owner(buf);
  333. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  334. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  335. if (refs > 1) {
  336. if ((owner == root->root_key.objectid ||
  337. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  338. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  339. ret = btrfs_inc_ref(trans, root, buf, 1, 1);
  340. BUG_ON(ret); /* -ENOMEM */
  341. if (root->root_key.objectid ==
  342. BTRFS_TREE_RELOC_OBJECTID) {
  343. ret = btrfs_dec_ref(trans, root, buf, 0, 1);
  344. BUG_ON(ret); /* -ENOMEM */
  345. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  346. BUG_ON(ret); /* -ENOMEM */
  347. }
  348. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  349. } else {
  350. if (root->root_key.objectid ==
  351. BTRFS_TREE_RELOC_OBJECTID)
  352. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  353. else
  354. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  355. BUG_ON(ret); /* -ENOMEM */
  356. }
  357. if (new_flags != 0) {
  358. ret = btrfs_set_disk_extent_flags(trans, root,
  359. buf->start,
  360. buf->len,
  361. new_flags, 0);
  362. if (ret)
  363. return ret;
  364. }
  365. } else {
  366. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  367. if (root->root_key.objectid ==
  368. BTRFS_TREE_RELOC_OBJECTID)
  369. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  370. else
  371. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  372. BUG_ON(ret); /* -ENOMEM */
  373. ret = btrfs_dec_ref(trans, root, buf, 1, 1);
  374. BUG_ON(ret); /* -ENOMEM */
  375. }
  376. clean_tree_block(trans, root, buf);
  377. *last_ref = 1;
  378. }
  379. return 0;
  380. }
  381. /*
  382. * does the dirty work in cow of a single block. The parent block (if
  383. * supplied) is updated to point to the new cow copy. The new buffer is marked
  384. * dirty and returned locked. If you modify the block it needs to be marked
  385. * dirty again.
  386. *
  387. * search_start -- an allocation hint for the new block
  388. *
  389. * empty_size -- a hint that you plan on doing more cow. This is the size in
  390. * bytes the allocator should try to find free next to the block it returns.
  391. * This is just a hint and may be ignored by the allocator.
  392. */
  393. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  394. struct btrfs_root *root,
  395. struct extent_buffer *buf,
  396. struct extent_buffer *parent, int parent_slot,
  397. struct extent_buffer **cow_ret,
  398. u64 search_start, u64 empty_size)
  399. {
  400. struct btrfs_disk_key disk_key;
  401. struct extent_buffer *cow;
  402. int level, ret;
  403. int last_ref = 0;
  404. int unlock_orig = 0;
  405. u64 parent_start;
  406. if (*cow_ret == buf)
  407. unlock_orig = 1;
  408. btrfs_assert_tree_locked(buf);
  409. WARN_ON(root->ref_cows && trans->transid !=
  410. root->fs_info->running_transaction->transid);
  411. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  412. level = btrfs_header_level(buf);
  413. if (level == 0)
  414. btrfs_item_key(buf, &disk_key, 0);
  415. else
  416. btrfs_node_key(buf, &disk_key, 0);
  417. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  418. if (parent)
  419. parent_start = parent->start;
  420. else
  421. parent_start = 0;
  422. } else
  423. parent_start = 0;
  424. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  425. root->root_key.objectid, &disk_key,
  426. level, search_start, empty_size, 1);
  427. if (IS_ERR(cow))
  428. return PTR_ERR(cow);
  429. /* cow is set to blocking by btrfs_init_new_buffer */
  430. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  431. btrfs_set_header_bytenr(cow, cow->start);
  432. btrfs_set_header_generation(cow, trans->transid);
  433. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  434. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  435. BTRFS_HEADER_FLAG_RELOC);
  436. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  437. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  438. else
  439. btrfs_set_header_owner(cow, root->root_key.objectid);
  440. write_extent_buffer(cow, root->fs_info->fsid,
  441. (unsigned long)btrfs_header_fsid(cow),
  442. BTRFS_FSID_SIZE);
  443. ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
  444. if (ret) {
  445. btrfs_abort_transaction(trans, root, ret);
  446. return ret;
  447. }
  448. if (root->ref_cows)
  449. btrfs_reloc_cow_block(trans, root, buf, cow);
  450. if (buf == root->node) {
  451. WARN_ON(parent && parent != buf);
  452. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  453. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  454. parent_start = buf->start;
  455. else
  456. parent_start = 0;
  457. extent_buffer_get(cow);
  458. rcu_assign_pointer(root->node, cow);
  459. btrfs_free_tree_block(trans, root, buf, parent_start,
  460. last_ref, 1);
  461. free_extent_buffer(buf);
  462. add_root_to_dirty_list(root);
  463. } else {
  464. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  465. parent_start = parent->start;
  466. else
  467. parent_start = 0;
  468. WARN_ON(trans->transid != btrfs_header_generation(parent));
  469. btrfs_set_node_blockptr(parent, parent_slot,
  470. cow->start);
  471. btrfs_set_node_ptr_generation(parent, parent_slot,
  472. trans->transid);
  473. btrfs_mark_buffer_dirty(parent);
  474. btrfs_free_tree_block(trans, root, buf, parent_start,
  475. last_ref, 1);
  476. }
  477. if (unlock_orig)
  478. btrfs_tree_unlock(buf);
  479. free_extent_buffer_stale(buf);
  480. btrfs_mark_buffer_dirty(cow);
  481. *cow_ret = cow;
  482. return 0;
  483. }
  484. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  485. struct btrfs_root *root,
  486. struct extent_buffer *buf)
  487. {
  488. /* ensure we can see the force_cow */
  489. smp_rmb();
  490. /*
  491. * We do not need to cow a block if
  492. * 1) this block is not created or changed in this transaction;
  493. * 2) this block does not belong to TREE_RELOC tree;
  494. * 3) the root is not forced COW.
  495. *
  496. * What is forced COW:
  497. * when we create snapshot during commiting the transaction,
  498. * after we've finished coping src root, we must COW the shared
  499. * block to ensure the metadata consistency.
  500. */
  501. if (btrfs_header_generation(buf) == trans->transid &&
  502. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  503. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  504. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
  505. !root->force_cow)
  506. return 0;
  507. return 1;
  508. }
  509. /*
  510. * cows a single block, see __btrfs_cow_block for the real work.
  511. * This version of it has extra checks so that a block isn't cow'd more than
  512. * once per transaction, as long as it hasn't been written yet
  513. */
  514. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  515. struct btrfs_root *root, struct extent_buffer *buf,
  516. struct extent_buffer *parent, int parent_slot,
  517. struct extent_buffer **cow_ret)
  518. {
  519. u64 search_start;
  520. int ret;
  521. if (trans->transaction != root->fs_info->running_transaction) {
  522. printk(KERN_CRIT "trans %llu running %llu\n",
  523. (unsigned long long)trans->transid,
  524. (unsigned long long)
  525. root->fs_info->running_transaction->transid);
  526. WARN_ON(1);
  527. }
  528. if (trans->transid != root->fs_info->generation) {
  529. printk(KERN_CRIT "trans %llu running %llu\n",
  530. (unsigned long long)trans->transid,
  531. (unsigned long long)root->fs_info->generation);
  532. WARN_ON(1);
  533. }
  534. if (!should_cow_block(trans, root, buf)) {
  535. *cow_ret = buf;
  536. return 0;
  537. }
  538. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  539. if (parent)
  540. btrfs_set_lock_blocking(parent);
  541. btrfs_set_lock_blocking(buf);
  542. ret = __btrfs_cow_block(trans, root, buf, parent,
  543. parent_slot, cow_ret, search_start, 0);
  544. trace_btrfs_cow_block(root, buf, *cow_ret);
  545. return ret;
  546. }
  547. /*
  548. * helper function for defrag to decide if two blocks pointed to by a
  549. * node are actually close by
  550. */
  551. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  552. {
  553. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  554. return 1;
  555. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  556. return 1;
  557. return 0;
  558. }
  559. /*
  560. * compare two keys in a memcmp fashion
  561. */
  562. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  563. {
  564. struct btrfs_key k1;
  565. btrfs_disk_key_to_cpu(&k1, disk);
  566. return btrfs_comp_cpu_keys(&k1, k2);
  567. }
  568. /*
  569. * same as comp_keys only with two btrfs_key's
  570. */
  571. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  572. {
  573. if (k1->objectid > k2->objectid)
  574. return 1;
  575. if (k1->objectid < k2->objectid)
  576. return -1;
  577. if (k1->type > k2->type)
  578. return 1;
  579. if (k1->type < k2->type)
  580. return -1;
  581. if (k1->offset > k2->offset)
  582. return 1;
  583. if (k1->offset < k2->offset)
  584. return -1;
  585. return 0;
  586. }
  587. /*
  588. * this is used by the defrag code to go through all the
  589. * leaves pointed to by a node and reallocate them so that
  590. * disk order is close to key order
  591. */
  592. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  593. struct btrfs_root *root, struct extent_buffer *parent,
  594. int start_slot, int cache_only, u64 *last_ret,
  595. struct btrfs_key *progress)
  596. {
  597. struct extent_buffer *cur;
  598. u64 blocknr;
  599. u64 gen;
  600. u64 search_start = *last_ret;
  601. u64 last_block = 0;
  602. u64 other;
  603. u32 parent_nritems;
  604. int end_slot;
  605. int i;
  606. int err = 0;
  607. int parent_level;
  608. int uptodate;
  609. u32 blocksize;
  610. int progress_passed = 0;
  611. struct btrfs_disk_key disk_key;
  612. parent_level = btrfs_header_level(parent);
  613. if (cache_only && parent_level != 1)
  614. return 0;
  615. if (trans->transaction != root->fs_info->running_transaction)
  616. WARN_ON(1);
  617. if (trans->transid != root->fs_info->generation)
  618. WARN_ON(1);
  619. parent_nritems = btrfs_header_nritems(parent);
  620. blocksize = btrfs_level_size(root, parent_level - 1);
  621. end_slot = parent_nritems;
  622. if (parent_nritems == 1)
  623. return 0;
  624. btrfs_set_lock_blocking(parent);
  625. for (i = start_slot; i < end_slot; i++) {
  626. int close = 1;
  627. btrfs_node_key(parent, &disk_key, i);
  628. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  629. continue;
  630. progress_passed = 1;
  631. blocknr = btrfs_node_blockptr(parent, i);
  632. gen = btrfs_node_ptr_generation(parent, i);
  633. if (last_block == 0)
  634. last_block = blocknr;
  635. if (i > 0) {
  636. other = btrfs_node_blockptr(parent, i - 1);
  637. close = close_blocks(blocknr, other, blocksize);
  638. }
  639. if (!close && i < end_slot - 2) {
  640. other = btrfs_node_blockptr(parent, i + 1);
  641. close = close_blocks(blocknr, other, blocksize);
  642. }
  643. if (close) {
  644. last_block = blocknr;
  645. continue;
  646. }
  647. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  648. if (cur)
  649. uptodate = btrfs_buffer_uptodate(cur, gen, 0);
  650. else
  651. uptodate = 0;
  652. if (!cur || !uptodate) {
  653. if (cache_only) {
  654. free_extent_buffer(cur);
  655. continue;
  656. }
  657. if (!cur) {
  658. cur = read_tree_block(root, blocknr,
  659. blocksize, gen);
  660. if (!cur)
  661. return -EIO;
  662. } else if (!uptodate) {
  663. btrfs_read_buffer(cur, gen);
  664. }
  665. }
  666. if (search_start == 0)
  667. search_start = last_block;
  668. btrfs_tree_lock(cur);
  669. btrfs_set_lock_blocking(cur);
  670. err = __btrfs_cow_block(trans, root, cur, parent, i,
  671. &cur, search_start,
  672. min(16 * blocksize,
  673. (end_slot - i) * blocksize));
  674. if (err) {
  675. btrfs_tree_unlock(cur);
  676. free_extent_buffer(cur);
  677. break;
  678. }
  679. search_start = cur->start;
  680. last_block = cur->start;
  681. *last_ret = search_start;
  682. btrfs_tree_unlock(cur);
  683. free_extent_buffer(cur);
  684. }
  685. return err;
  686. }
  687. /*
  688. * The leaf data grows from end-to-front in the node.
  689. * this returns the address of the start of the last item,
  690. * which is the stop of the leaf data stack
  691. */
  692. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  693. struct extent_buffer *leaf)
  694. {
  695. u32 nr = btrfs_header_nritems(leaf);
  696. if (nr == 0)
  697. return BTRFS_LEAF_DATA_SIZE(root);
  698. return btrfs_item_offset_nr(leaf, nr - 1);
  699. }
  700. /*
  701. * search for key in the extent_buffer. The items start at offset p,
  702. * and they are item_size apart. There are 'max' items in p.
  703. *
  704. * the slot in the array is returned via slot, and it points to
  705. * the place where you would insert key if it is not found in
  706. * the array.
  707. *
  708. * slot may point to max if the key is bigger than all of the keys
  709. */
  710. static noinline int generic_bin_search(struct extent_buffer *eb,
  711. unsigned long p,
  712. int item_size, struct btrfs_key *key,
  713. int max, int *slot)
  714. {
  715. int low = 0;
  716. int high = max;
  717. int mid;
  718. int ret;
  719. struct btrfs_disk_key *tmp = NULL;
  720. struct btrfs_disk_key unaligned;
  721. unsigned long offset;
  722. char *kaddr = NULL;
  723. unsigned long map_start = 0;
  724. unsigned long map_len = 0;
  725. int err;
  726. while (low < high) {
  727. mid = (low + high) / 2;
  728. offset = p + mid * item_size;
  729. if (!kaddr || offset < map_start ||
  730. (offset + sizeof(struct btrfs_disk_key)) >
  731. map_start + map_len) {
  732. err = map_private_extent_buffer(eb, offset,
  733. sizeof(struct btrfs_disk_key),
  734. &kaddr, &map_start, &map_len);
  735. if (!err) {
  736. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  737. map_start);
  738. } else {
  739. read_extent_buffer(eb, &unaligned,
  740. offset, sizeof(unaligned));
  741. tmp = &unaligned;
  742. }
  743. } else {
  744. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  745. map_start);
  746. }
  747. ret = comp_keys(tmp, key);
  748. if (ret < 0)
  749. low = mid + 1;
  750. else if (ret > 0)
  751. high = mid;
  752. else {
  753. *slot = mid;
  754. return 0;
  755. }
  756. }
  757. *slot = low;
  758. return 1;
  759. }
  760. /*
  761. * simple bin_search frontend that does the right thing for
  762. * leaves vs nodes
  763. */
  764. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  765. int level, int *slot)
  766. {
  767. if (level == 0) {
  768. return generic_bin_search(eb,
  769. offsetof(struct btrfs_leaf, items),
  770. sizeof(struct btrfs_item),
  771. key, btrfs_header_nritems(eb),
  772. slot);
  773. } else {
  774. return generic_bin_search(eb,
  775. offsetof(struct btrfs_node, ptrs),
  776. sizeof(struct btrfs_key_ptr),
  777. key, btrfs_header_nritems(eb),
  778. slot);
  779. }
  780. return -1;
  781. }
  782. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  783. int level, int *slot)
  784. {
  785. return bin_search(eb, key, level, slot);
  786. }
  787. static void root_add_used(struct btrfs_root *root, u32 size)
  788. {
  789. spin_lock(&root->accounting_lock);
  790. btrfs_set_root_used(&root->root_item,
  791. btrfs_root_used(&root->root_item) + size);
  792. spin_unlock(&root->accounting_lock);
  793. }
  794. static void root_sub_used(struct btrfs_root *root, u32 size)
  795. {
  796. spin_lock(&root->accounting_lock);
  797. btrfs_set_root_used(&root->root_item,
  798. btrfs_root_used(&root->root_item) - size);
  799. spin_unlock(&root->accounting_lock);
  800. }
  801. /* given a node and slot number, this reads the blocks it points to. The
  802. * extent buffer is returned with a reference taken (but unlocked).
  803. * NULL is returned on error.
  804. */
  805. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  806. struct extent_buffer *parent, int slot)
  807. {
  808. int level = btrfs_header_level(parent);
  809. if (slot < 0)
  810. return NULL;
  811. if (slot >= btrfs_header_nritems(parent))
  812. return NULL;
  813. BUG_ON(level == 0);
  814. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  815. btrfs_level_size(root, level - 1),
  816. btrfs_node_ptr_generation(parent, slot));
  817. }
  818. /*
  819. * node level balancing, used to make sure nodes are in proper order for
  820. * item deletion. We balance from the top down, so we have to make sure
  821. * that a deletion won't leave an node completely empty later on.
  822. */
  823. static noinline int balance_level(struct btrfs_trans_handle *trans,
  824. struct btrfs_root *root,
  825. struct btrfs_path *path, int level)
  826. {
  827. struct extent_buffer *right = NULL;
  828. struct extent_buffer *mid;
  829. struct extent_buffer *left = NULL;
  830. struct extent_buffer *parent = NULL;
  831. int ret = 0;
  832. int wret;
  833. int pslot;
  834. int orig_slot = path->slots[level];
  835. u64 orig_ptr;
  836. if (level == 0)
  837. return 0;
  838. mid = path->nodes[level];
  839. WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
  840. path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
  841. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  842. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  843. if (level < BTRFS_MAX_LEVEL - 1) {
  844. parent = path->nodes[level + 1];
  845. pslot = path->slots[level + 1];
  846. }
  847. /*
  848. * deal with the case where there is only one pointer in the root
  849. * by promoting the node below to a root
  850. */
  851. if (!parent) {
  852. struct extent_buffer *child;
  853. if (btrfs_header_nritems(mid) != 1)
  854. return 0;
  855. /* promote the child to a root */
  856. child = read_node_slot(root, mid, 0);
  857. if (!child) {
  858. ret = -EROFS;
  859. btrfs_std_error(root->fs_info, ret);
  860. goto enospc;
  861. }
  862. btrfs_tree_lock(child);
  863. btrfs_set_lock_blocking(child);
  864. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  865. if (ret) {
  866. btrfs_tree_unlock(child);
  867. free_extent_buffer(child);
  868. goto enospc;
  869. }
  870. rcu_assign_pointer(root->node, child);
  871. add_root_to_dirty_list(root);
  872. btrfs_tree_unlock(child);
  873. path->locks[level] = 0;
  874. path->nodes[level] = NULL;
  875. clean_tree_block(trans, root, mid);
  876. btrfs_tree_unlock(mid);
  877. /* once for the path */
  878. free_extent_buffer(mid);
  879. root_sub_used(root, mid->len);
  880. btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
  881. /* once for the root ptr */
  882. free_extent_buffer_stale(mid);
  883. return 0;
  884. }
  885. if (btrfs_header_nritems(mid) >
  886. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  887. return 0;
  888. btrfs_header_nritems(mid);
  889. left = read_node_slot(root, parent, pslot - 1);
  890. if (left) {
  891. btrfs_tree_lock(left);
  892. btrfs_set_lock_blocking(left);
  893. wret = btrfs_cow_block(trans, root, left,
  894. parent, pslot - 1, &left);
  895. if (wret) {
  896. ret = wret;
  897. goto enospc;
  898. }
  899. }
  900. right = read_node_slot(root, parent, pslot + 1);
  901. if (right) {
  902. btrfs_tree_lock(right);
  903. btrfs_set_lock_blocking(right);
  904. wret = btrfs_cow_block(trans, root, right,
  905. parent, pslot + 1, &right);
  906. if (wret) {
  907. ret = wret;
  908. goto enospc;
  909. }
  910. }
  911. /* first, try to make some room in the middle buffer */
  912. if (left) {
  913. orig_slot += btrfs_header_nritems(left);
  914. wret = push_node_left(trans, root, left, mid, 1);
  915. if (wret < 0)
  916. ret = wret;
  917. btrfs_header_nritems(mid);
  918. }
  919. /*
  920. * then try to empty the right most buffer into the middle
  921. */
  922. if (right) {
  923. wret = push_node_left(trans, root, mid, right, 1);
  924. if (wret < 0 && wret != -ENOSPC)
  925. ret = wret;
  926. if (btrfs_header_nritems(right) == 0) {
  927. clean_tree_block(trans, root, right);
  928. btrfs_tree_unlock(right);
  929. del_ptr(trans, root, path, level + 1, pslot + 1);
  930. root_sub_used(root, right->len);
  931. btrfs_free_tree_block(trans, root, right, 0, 1, 0);
  932. free_extent_buffer_stale(right);
  933. right = NULL;
  934. } else {
  935. struct btrfs_disk_key right_key;
  936. btrfs_node_key(right, &right_key, 0);
  937. btrfs_set_node_key(parent, &right_key, pslot + 1);
  938. btrfs_mark_buffer_dirty(parent);
  939. }
  940. }
  941. if (btrfs_header_nritems(mid) == 1) {
  942. /*
  943. * we're not allowed to leave a node with one item in the
  944. * tree during a delete. A deletion from lower in the tree
  945. * could try to delete the only pointer in this node.
  946. * So, pull some keys from the left.
  947. * There has to be a left pointer at this point because
  948. * otherwise we would have pulled some pointers from the
  949. * right
  950. */
  951. if (!left) {
  952. ret = -EROFS;
  953. btrfs_std_error(root->fs_info, ret);
  954. goto enospc;
  955. }
  956. wret = balance_node_right(trans, root, mid, left);
  957. if (wret < 0) {
  958. ret = wret;
  959. goto enospc;
  960. }
  961. if (wret == 1) {
  962. wret = push_node_left(trans, root, left, mid, 1);
  963. if (wret < 0)
  964. ret = wret;
  965. }
  966. BUG_ON(wret == 1);
  967. }
  968. if (btrfs_header_nritems(mid) == 0) {
  969. clean_tree_block(trans, root, mid);
  970. btrfs_tree_unlock(mid);
  971. del_ptr(trans, root, path, level + 1, pslot);
  972. root_sub_used(root, mid->len);
  973. btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
  974. free_extent_buffer_stale(mid);
  975. mid = NULL;
  976. } else {
  977. /* update the parent key to reflect our changes */
  978. struct btrfs_disk_key mid_key;
  979. btrfs_node_key(mid, &mid_key, 0);
  980. btrfs_set_node_key(parent, &mid_key, pslot);
  981. btrfs_mark_buffer_dirty(parent);
  982. }
  983. /* update the path */
  984. if (left) {
  985. if (btrfs_header_nritems(left) > orig_slot) {
  986. extent_buffer_get(left);
  987. /* left was locked after cow */
  988. path->nodes[level] = left;
  989. path->slots[level + 1] -= 1;
  990. path->slots[level] = orig_slot;
  991. if (mid) {
  992. btrfs_tree_unlock(mid);
  993. free_extent_buffer(mid);
  994. }
  995. } else {
  996. orig_slot -= btrfs_header_nritems(left);
  997. path->slots[level] = orig_slot;
  998. }
  999. }
  1000. /* double check we haven't messed things up */
  1001. if (orig_ptr !=
  1002. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  1003. BUG();
  1004. enospc:
  1005. if (right) {
  1006. btrfs_tree_unlock(right);
  1007. free_extent_buffer(right);
  1008. }
  1009. if (left) {
  1010. if (path->nodes[level] != left)
  1011. btrfs_tree_unlock(left);
  1012. free_extent_buffer(left);
  1013. }
  1014. return ret;
  1015. }
  1016. /* Node balancing for insertion. Here we only split or push nodes around
  1017. * when they are completely full. This is also done top down, so we
  1018. * have to be pessimistic.
  1019. */
  1020. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1021. struct btrfs_root *root,
  1022. struct btrfs_path *path, int level)
  1023. {
  1024. struct extent_buffer *right = NULL;
  1025. struct extent_buffer *mid;
  1026. struct extent_buffer *left = NULL;
  1027. struct extent_buffer *parent = NULL;
  1028. int ret = 0;
  1029. int wret;
  1030. int pslot;
  1031. int orig_slot = path->slots[level];
  1032. if (level == 0)
  1033. return 1;
  1034. mid = path->nodes[level];
  1035. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1036. if (level < BTRFS_MAX_LEVEL - 1) {
  1037. parent = path->nodes[level + 1];
  1038. pslot = path->slots[level + 1];
  1039. }
  1040. if (!parent)
  1041. return 1;
  1042. left = read_node_slot(root, parent, pslot - 1);
  1043. /* first, try to make some room in the middle buffer */
  1044. if (left) {
  1045. u32 left_nr;
  1046. btrfs_tree_lock(left);
  1047. btrfs_set_lock_blocking(left);
  1048. left_nr = btrfs_header_nritems(left);
  1049. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1050. wret = 1;
  1051. } else {
  1052. ret = btrfs_cow_block(trans, root, left, parent,
  1053. pslot - 1, &left);
  1054. if (ret)
  1055. wret = 1;
  1056. else {
  1057. wret = push_node_left(trans, root,
  1058. left, mid, 0);
  1059. }
  1060. }
  1061. if (wret < 0)
  1062. ret = wret;
  1063. if (wret == 0) {
  1064. struct btrfs_disk_key disk_key;
  1065. orig_slot += left_nr;
  1066. btrfs_node_key(mid, &disk_key, 0);
  1067. btrfs_set_node_key(parent, &disk_key, pslot);
  1068. btrfs_mark_buffer_dirty(parent);
  1069. if (btrfs_header_nritems(left) > orig_slot) {
  1070. path->nodes[level] = left;
  1071. path->slots[level + 1] -= 1;
  1072. path->slots[level] = orig_slot;
  1073. btrfs_tree_unlock(mid);
  1074. free_extent_buffer(mid);
  1075. } else {
  1076. orig_slot -=
  1077. btrfs_header_nritems(left);
  1078. path->slots[level] = orig_slot;
  1079. btrfs_tree_unlock(left);
  1080. free_extent_buffer(left);
  1081. }
  1082. return 0;
  1083. }
  1084. btrfs_tree_unlock(left);
  1085. free_extent_buffer(left);
  1086. }
  1087. right = read_node_slot(root, parent, pslot + 1);
  1088. /*
  1089. * then try to empty the right most buffer into the middle
  1090. */
  1091. if (right) {
  1092. u32 right_nr;
  1093. btrfs_tree_lock(right);
  1094. btrfs_set_lock_blocking(right);
  1095. right_nr = btrfs_header_nritems(right);
  1096. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1097. wret = 1;
  1098. } else {
  1099. ret = btrfs_cow_block(trans, root, right,
  1100. parent, pslot + 1,
  1101. &right);
  1102. if (ret)
  1103. wret = 1;
  1104. else {
  1105. wret = balance_node_right(trans, root,
  1106. right, mid);
  1107. }
  1108. }
  1109. if (wret < 0)
  1110. ret = wret;
  1111. if (wret == 0) {
  1112. struct btrfs_disk_key disk_key;
  1113. btrfs_node_key(right, &disk_key, 0);
  1114. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1115. btrfs_mark_buffer_dirty(parent);
  1116. if (btrfs_header_nritems(mid) <= orig_slot) {
  1117. path->nodes[level] = right;
  1118. path->slots[level + 1] += 1;
  1119. path->slots[level] = orig_slot -
  1120. btrfs_header_nritems(mid);
  1121. btrfs_tree_unlock(mid);
  1122. free_extent_buffer(mid);
  1123. } else {
  1124. btrfs_tree_unlock(right);
  1125. free_extent_buffer(right);
  1126. }
  1127. return 0;
  1128. }
  1129. btrfs_tree_unlock(right);
  1130. free_extent_buffer(right);
  1131. }
  1132. return 1;
  1133. }
  1134. /*
  1135. * readahead one full node of leaves, finding things that are close
  1136. * to the block in 'slot', and triggering ra on them.
  1137. */
  1138. static void reada_for_search(struct btrfs_root *root,
  1139. struct btrfs_path *path,
  1140. int level, int slot, u64 objectid)
  1141. {
  1142. struct extent_buffer *node;
  1143. struct btrfs_disk_key disk_key;
  1144. u32 nritems;
  1145. u64 search;
  1146. u64 target;
  1147. u64 nread = 0;
  1148. u64 gen;
  1149. int direction = path->reada;
  1150. struct extent_buffer *eb;
  1151. u32 nr;
  1152. u32 blocksize;
  1153. u32 nscan = 0;
  1154. if (level != 1)
  1155. return;
  1156. if (!path->nodes[level])
  1157. return;
  1158. node = path->nodes[level];
  1159. search = btrfs_node_blockptr(node, slot);
  1160. blocksize = btrfs_level_size(root, level - 1);
  1161. eb = btrfs_find_tree_block(root, search, blocksize);
  1162. if (eb) {
  1163. free_extent_buffer(eb);
  1164. return;
  1165. }
  1166. target = search;
  1167. nritems = btrfs_header_nritems(node);
  1168. nr = slot;
  1169. while (1) {
  1170. if (direction < 0) {
  1171. if (nr == 0)
  1172. break;
  1173. nr--;
  1174. } else if (direction > 0) {
  1175. nr++;
  1176. if (nr >= nritems)
  1177. break;
  1178. }
  1179. if (path->reada < 0 && objectid) {
  1180. btrfs_node_key(node, &disk_key, nr);
  1181. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1182. break;
  1183. }
  1184. search = btrfs_node_blockptr(node, nr);
  1185. if ((search <= target && target - search <= 65536) ||
  1186. (search > target && search - target <= 65536)) {
  1187. gen = btrfs_node_ptr_generation(node, nr);
  1188. readahead_tree_block(root, search, blocksize, gen);
  1189. nread += blocksize;
  1190. }
  1191. nscan++;
  1192. if ((nread > 65536 || nscan > 32))
  1193. break;
  1194. }
  1195. }
  1196. /*
  1197. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1198. * cache
  1199. */
  1200. static noinline int reada_for_balance(struct btrfs_root *root,
  1201. struct btrfs_path *path, int level)
  1202. {
  1203. int slot;
  1204. int nritems;
  1205. struct extent_buffer *parent;
  1206. struct extent_buffer *eb;
  1207. u64 gen;
  1208. u64 block1 = 0;
  1209. u64 block2 = 0;
  1210. int ret = 0;
  1211. int blocksize;
  1212. parent = path->nodes[level + 1];
  1213. if (!parent)
  1214. return 0;
  1215. nritems = btrfs_header_nritems(parent);
  1216. slot = path->slots[level + 1];
  1217. blocksize = btrfs_level_size(root, level);
  1218. if (slot > 0) {
  1219. block1 = btrfs_node_blockptr(parent, slot - 1);
  1220. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1221. eb = btrfs_find_tree_block(root, block1, blocksize);
  1222. /*
  1223. * if we get -eagain from btrfs_buffer_uptodate, we
  1224. * don't want to return eagain here. That will loop
  1225. * forever
  1226. */
  1227. if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
  1228. block1 = 0;
  1229. free_extent_buffer(eb);
  1230. }
  1231. if (slot + 1 < nritems) {
  1232. block2 = btrfs_node_blockptr(parent, slot + 1);
  1233. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1234. eb = btrfs_find_tree_block(root, block2, blocksize);
  1235. if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
  1236. block2 = 0;
  1237. free_extent_buffer(eb);
  1238. }
  1239. if (block1 || block2) {
  1240. ret = -EAGAIN;
  1241. /* release the whole path */
  1242. btrfs_release_path(path);
  1243. /* read the blocks */
  1244. if (block1)
  1245. readahead_tree_block(root, block1, blocksize, 0);
  1246. if (block2)
  1247. readahead_tree_block(root, block2, blocksize, 0);
  1248. if (block1) {
  1249. eb = read_tree_block(root, block1, blocksize, 0);
  1250. free_extent_buffer(eb);
  1251. }
  1252. if (block2) {
  1253. eb = read_tree_block(root, block2, blocksize, 0);
  1254. free_extent_buffer(eb);
  1255. }
  1256. }
  1257. return ret;
  1258. }
  1259. /*
  1260. * when we walk down the tree, it is usually safe to unlock the higher layers
  1261. * in the tree. The exceptions are when our path goes through slot 0, because
  1262. * operations on the tree might require changing key pointers higher up in the
  1263. * tree.
  1264. *
  1265. * callers might also have set path->keep_locks, which tells this code to keep
  1266. * the lock if the path points to the last slot in the block. This is part of
  1267. * walking through the tree, and selecting the next slot in the higher block.
  1268. *
  1269. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1270. * if lowest_unlock is 1, level 0 won't be unlocked
  1271. */
  1272. static noinline void unlock_up(struct btrfs_path *path, int level,
  1273. int lowest_unlock, int min_write_lock_level,
  1274. int *write_lock_level)
  1275. {
  1276. int i;
  1277. int skip_level = level;
  1278. int no_skips = 0;
  1279. struct extent_buffer *t;
  1280. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1281. if (!path->nodes[i])
  1282. break;
  1283. if (!path->locks[i])
  1284. break;
  1285. if (!no_skips && path->slots[i] == 0) {
  1286. skip_level = i + 1;
  1287. continue;
  1288. }
  1289. if (!no_skips && path->keep_locks) {
  1290. u32 nritems;
  1291. t = path->nodes[i];
  1292. nritems = btrfs_header_nritems(t);
  1293. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1294. skip_level = i + 1;
  1295. continue;
  1296. }
  1297. }
  1298. if (skip_level < i && i >= lowest_unlock)
  1299. no_skips = 1;
  1300. t = path->nodes[i];
  1301. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1302. btrfs_tree_unlock_rw(t, path->locks[i]);
  1303. path->locks[i] = 0;
  1304. if (write_lock_level &&
  1305. i > min_write_lock_level &&
  1306. i <= *write_lock_level) {
  1307. *write_lock_level = i - 1;
  1308. }
  1309. }
  1310. }
  1311. }
  1312. /*
  1313. * This releases any locks held in the path starting at level and
  1314. * going all the way up to the root.
  1315. *
  1316. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1317. * corner cases, such as COW of the block at slot zero in the node. This
  1318. * ignores those rules, and it should only be called when there are no
  1319. * more updates to be done higher up in the tree.
  1320. */
  1321. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1322. {
  1323. int i;
  1324. if (path->keep_locks)
  1325. return;
  1326. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1327. if (!path->nodes[i])
  1328. continue;
  1329. if (!path->locks[i])
  1330. continue;
  1331. btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
  1332. path->locks[i] = 0;
  1333. }
  1334. }
  1335. /*
  1336. * helper function for btrfs_search_slot. The goal is to find a block
  1337. * in cache without setting the path to blocking. If we find the block
  1338. * we return zero and the path is unchanged.
  1339. *
  1340. * If we can't find the block, we set the path blocking and do some
  1341. * reada. -EAGAIN is returned and the search must be repeated.
  1342. */
  1343. static int
  1344. read_block_for_search(struct btrfs_trans_handle *trans,
  1345. struct btrfs_root *root, struct btrfs_path *p,
  1346. struct extent_buffer **eb_ret, int level, int slot,
  1347. struct btrfs_key *key)
  1348. {
  1349. u64 blocknr;
  1350. u64 gen;
  1351. u32 blocksize;
  1352. struct extent_buffer *b = *eb_ret;
  1353. struct extent_buffer *tmp;
  1354. int ret;
  1355. blocknr = btrfs_node_blockptr(b, slot);
  1356. gen = btrfs_node_ptr_generation(b, slot);
  1357. blocksize = btrfs_level_size(root, level - 1);
  1358. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1359. if (tmp) {
  1360. /* first we do an atomic uptodate check */
  1361. if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
  1362. if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
  1363. /*
  1364. * we found an up to date block without
  1365. * sleeping, return
  1366. * right away
  1367. */
  1368. *eb_ret = tmp;
  1369. return 0;
  1370. }
  1371. /* the pages were up to date, but we failed
  1372. * the generation number check. Do a full
  1373. * read for the generation number that is correct.
  1374. * We must do this without dropping locks so
  1375. * we can trust our generation number
  1376. */
  1377. free_extent_buffer(tmp);
  1378. btrfs_set_path_blocking(p);
  1379. /* now we're allowed to do a blocking uptodate check */
  1380. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1381. if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
  1382. *eb_ret = tmp;
  1383. return 0;
  1384. }
  1385. free_extent_buffer(tmp);
  1386. btrfs_release_path(p);
  1387. return -EIO;
  1388. }
  1389. }
  1390. /*
  1391. * reduce lock contention at high levels
  1392. * of the btree by dropping locks before
  1393. * we read. Don't release the lock on the current
  1394. * level because we need to walk this node to figure
  1395. * out which blocks to read.
  1396. */
  1397. btrfs_unlock_up_safe(p, level + 1);
  1398. btrfs_set_path_blocking(p);
  1399. free_extent_buffer(tmp);
  1400. if (p->reada)
  1401. reada_for_search(root, p, level, slot, key->objectid);
  1402. btrfs_release_path(p);
  1403. ret = -EAGAIN;
  1404. tmp = read_tree_block(root, blocknr, blocksize, 0);
  1405. if (tmp) {
  1406. /*
  1407. * If the read above didn't mark this buffer up to date,
  1408. * it will never end up being up to date. Set ret to EIO now
  1409. * and give up so that our caller doesn't loop forever
  1410. * on our EAGAINs.
  1411. */
  1412. if (!btrfs_buffer_uptodate(tmp, 0, 0))
  1413. ret = -EIO;
  1414. free_extent_buffer(tmp);
  1415. }
  1416. return ret;
  1417. }
  1418. /*
  1419. * helper function for btrfs_search_slot. This does all of the checks
  1420. * for node-level blocks and does any balancing required based on
  1421. * the ins_len.
  1422. *
  1423. * If no extra work was required, zero is returned. If we had to
  1424. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1425. * start over
  1426. */
  1427. static int
  1428. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1429. struct btrfs_root *root, struct btrfs_path *p,
  1430. struct extent_buffer *b, int level, int ins_len,
  1431. int *write_lock_level)
  1432. {
  1433. int ret;
  1434. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1435. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1436. int sret;
  1437. if (*write_lock_level < level + 1) {
  1438. *write_lock_level = level + 1;
  1439. btrfs_release_path(p);
  1440. goto again;
  1441. }
  1442. sret = reada_for_balance(root, p, level);
  1443. if (sret)
  1444. goto again;
  1445. btrfs_set_path_blocking(p);
  1446. sret = split_node(trans, root, p, level);
  1447. btrfs_clear_path_blocking(p, NULL, 0);
  1448. BUG_ON(sret > 0);
  1449. if (sret) {
  1450. ret = sret;
  1451. goto done;
  1452. }
  1453. b = p->nodes[level];
  1454. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1455. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1456. int sret;
  1457. if (*write_lock_level < level + 1) {
  1458. *write_lock_level = level + 1;
  1459. btrfs_release_path(p);
  1460. goto again;
  1461. }
  1462. sret = reada_for_balance(root, p, level);
  1463. if (sret)
  1464. goto again;
  1465. btrfs_set_path_blocking(p);
  1466. sret = balance_level(trans, root, p, level);
  1467. btrfs_clear_path_blocking(p, NULL, 0);
  1468. if (sret) {
  1469. ret = sret;
  1470. goto done;
  1471. }
  1472. b = p->nodes[level];
  1473. if (!b) {
  1474. btrfs_release_path(p);
  1475. goto again;
  1476. }
  1477. BUG_ON(btrfs_header_nritems(b) == 1);
  1478. }
  1479. return 0;
  1480. again:
  1481. ret = -EAGAIN;
  1482. done:
  1483. return ret;
  1484. }
  1485. /*
  1486. * look for key in the tree. path is filled in with nodes along the way
  1487. * if key is found, we return zero and you can find the item in the leaf
  1488. * level of the path (level 0)
  1489. *
  1490. * If the key isn't found, the path points to the slot where it should
  1491. * be inserted, and 1 is returned. If there are other errors during the
  1492. * search a negative error number is returned.
  1493. *
  1494. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1495. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1496. * possible)
  1497. */
  1498. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1499. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1500. ins_len, int cow)
  1501. {
  1502. struct extent_buffer *b;
  1503. int slot;
  1504. int ret;
  1505. int err;
  1506. int level;
  1507. int lowest_unlock = 1;
  1508. int root_lock;
  1509. /* everything at write_lock_level or lower must be write locked */
  1510. int write_lock_level = 0;
  1511. u8 lowest_level = 0;
  1512. int min_write_lock_level;
  1513. lowest_level = p->lowest_level;
  1514. WARN_ON(lowest_level && ins_len > 0);
  1515. WARN_ON(p->nodes[0] != NULL);
  1516. if (ins_len < 0) {
  1517. lowest_unlock = 2;
  1518. /* when we are removing items, we might have to go up to level
  1519. * two as we update tree pointers Make sure we keep write
  1520. * for those levels as well
  1521. */
  1522. write_lock_level = 2;
  1523. } else if (ins_len > 0) {
  1524. /*
  1525. * for inserting items, make sure we have a write lock on
  1526. * level 1 so we can update keys
  1527. */
  1528. write_lock_level = 1;
  1529. }
  1530. if (!cow)
  1531. write_lock_level = -1;
  1532. if (cow && (p->keep_locks || p->lowest_level))
  1533. write_lock_level = BTRFS_MAX_LEVEL;
  1534. min_write_lock_level = write_lock_level;
  1535. again:
  1536. /*
  1537. * we try very hard to do read locks on the root
  1538. */
  1539. root_lock = BTRFS_READ_LOCK;
  1540. level = 0;
  1541. if (p->search_commit_root) {
  1542. /*
  1543. * the commit roots are read only
  1544. * so we always do read locks
  1545. */
  1546. b = root->commit_root;
  1547. extent_buffer_get(b);
  1548. level = btrfs_header_level(b);
  1549. if (!p->skip_locking)
  1550. btrfs_tree_read_lock(b);
  1551. } else {
  1552. if (p->skip_locking) {
  1553. b = btrfs_root_node(root);
  1554. level = btrfs_header_level(b);
  1555. } else {
  1556. /* we don't know the level of the root node
  1557. * until we actually have it read locked
  1558. */
  1559. b = btrfs_read_lock_root_node(root);
  1560. level = btrfs_header_level(b);
  1561. if (level <= write_lock_level) {
  1562. /* whoops, must trade for write lock */
  1563. btrfs_tree_read_unlock(b);
  1564. free_extent_buffer(b);
  1565. b = btrfs_lock_root_node(root);
  1566. root_lock = BTRFS_WRITE_LOCK;
  1567. /* the level might have changed, check again */
  1568. level = btrfs_header_level(b);
  1569. }
  1570. }
  1571. }
  1572. p->nodes[level] = b;
  1573. if (!p->skip_locking)
  1574. p->locks[level] = root_lock;
  1575. while (b) {
  1576. level = btrfs_header_level(b);
  1577. /*
  1578. * setup the path here so we can release it under lock
  1579. * contention with the cow code
  1580. */
  1581. if (cow) {
  1582. /*
  1583. * if we don't really need to cow this block
  1584. * then we don't want to set the path blocking,
  1585. * so we test it here
  1586. */
  1587. if (!should_cow_block(trans, root, b))
  1588. goto cow_done;
  1589. btrfs_set_path_blocking(p);
  1590. /*
  1591. * must have write locks on this node and the
  1592. * parent
  1593. */
  1594. if (level + 1 > write_lock_level) {
  1595. write_lock_level = level + 1;
  1596. btrfs_release_path(p);
  1597. goto again;
  1598. }
  1599. err = btrfs_cow_block(trans, root, b,
  1600. p->nodes[level + 1],
  1601. p->slots[level + 1], &b);
  1602. if (err) {
  1603. ret = err;
  1604. goto done;
  1605. }
  1606. }
  1607. cow_done:
  1608. BUG_ON(!cow && ins_len);
  1609. p->nodes[level] = b;
  1610. btrfs_clear_path_blocking(p, NULL, 0);
  1611. /*
  1612. * we have a lock on b and as long as we aren't changing
  1613. * the tree, there is no way to for the items in b to change.
  1614. * It is safe to drop the lock on our parent before we
  1615. * go through the expensive btree search on b.
  1616. *
  1617. * If cow is true, then we might be changing slot zero,
  1618. * which may require changing the parent. So, we can't
  1619. * drop the lock until after we know which slot we're
  1620. * operating on.
  1621. */
  1622. if (!cow)
  1623. btrfs_unlock_up_safe(p, level + 1);
  1624. ret = bin_search(b, key, level, &slot);
  1625. if (level != 0) {
  1626. int dec = 0;
  1627. if (ret && slot > 0) {
  1628. dec = 1;
  1629. slot -= 1;
  1630. }
  1631. p->slots[level] = slot;
  1632. err = setup_nodes_for_search(trans, root, p, b, level,
  1633. ins_len, &write_lock_level);
  1634. if (err == -EAGAIN)
  1635. goto again;
  1636. if (err) {
  1637. ret = err;
  1638. goto done;
  1639. }
  1640. b = p->nodes[level];
  1641. slot = p->slots[level];
  1642. /*
  1643. * slot 0 is special, if we change the key
  1644. * we have to update the parent pointer
  1645. * which means we must have a write lock
  1646. * on the parent
  1647. */
  1648. if (slot == 0 && cow &&
  1649. write_lock_level < level + 1) {
  1650. write_lock_level = level + 1;
  1651. btrfs_release_path(p);
  1652. goto again;
  1653. }
  1654. unlock_up(p, level, lowest_unlock,
  1655. min_write_lock_level, &write_lock_level);
  1656. if (level == lowest_level) {
  1657. if (dec)
  1658. p->slots[level]++;
  1659. goto done;
  1660. }
  1661. err = read_block_for_search(trans, root, p,
  1662. &b, level, slot, key);
  1663. if (err == -EAGAIN)
  1664. goto again;
  1665. if (err) {
  1666. ret = err;
  1667. goto done;
  1668. }
  1669. if (!p->skip_locking) {
  1670. level = btrfs_header_level(b);
  1671. if (level <= write_lock_level) {
  1672. err = btrfs_try_tree_write_lock(b);
  1673. if (!err) {
  1674. btrfs_set_path_blocking(p);
  1675. btrfs_tree_lock(b);
  1676. btrfs_clear_path_blocking(p, b,
  1677. BTRFS_WRITE_LOCK);
  1678. }
  1679. p->locks[level] = BTRFS_WRITE_LOCK;
  1680. } else {
  1681. err = btrfs_try_tree_read_lock(b);
  1682. if (!err) {
  1683. btrfs_set_path_blocking(p);
  1684. btrfs_tree_read_lock(b);
  1685. btrfs_clear_path_blocking(p, b,
  1686. BTRFS_READ_LOCK);
  1687. }
  1688. p->locks[level] = BTRFS_READ_LOCK;
  1689. }
  1690. p->nodes[level] = b;
  1691. }
  1692. } else {
  1693. p->slots[level] = slot;
  1694. if (ins_len > 0 &&
  1695. btrfs_leaf_free_space(root, b) < ins_len) {
  1696. if (write_lock_level < 1) {
  1697. write_lock_level = 1;
  1698. btrfs_release_path(p);
  1699. goto again;
  1700. }
  1701. btrfs_set_path_blocking(p);
  1702. err = split_leaf(trans, root, key,
  1703. p, ins_len, ret == 0);
  1704. btrfs_clear_path_blocking(p, NULL, 0);
  1705. BUG_ON(err > 0);
  1706. if (err) {
  1707. ret = err;
  1708. goto done;
  1709. }
  1710. }
  1711. if (!p->search_for_split)
  1712. unlock_up(p, level, lowest_unlock,
  1713. min_write_lock_level, &write_lock_level);
  1714. goto done;
  1715. }
  1716. }
  1717. ret = 1;
  1718. done:
  1719. /*
  1720. * we don't really know what they plan on doing with the path
  1721. * from here on, so for now just mark it as blocking
  1722. */
  1723. if (!p->leave_spinning)
  1724. btrfs_set_path_blocking(p);
  1725. if (ret < 0)
  1726. btrfs_release_path(p);
  1727. return ret;
  1728. }
  1729. /*
  1730. * adjust the pointers going up the tree, starting at level
  1731. * making sure the right key of each node is points to 'key'.
  1732. * This is used after shifting pointers to the left, so it stops
  1733. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1734. * higher levels
  1735. *
  1736. */
  1737. static void fixup_low_keys(struct btrfs_trans_handle *trans,
  1738. struct btrfs_root *root, struct btrfs_path *path,
  1739. struct btrfs_disk_key *key, int level)
  1740. {
  1741. int i;
  1742. struct extent_buffer *t;
  1743. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1744. int tslot = path->slots[i];
  1745. if (!path->nodes[i])
  1746. break;
  1747. t = path->nodes[i];
  1748. btrfs_set_node_key(t, key, tslot);
  1749. btrfs_mark_buffer_dirty(path->nodes[i]);
  1750. if (tslot != 0)
  1751. break;
  1752. }
  1753. }
  1754. /*
  1755. * update item key.
  1756. *
  1757. * This function isn't completely safe. It's the caller's responsibility
  1758. * that the new key won't break the order
  1759. */
  1760. void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1761. struct btrfs_root *root, struct btrfs_path *path,
  1762. struct btrfs_key *new_key)
  1763. {
  1764. struct btrfs_disk_key disk_key;
  1765. struct extent_buffer *eb;
  1766. int slot;
  1767. eb = path->nodes[0];
  1768. slot = path->slots[0];
  1769. if (slot > 0) {
  1770. btrfs_item_key(eb, &disk_key, slot - 1);
  1771. BUG_ON(comp_keys(&disk_key, new_key) >= 0);
  1772. }
  1773. if (slot < btrfs_header_nritems(eb) - 1) {
  1774. btrfs_item_key(eb, &disk_key, slot + 1);
  1775. BUG_ON(comp_keys(&disk_key, new_key) <= 0);
  1776. }
  1777. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1778. btrfs_set_item_key(eb, &disk_key, slot);
  1779. btrfs_mark_buffer_dirty(eb);
  1780. if (slot == 0)
  1781. fixup_low_keys(trans, root, path, &disk_key, 1);
  1782. }
  1783. /*
  1784. * try to push data from one node into the next node left in the
  1785. * tree.
  1786. *
  1787. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1788. * error, and > 0 if there was no room in the left hand block.
  1789. */
  1790. static int push_node_left(struct btrfs_trans_handle *trans,
  1791. struct btrfs_root *root, struct extent_buffer *dst,
  1792. struct extent_buffer *src, int empty)
  1793. {
  1794. int push_items = 0;
  1795. int src_nritems;
  1796. int dst_nritems;
  1797. int ret = 0;
  1798. src_nritems = btrfs_header_nritems(src);
  1799. dst_nritems = btrfs_header_nritems(dst);
  1800. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1801. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1802. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1803. if (!empty && src_nritems <= 8)
  1804. return 1;
  1805. if (push_items <= 0)
  1806. return 1;
  1807. if (empty) {
  1808. push_items = min(src_nritems, push_items);
  1809. if (push_items < src_nritems) {
  1810. /* leave at least 8 pointers in the node if
  1811. * we aren't going to empty it
  1812. */
  1813. if (src_nritems - push_items < 8) {
  1814. if (push_items <= 8)
  1815. return 1;
  1816. push_items -= 8;
  1817. }
  1818. }
  1819. } else
  1820. push_items = min(src_nritems - 8, push_items);
  1821. copy_extent_buffer(dst, src,
  1822. btrfs_node_key_ptr_offset(dst_nritems),
  1823. btrfs_node_key_ptr_offset(0),
  1824. push_items * sizeof(struct btrfs_key_ptr));
  1825. if (push_items < src_nritems) {
  1826. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1827. btrfs_node_key_ptr_offset(push_items),
  1828. (src_nritems - push_items) *
  1829. sizeof(struct btrfs_key_ptr));
  1830. }
  1831. btrfs_set_header_nritems(src, src_nritems - push_items);
  1832. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1833. btrfs_mark_buffer_dirty(src);
  1834. btrfs_mark_buffer_dirty(dst);
  1835. return ret;
  1836. }
  1837. /*
  1838. * try to push data from one node into the next node right in the
  1839. * tree.
  1840. *
  1841. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1842. * error, and > 0 if there was no room in the right hand block.
  1843. *
  1844. * this will only push up to 1/2 the contents of the left node over
  1845. */
  1846. static int balance_node_right(struct btrfs_trans_handle *trans,
  1847. struct btrfs_root *root,
  1848. struct extent_buffer *dst,
  1849. struct extent_buffer *src)
  1850. {
  1851. int push_items = 0;
  1852. int max_push;
  1853. int src_nritems;
  1854. int dst_nritems;
  1855. int ret = 0;
  1856. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1857. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1858. src_nritems = btrfs_header_nritems(src);
  1859. dst_nritems = btrfs_header_nritems(dst);
  1860. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1861. if (push_items <= 0)
  1862. return 1;
  1863. if (src_nritems < 4)
  1864. return 1;
  1865. max_push = src_nritems / 2 + 1;
  1866. /* don't try to empty the node */
  1867. if (max_push >= src_nritems)
  1868. return 1;
  1869. if (max_push < push_items)
  1870. push_items = max_push;
  1871. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1872. btrfs_node_key_ptr_offset(0),
  1873. (dst_nritems) *
  1874. sizeof(struct btrfs_key_ptr));
  1875. copy_extent_buffer(dst, src,
  1876. btrfs_node_key_ptr_offset(0),
  1877. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1878. push_items * sizeof(struct btrfs_key_ptr));
  1879. btrfs_set_header_nritems(src, src_nritems - push_items);
  1880. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1881. btrfs_mark_buffer_dirty(src);
  1882. btrfs_mark_buffer_dirty(dst);
  1883. return ret;
  1884. }
  1885. /*
  1886. * helper function to insert a new root level in the tree.
  1887. * A new node is allocated, and a single item is inserted to
  1888. * point to the existing root
  1889. *
  1890. * returns zero on success or < 0 on failure.
  1891. */
  1892. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1893. struct btrfs_root *root,
  1894. struct btrfs_path *path, int level)
  1895. {
  1896. u64 lower_gen;
  1897. struct extent_buffer *lower;
  1898. struct extent_buffer *c;
  1899. struct extent_buffer *old;
  1900. struct btrfs_disk_key lower_key;
  1901. BUG_ON(path->nodes[level]);
  1902. BUG_ON(path->nodes[level-1] != root->node);
  1903. lower = path->nodes[level-1];
  1904. if (level == 1)
  1905. btrfs_item_key(lower, &lower_key, 0);
  1906. else
  1907. btrfs_node_key(lower, &lower_key, 0);
  1908. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1909. root->root_key.objectid, &lower_key,
  1910. level, root->node->start, 0, 0);
  1911. if (IS_ERR(c))
  1912. return PTR_ERR(c);
  1913. root_add_used(root, root->nodesize);
  1914. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1915. btrfs_set_header_nritems(c, 1);
  1916. btrfs_set_header_level(c, level);
  1917. btrfs_set_header_bytenr(c, c->start);
  1918. btrfs_set_header_generation(c, trans->transid);
  1919. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1920. btrfs_set_header_owner(c, root->root_key.objectid);
  1921. write_extent_buffer(c, root->fs_info->fsid,
  1922. (unsigned long)btrfs_header_fsid(c),
  1923. BTRFS_FSID_SIZE);
  1924. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1925. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1926. BTRFS_UUID_SIZE);
  1927. btrfs_set_node_key(c, &lower_key, 0);
  1928. btrfs_set_node_blockptr(c, 0, lower->start);
  1929. lower_gen = btrfs_header_generation(lower);
  1930. WARN_ON(lower_gen != trans->transid);
  1931. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1932. btrfs_mark_buffer_dirty(c);
  1933. old = root->node;
  1934. rcu_assign_pointer(root->node, c);
  1935. /* the super has an extra ref to root->node */
  1936. free_extent_buffer(old);
  1937. add_root_to_dirty_list(root);
  1938. extent_buffer_get(c);
  1939. path->nodes[level] = c;
  1940. path->locks[level] = BTRFS_WRITE_LOCK;
  1941. path->slots[level] = 0;
  1942. return 0;
  1943. }
  1944. /*
  1945. * worker function to insert a single pointer in a node.
  1946. * the node should have enough room for the pointer already
  1947. *
  1948. * slot and level indicate where you want the key to go, and
  1949. * blocknr is the block the key points to.
  1950. */
  1951. static void insert_ptr(struct btrfs_trans_handle *trans,
  1952. struct btrfs_root *root, struct btrfs_path *path,
  1953. struct btrfs_disk_key *key, u64 bytenr,
  1954. int slot, int level)
  1955. {
  1956. struct extent_buffer *lower;
  1957. int nritems;
  1958. BUG_ON(!path->nodes[level]);
  1959. btrfs_assert_tree_locked(path->nodes[level]);
  1960. lower = path->nodes[level];
  1961. nritems = btrfs_header_nritems(lower);
  1962. BUG_ON(slot > nritems);
  1963. BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
  1964. if (slot != nritems) {
  1965. memmove_extent_buffer(lower,
  1966. btrfs_node_key_ptr_offset(slot + 1),
  1967. btrfs_node_key_ptr_offset(slot),
  1968. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1969. }
  1970. btrfs_set_node_key(lower, key, slot);
  1971. btrfs_set_node_blockptr(lower, slot, bytenr);
  1972. WARN_ON(trans->transid == 0);
  1973. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1974. btrfs_set_header_nritems(lower, nritems + 1);
  1975. btrfs_mark_buffer_dirty(lower);
  1976. }
  1977. /*
  1978. * split the node at the specified level in path in two.
  1979. * The path is corrected to point to the appropriate node after the split
  1980. *
  1981. * Before splitting this tries to make some room in the node by pushing
  1982. * left and right, if either one works, it returns right away.
  1983. *
  1984. * returns 0 on success and < 0 on failure
  1985. */
  1986. static noinline int split_node(struct btrfs_trans_handle *trans,
  1987. struct btrfs_root *root,
  1988. struct btrfs_path *path, int level)
  1989. {
  1990. struct extent_buffer *c;
  1991. struct extent_buffer *split;
  1992. struct btrfs_disk_key disk_key;
  1993. int mid;
  1994. int ret;
  1995. u32 c_nritems;
  1996. c = path->nodes[level];
  1997. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1998. if (c == root->node) {
  1999. /* trying to split the root, lets make a new one */
  2000. ret = insert_new_root(trans, root, path, level + 1);
  2001. if (ret)
  2002. return ret;
  2003. } else {
  2004. ret = push_nodes_for_insert(trans, root, path, level);
  2005. c = path->nodes[level];
  2006. if (!ret && btrfs_header_nritems(c) <
  2007. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  2008. return 0;
  2009. if (ret < 0)
  2010. return ret;
  2011. }
  2012. c_nritems = btrfs_header_nritems(c);
  2013. mid = (c_nritems + 1) / 2;
  2014. btrfs_node_key(c, &disk_key, mid);
  2015. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  2016. root->root_key.objectid,
  2017. &disk_key, level, c->start, 0, 0);
  2018. if (IS_ERR(split))
  2019. return PTR_ERR(split);
  2020. root_add_used(root, root->nodesize);
  2021. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  2022. btrfs_set_header_level(split, btrfs_header_level(c));
  2023. btrfs_set_header_bytenr(split, split->start);
  2024. btrfs_set_header_generation(split, trans->transid);
  2025. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  2026. btrfs_set_header_owner(split, root->root_key.objectid);
  2027. write_extent_buffer(split, root->fs_info->fsid,
  2028. (unsigned long)btrfs_header_fsid(split),
  2029. BTRFS_FSID_SIZE);
  2030. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  2031. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  2032. BTRFS_UUID_SIZE);
  2033. copy_extent_buffer(split, c,
  2034. btrfs_node_key_ptr_offset(0),
  2035. btrfs_node_key_ptr_offset(mid),
  2036. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  2037. btrfs_set_header_nritems(split, c_nritems - mid);
  2038. btrfs_set_header_nritems(c, mid);
  2039. ret = 0;
  2040. btrfs_mark_buffer_dirty(c);
  2041. btrfs_mark_buffer_dirty(split);
  2042. insert_ptr(trans, root, path, &disk_key, split->start,
  2043. path->slots[level + 1] + 1, level + 1);
  2044. if (path->slots[level] >= mid) {
  2045. path->slots[level] -= mid;
  2046. btrfs_tree_unlock(c);
  2047. free_extent_buffer(c);
  2048. path->nodes[level] = split;
  2049. path->slots[level + 1] += 1;
  2050. } else {
  2051. btrfs_tree_unlock(split);
  2052. free_extent_buffer(split);
  2053. }
  2054. return ret;
  2055. }
  2056. /*
  2057. * how many bytes are required to store the items in a leaf. start
  2058. * and nr indicate which items in the leaf to check. This totals up the
  2059. * space used both by the item structs and the item data
  2060. */
  2061. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  2062. {
  2063. int data_len;
  2064. int nritems = btrfs_header_nritems(l);
  2065. int end = min(nritems, start + nr) - 1;
  2066. if (!nr)
  2067. return 0;
  2068. data_len = btrfs_item_end_nr(l, start);
  2069. data_len = data_len - btrfs_item_offset_nr(l, end);
  2070. data_len += sizeof(struct btrfs_item) * nr;
  2071. WARN_ON(data_len < 0);
  2072. return data_len;
  2073. }
  2074. /*
  2075. * The space between the end of the leaf items and
  2076. * the start of the leaf data. IOW, how much room
  2077. * the leaf has left for both items and data
  2078. */
  2079. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2080. struct extent_buffer *leaf)
  2081. {
  2082. int nritems = btrfs_header_nritems(leaf);
  2083. int ret;
  2084. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2085. if (ret < 0) {
  2086. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2087. "used %d nritems %d\n",
  2088. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2089. leaf_space_used(leaf, 0, nritems), nritems);
  2090. }
  2091. return ret;
  2092. }
  2093. /*
  2094. * min slot controls the lowest index we're willing to push to the
  2095. * right. We'll push up to and including min_slot, but no lower
  2096. */
  2097. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  2098. struct btrfs_root *root,
  2099. struct btrfs_path *path,
  2100. int data_size, int empty,
  2101. struct extent_buffer *right,
  2102. int free_space, u32 left_nritems,
  2103. u32 min_slot)
  2104. {
  2105. struct extent_buffer *left = path->nodes[0];
  2106. struct extent_buffer *upper = path->nodes[1];
  2107. struct btrfs_map_token token;
  2108. struct btrfs_disk_key disk_key;
  2109. int slot;
  2110. u32 i;
  2111. int push_space = 0;
  2112. int push_items = 0;
  2113. struct btrfs_item *item;
  2114. u32 nr;
  2115. u32 right_nritems;
  2116. u32 data_end;
  2117. u32 this_item_size;
  2118. btrfs_init_map_token(&token);
  2119. if (empty)
  2120. nr = 0;
  2121. else
  2122. nr = max_t(u32, 1, min_slot);
  2123. if (path->slots[0] >= left_nritems)
  2124. push_space += data_size;
  2125. slot = path->slots[1];
  2126. i = left_nritems - 1;
  2127. while (i >= nr) {
  2128. item = btrfs_item_nr(left, i);
  2129. if (!empty && push_items > 0) {
  2130. if (path->slots[0] > i)
  2131. break;
  2132. if (path->slots[0] == i) {
  2133. int space = btrfs_leaf_free_space(root, left);
  2134. if (space + push_space * 2 > free_space)
  2135. break;
  2136. }
  2137. }
  2138. if (path->slots[0] == i)
  2139. push_space += data_size;
  2140. this_item_size = btrfs_item_size(left, item);
  2141. if (this_item_size + sizeof(*item) + push_space > free_space)
  2142. break;
  2143. push_items++;
  2144. push_space += this_item_size + sizeof(*item);
  2145. if (i == 0)
  2146. break;
  2147. i--;
  2148. }
  2149. if (push_items == 0)
  2150. goto out_unlock;
  2151. if (!empty && push_items == left_nritems)
  2152. WARN_ON(1);
  2153. /* push left to right */
  2154. right_nritems = btrfs_header_nritems(right);
  2155. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2156. push_space -= leaf_data_end(root, left);
  2157. /* make room in the right data area */
  2158. data_end = leaf_data_end(root, right);
  2159. memmove_extent_buffer(right,
  2160. btrfs_leaf_data(right) + data_end - push_space,
  2161. btrfs_leaf_data(right) + data_end,
  2162. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2163. /* copy from the left data area */
  2164. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2165. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2166. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2167. push_space);
  2168. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2169. btrfs_item_nr_offset(0),
  2170. right_nritems * sizeof(struct btrfs_item));
  2171. /* copy the items from left to right */
  2172. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2173. btrfs_item_nr_offset(left_nritems - push_items),
  2174. push_items * sizeof(struct btrfs_item));
  2175. /* update the item pointers */
  2176. right_nritems += push_items;
  2177. btrfs_set_header_nritems(right, right_nritems);
  2178. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2179. for (i = 0; i < right_nritems; i++) {
  2180. item = btrfs_item_nr(right, i);
  2181. push_space -= btrfs_token_item_size(right, item, &token);
  2182. btrfs_set_token_item_offset(right, item, push_space, &token);
  2183. }
  2184. left_nritems -= push_items;
  2185. btrfs_set_header_nritems(left, left_nritems);
  2186. if (left_nritems)
  2187. btrfs_mark_buffer_dirty(left);
  2188. else
  2189. clean_tree_block(trans, root, left);
  2190. btrfs_mark_buffer_dirty(right);
  2191. btrfs_item_key(right, &disk_key, 0);
  2192. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2193. btrfs_mark_buffer_dirty(upper);
  2194. /* then fixup the leaf pointer in the path */
  2195. if (path->slots[0] >= left_nritems) {
  2196. path->slots[0] -= left_nritems;
  2197. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2198. clean_tree_block(trans, root, path->nodes[0]);
  2199. btrfs_tree_unlock(path->nodes[0]);
  2200. free_extent_buffer(path->nodes[0]);
  2201. path->nodes[0] = right;
  2202. path->slots[1] += 1;
  2203. } else {
  2204. btrfs_tree_unlock(right);
  2205. free_extent_buffer(right);
  2206. }
  2207. return 0;
  2208. out_unlock:
  2209. btrfs_tree_unlock(right);
  2210. free_extent_buffer(right);
  2211. return 1;
  2212. }
  2213. /*
  2214. * push some data in the path leaf to the right, trying to free up at
  2215. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2216. *
  2217. * returns 1 if the push failed because the other node didn't have enough
  2218. * room, 0 if everything worked out and < 0 if there were major errors.
  2219. *
  2220. * this will push starting from min_slot to the end of the leaf. It won't
  2221. * push any slot lower than min_slot
  2222. */
  2223. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2224. *root, struct btrfs_path *path,
  2225. int min_data_size, int data_size,
  2226. int empty, u32 min_slot)
  2227. {
  2228. struct extent_buffer *left = path->nodes[0];
  2229. struct extent_buffer *right;
  2230. struct extent_buffer *upper;
  2231. int slot;
  2232. int free_space;
  2233. u32 left_nritems;
  2234. int ret;
  2235. if (!path->nodes[1])
  2236. return 1;
  2237. slot = path->slots[1];
  2238. upper = path->nodes[1];
  2239. if (slot >= btrfs_header_nritems(upper) - 1)
  2240. return 1;
  2241. btrfs_assert_tree_locked(path->nodes[1]);
  2242. right = read_node_slot(root, upper, slot + 1);
  2243. if (right == NULL)
  2244. return 1;
  2245. btrfs_tree_lock(right);
  2246. btrfs_set_lock_blocking(right);
  2247. free_space = btrfs_leaf_free_space(root, right);
  2248. if (free_space < data_size)
  2249. goto out_unlock;
  2250. /* cow and double check */
  2251. ret = btrfs_cow_block(trans, root, right, upper,
  2252. slot + 1, &right);
  2253. if (ret)
  2254. goto out_unlock;
  2255. free_space = btrfs_leaf_free_space(root, right);
  2256. if (free_space < data_size)
  2257. goto out_unlock;
  2258. left_nritems = btrfs_header_nritems(left);
  2259. if (left_nritems == 0)
  2260. goto out_unlock;
  2261. return __push_leaf_right(trans, root, path, min_data_size, empty,
  2262. right, free_space, left_nritems, min_slot);
  2263. out_unlock:
  2264. btrfs_tree_unlock(right);
  2265. free_extent_buffer(right);
  2266. return 1;
  2267. }
  2268. /*
  2269. * push some data in the path leaf to the left, trying to free up at
  2270. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2271. *
  2272. * max_slot can put a limit on how far into the leaf we'll push items. The
  2273. * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
  2274. * items
  2275. */
  2276. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2277. struct btrfs_root *root,
  2278. struct btrfs_path *path, int data_size,
  2279. int empty, struct extent_buffer *left,
  2280. int free_space, u32 right_nritems,
  2281. u32 max_slot)
  2282. {
  2283. struct btrfs_disk_key disk_key;
  2284. struct extent_buffer *right = path->nodes[0];
  2285. int i;
  2286. int push_space = 0;
  2287. int push_items = 0;
  2288. struct btrfs_item *item;
  2289. u32 old_left_nritems;
  2290. u32 nr;
  2291. int ret = 0;
  2292. u32 this_item_size;
  2293. u32 old_left_item_size;
  2294. struct btrfs_map_token token;
  2295. btrfs_init_map_token(&token);
  2296. if (empty)
  2297. nr = min(right_nritems, max_slot);
  2298. else
  2299. nr = min(right_nritems - 1, max_slot);
  2300. for (i = 0; i < nr; i++) {
  2301. item = btrfs_item_nr(right, i);
  2302. if (!empty && push_items > 0) {
  2303. if (path->slots[0] < i)
  2304. break;
  2305. if (path->slots[0] == i) {
  2306. int space = btrfs_leaf_free_space(root, right);
  2307. if (space + push_space * 2 > free_space)
  2308. break;
  2309. }
  2310. }
  2311. if (path->slots[0] == i)
  2312. push_space += data_size;
  2313. this_item_size = btrfs_item_size(right, item);
  2314. if (this_item_size + sizeof(*item) + push_space > free_space)
  2315. break;
  2316. push_items++;
  2317. push_space += this_item_size + sizeof(*item);
  2318. }
  2319. if (push_items == 0) {
  2320. ret = 1;
  2321. goto out;
  2322. }
  2323. if (!empty && push_items == btrfs_header_nritems(right))
  2324. WARN_ON(1);
  2325. /* push data from right to left */
  2326. copy_extent_buffer(left, right,
  2327. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2328. btrfs_item_nr_offset(0),
  2329. push_items * sizeof(struct btrfs_item));
  2330. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2331. btrfs_item_offset_nr(right, push_items - 1);
  2332. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2333. leaf_data_end(root, left) - push_space,
  2334. btrfs_leaf_data(right) +
  2335. btrfs_item_offset_nr(right, push_items - 1),
  2336. push_space);
  2337. old_left_nritems = btrfs_header_nritems(left);
  2338. BUG_ON(old_left_nritems <= 0);
  2339. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2340. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2341. u32 ioff;
  2342. item = btrfs_item_nr(left, i);
  2343. ioff = btrfs_token_item_offset(left, item, &token);
  2344. btrfs_set_token_item_offset(left, item,
  2345. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
  2346. &token);
  2347. }
  2348. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2349. /* fixup right node */
  2350. if (push_items > right_nritems) {
  2351. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2352. right_nritems);
  2353. WARN_ON(1);
  2354. }
  2355. if (push_items < right_nritems) {
  2356. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2357. leaf_data_end(root, right);
  2358. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2359. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2360. btrfs_leaf_data(right) +
  2361. leaf_data_end(root, right), push_space);
  2362. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2363. btrfs_item_nr_offset(push_items),
  2364. (btrfs_header_nritems(right) - push_items) *
  2365. sizeof(struct btrfs_item));
  2366. }
  2367. right_nritems -= push_items;
  2368. btrfs_set_header_nritems(right, right_nritems);
  2369. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2370. for (i = 0; i < right_nritems; i++) {
  2371. item = btrfs_item_nr(right, i);
  2372. push_space = push_space - btrfs_token_item_size(right,
  2373. item, &token);
  2374. btrfs_set_token_item_offset(right, item, push_space, &token);
  2375. }
  2376. btrfs_mark_buffer_dirty(left);
  2377. if (right_nritems)
  2378. btrfs_mark_buffer_dirty(right);
  2379. else
  2380. clean_tree_block(trans, root, right);
  2381. btrfs_item_key(right, &disk_key, 0);
  2382. fixup_low_keys(trans, root, path, &disk_key, 1);
  2383. /* then fixup the leaf pointer in the path */
  2384. if (path->slots[0] < push_items) {
  2385. path->slots[0] += old_left_nritems;
  2386. btrfs_tree_unlock(path->nodes[0]);
  2387. free_extent_buffer(path->nodes[0]);
  2388. path->nodes[0] = left;
  2389. path->slots[1] -= 1;
  2390. } else {
  2391. btrfs_tree_unlock(left);
  2392. free_extent_buffer(left);
  2393. path->slots[0] -= push_items;
  2394. }
  2395. BUG_ON(path->slots[0] < 0);
  2396. return ret;
  2397. out:
  2398. btrfs_tree_unlock(left);
  2399. free_extent_buffer(left);
  2400. return ret;
  2401. }
  2402. /*
  2403. * push some data in the path leaf to the left, trying to free up at
  2404. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2405. *
  2406. * max_slot can put a limit on how far into the leaf we'll push items. The
  2407. * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
  2408. * items
  2409. */
  2410. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2411. *root, struct btrfs_path *path, int min_data_size,
  2412. int data_size, int empty, u32 max_slot)
  2413. {
  2414. struct extent_buffer *right = path->nodes[0];
  2415. struct extent_buffer *left;
  2416. int slot;
  2417. int free_space;
  2418. u32 right_nritems;
  2419. int ret = 0;
  2420. slot = path->slots[1];
  2421. if (slot == 0)
  2422. return 1;
  2423. if (!path->nodes[1])
  2424. return 1;
  2425. right_nritems = btrfs_header_nritems(right);
  2426. if (right_nritems == 0)
  2427. return 1;
  2428. btrfs_assert_tree_locked(path->nodes[1]);
  2429. left = read_node_slot(root, path->nodes[1], slot - 1);
  2430. if (left == NULL)
  2431. return 1;
  2432. btrfs_tree_lock(left);
  2433. btrfs_set_lock_blocking(left);
  2434. free_space = btrfs_leaf_free_space(root, left);
  2435. if (free_space < data_size) {
  2436. ret = 1;
  2437. goto out;
  2438. }
  2439. /* cow and double check */
  2440. ret = btrfs_cow_block(trans, root, left,
  2441. path->nodes[1], slot - 1, &left);
  2442. if (ret) {
  2443. /* we hit -ENOSPC, but it isn't fatal here */
  2444. if (ret == -ENOSPC)
  2445. ret = 1;
  2446. goto out;
  2447. }
  2448. free_space = btrfs_leaf_free_space(root, left);
  2449. if (free_space < data_size) {
  2450. ret = 1;
  2451. goto out;
  2452. }
  2453. return __push_leaf_left(trans, root, path, min_data_size,
  2454. empty, left, free_space, right_nritems,
  2455. max_slot);
  2456. out:
  2457. btrfs_tree_unlock(left);
  2458. free_extent_buffer(left);
  2459. return ret;
  2460. }
  2461. /*
  2462. * split the path's leaf in two, making sure there is at least data_size
  2463. * available for the resulting leaf level of the path.
  2464. */
  2465. static noinline void copy_for_split(struct btrfs_trans_handle *trans,
  2466. struct btrfs_root *root,
  2467. struct btrfs_path *path,
  2468. struct extent_buffer *l,
  2469. struct extent_buffer *right,
  2470. int slot, int mid, int nritems)
  2471. {
  2472. int data_copy_size;
  2473. int rt_data_off;
  2474. int i;
  2475. struct btrfs_disk_key disk_key;
  2476. struct btrfs_map_token token;
  2477. btrfs_init_map_token(&token);
  2478. nritems = nritems - mid;
  2479. btrfs_set_header_nritems(right, nritems);
  2480. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2481. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2482. btrfs_item_nr_offset(mid),
  2483. nritems * sizeof(struct btrfs_item));
  2484. copy_extent_buffer(right, l,
  2485. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2486. data_copy_size, btrfs_leaf_data(l) +
  2487. leaf_data_end(root, l), data_copy_size);
  2488. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2489. btrfs_item_end_nr(l, mid);
  2490. for (i = 0; i < nritems; i++) {
  2491. struct btrfs_item *item = btrfs_item_nr(right, i);
  2492. u32 ioff;
  2493. ioff = btrfs_token_item_offset(right, item, &token);
  2494. btrfs_set_token_item_offset(right, item,
  2495. ioff + rt_data_off, &token);
  2496. }
  2497. btrfs_set_header_nritems(l, mid);
  2498. btrfs_item_key(right, &disk_key, 0);
  2499. insert_ptr(trans, root, path, &disk_key, right->start,
  2500. path->slots[1] + 1, 1);
  2501. btrfs_mark_buffer_dirty(right);
  2502. btrfs_mark_buffer_dirty(l);
  2503. BUG_ON(path->slots[0] != slot);
  2504. if (mid <= slot) {
  2505. btrfs_tree_unlock(path->nodes[0]);
  2506. free_extent_buffer(path->nodes[0]);
  2507. path->nodes[0] = right;
  2508. path->slots[0] -= mid;
  2509. path->slots[1] += 1;
  2510. } else {
  2511. btrfs_tree_unlock(right);
  2512. free_extent_buffer(right);
  2513. }
  2514. BUG_ON(path->slots[0] < 0);
  2515. }
  2516. /*
  2517. * double splits happen when we need to insert a big item in the middle
  2518. * of a leaf. A double split can leave us with 3 mostly empty leaves:
  2519. * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
  2520. * A B C
  2521. *
  2522. * We avoid this by trying to push the items on either side of our target
  2523. * into the adjacent leaves. If all goes well we can avoid the double split
  2524. * completely.
  2525. */
  2526. static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
  2527. struct btrfs_root *root,
  2528. struct btrfs_path *path,
  2529. int data_size)
  2530. {
  2531. int ret;
  2532. int progress = 0;
  2533. int slot;
  2534. u32 nritems;
  2535. slot = path->slots[0];
  2536. /*
  2537. * try to push all the items after our slot into the
  2538. * right leaf
  2539. */
  2540. ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
  2541. if (ret < 0)
  2542. return ret;
  2543. if (ret == 0)
  2544. progress++;
  2545. nritems = btrfs_header_nritems(path->nodes[0]);
  2546. /*
  2547. * our goal is to get our slot at the start or end of a leaf. If
  2548. * we've done so we're done
  2549. */
  2550. if (path->slots[0] == 0 || path->slots[0] == nritems)
  2551. return 0;
  2552. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2553. return 0;
  2554. /* try to push all the items before our slot into the next leaf */
  2555. slot = path->slots[0];
  2556. ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
  2557. if (ret < 0)
  2558. return ret;
  2559. if (ret == 0)
  2560. progress++;
  2561. if (progress)
  2562. return 0;
  2563. return 1;
  2564. }
  2565. /*
  2566. * split the path's leaf in two, making sure there is at least data_size
  2567. * available for the resulting leaf level of the path.
  2568. *
  2569. * returns 0 if all went well and < 0 on failure.
  2570. */
  2571. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2572. struct btrfs_root *root,
  2573. struct btrfs_key *ins_key,
  2574. struct btrfs_path *path, int data_size,
  2575. int extend)
  2576. {
  2577. struct btrfs_disk_key disk_key;
  2578. struct extent_buffer *l;
  2579. u32 nritems;
  2580. int mid;
  2581. int slot;
  2582. struct extent_buffer *right;
  2583. int ret = 0;
  2584. int wret;
  2585. int split;
  2586. int num_doubles = 0;
  2587. int tried_avoid_double = 0;
  2588. l = path->nodes[0];
  2589. slot = path->slots[0];
  2590. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  2591. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
  2592. return -EOVERFLOW;
  2593. /* first try to make some room by pushing left and right */
  2594. if (data_size) {
  2595. wret = push_leaf_right(trans, root, path, data_size,
  2596. data_size, 0, 0);
  2597. if (wret < 0)
  2598. return wret;
  2599. if (wret) {
  2600. wret = push_leaf_left(trans, root, path, data_size,
  2601. data_size, 0, (u32)-1);
  2602. if (wret < 0)
  2603. return wret;
  2604. }
  2605. l = path->nodes[0];
  2606. /* did the pushes work? */
  2607. if (btrfs_leaf_free_space(root, l) >= data_size)
  2608. return 0;
  2609. }
  2610. if (!path->nodes[1]) {
  2611. ret = insert_new_root(trans, root, path, 1);
  2612. if (ret)
  2613. return ret;
  2614. }
  2615. again:
  2616. split = 1;
  2617. l = path->nodes[0];
  2618. slot = path->slots[0];
  2619. nritems = btrfs_header_nritems(l);
  2620. mid = (nritems + 1) / 2;
  2621. if (mid <= slot) {
  2622. if (nritems == 1 ||
  2623. leaf_space_used(l, mid, nritems - mid) + data_size >
  2624. BTRFS_LEAF_DATA_SIZE(root)) {
  2625. if (slot >= nritems) {
  2626. split = 0;
  2627. } else {
  2628. mid = slot;
  2629. if (mid != nritems &&
  2630. leaf_space_used(l, mid, nritems - mid) +
  2631. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2632. if (data_size && !tried_avoid_double)
  2633. goto push_for_double;
  2634. split = 2;
  2635. }
  2636. }
  2637. }
  2638. } else {
  2639. if (leaf_space_used(l, 0, mid) + data_size >
  2640. BTRFS_LEAF_DATA_SIZE(root)) {
  2641. if (!extend && data_size && slot == 0) {
  2642. split = 0;
  2643. } else if ((extend || !data_size) && slot == 0) {
  2644. mid = 1;
  2645. } else {
  2646. mid = slot;
  2647. if (mid != nritems &&
  2648. leaf_space_used(l, mid, nritems - mid) +
  2649. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2650. if (data_size && !tried_avoid_double)
  2651. goto push_for_double;
  2652. split = 2 ;
  2653. }
  2654. }
  2655. }
  2656. }
  2657. if (split == 0)
  2658. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2659. else
  2660. btrfs_item_key(l, &disk_key, mid);
  2661. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2662. root->root_key.objectid,
  2663. &disk_key, 0, l->start, 0, 0);
  2664. if (IS_ERR(right))
  2665. return PTR_ERR(right);
  2666. root_add_used(root, root->leafsize);
  2667. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2668. btrfs_set_header_bytenr(right, right->start);
  2669. btrfs_set_header_generation(right, trans->transid);
  2670. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2671. btrfs_set_header_owner(right, root->root_key.objectid);
  2672. btrfs_set_header_level(right, 0);
  2673. write_extent_buffer(right, root->fs_info->fsid,
  2674. (unsigned long)btrfs_header_fsid(right),
  2675. BTRFS_FSID_SIZE);
  2676. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2677. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2678. BTRFS_UUID_SIZE);
  2679. if (split == 0) {
  2680. if (mid <= slot) {
  2681. btrfs_set_header_nritems(right, 0);
  2682. insert_ptr(trans, root, path, &disk_key, right->start,
  2683. path->slots[1] + 1, 1);
  2684. btrfs_tree_unlock(path->nodes[0]);
  2685. free_extent_buffer(path->nodes[0]);
  2686. path->nodes[0] = right;
  2687. path->slots[0] = 0;
  2688. path->slots[1] += 1;
  2689. } else {
  2690. btrfs_set_header_nritems(right, 0);
  2691. insert_ptr(trans, root, path, &disk_key, right->start,
  2692. path->slots[1], 1);
  2693. btrfs_tree_unlock(path->nodes[0]);
  2694. free_extent_buffer(path->nodes[0]);
  2695. path->nodes[0] = right;
  2696. path->slots[0] = 0;
  2697. if (path->slots[1] == 0)
  2698. fixup_low_keys(trans, root, path,
  2699. &disk_key, 1);
  2700. }
  2701. btrfs_mark_buffer_dirty(right);
  2702. return ret;
  2703. }
  2704. copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2705. if (split == 2) {
  2706. BUG_ON(num_doubles != 0);
  2707. num_doubles++;
  2708. goto again;
  2709. }
  2710. return 0;
  2711. push_for_double:
  2712. push_for_double_split(trans, root, path, data_size);
  2713. tried_avoid_double = 1;
  2714. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2715. return 0;
  2716. goto again;
  2717. }
  2718. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  2719. struct btrfs_root *root,
  2720. struct btrfs_path *path, int ins_len)
  2721. {
  2722. struct btrfs_key key;
  2723. struct extent_buffer *leaf;
  2724. struct btrfs_file_extent_item *fi;
  2725. u64 extent_len = 0;
  2726. u32 item_size;
  2727. int ret;
  2728. leaf = path->nodes[0];
  2729. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2730. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  2731. key.type != BTRFS_EXTENT_CSUM_KEY);
  2732. if (btrfs_leaf_free_space(root, leaf) >= ins_len)
  2733. return 0;
  2734. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2735. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2736. fi = btrfs_item_ptr(leaf, path->slots[0],
  2737. struct btrfs_file_extent_item);
  2738. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2739. }
  2740. btrfs_release_path(path);
  2741. path->keep_locks = 1;
  2742. path->search_for_split = 1;
  2743. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2744. path->search_for_split = 0;
  2745. if (ret < 0)
  2746. goto err;
  2747. ret = -EAGAIN;
  2748. leaf = path->nodes[0];
  2749. /* if our item isn't there or got smaller, return now */
  2750. if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  2751. goto err;
  2752. /* the leaf has changed, it now has room. return now */
  2753. if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
  2754. goto err;
  2755. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2756. fi = btrfs_item_ptr(leaf, path->slots[0],
  2757. struct btrfs_file_extent_item);
  2758. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  2759. goto err;
  2760. }
  2761. btrfs_set_path_blocking(path);
  2762. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  2763. if (ret)
  2764. goto err;
  2765. path->keep_locks = 0;
  2766. btrfs_unlock_up_safe(path, 1);
  2767. return 0;
  2768. err:
  2769. path->keep_locks = 0;
  2770. return ret;
  2771. }
  2772. static noinline int split_item(struct btrfs_trans_handle *trans,
  2773. struct btrfs_root *root,
  2774. struct btrfs_path *path,
  2775. struct btrfs_key *new_key,
  2776. unsigned long split_offset)
  2777. {
  2778. struct extent_buffer *leaf;
  2779. struct btrfs_item *item;
  2780. struct btrfs_item *new_item;
  2781. int slot;
  2782. char *buf;
  2783. u32 nritems;
  2784. u32 item_size;
  2785. u32 orig_offset;
  2786. struct btrfs_disk_key disk_key;
  2787. leaf = path->nodes[0];
  2788. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2789. btrfs_set_path_blocking(path);
  2790. item = btrfs_item_nr(leaf, path->slots[0]);
  2791. orig_offset = btrfs_item_offset(leaf, item);
  2792. item_size = btrfs_item_size(leaf, item);
  2793. buf = kmalloc(item_size, GFP_NOFS);
  2794. if (!buf)
  2795. return -ENOMEM;
  2796. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2797. path->slots[0]), item_size);
  2798. slot = path->slots[0] + 1;
  2799. nritems = btrfs_header_nritems(leaf);
  2800. if (slot != nritems) {
  2801. /* shift the items */
  2802. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2803. btrfs_item_nr_offset(slot),
  2804. (nritems - slot) * sizeof(struct btrfs_item));
  2805. }
  2806. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2807. btrfs_set_item_key(leaf, &disk_key, slot);
  2808. new_item = btrfs_item_nr(leaf, slot);
  2809. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2810. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2811. btrfs_set_item_offset(leaf, item,
  2812. orig_offset + item_size - split_offset);
  2813. btrfs_set_item_size(leaf, item, split_offset);
  2814. btrfs_set_header_nritems(leaf, nritems + 1);
  2815. /* write the data for the start of the original item */
  2816. write_extent_buffer(leaf, buf,
  2817. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2818. split_offset);
  2819. /* write the data for the new item */
  2820. write_extent_buffer(leaf, buf + split_offset,
  2821. btrfs_item_ptr_offset(leaf, slot),
  2822. item_size - split_offset);
  2823. btrfs_mark_buffer_dirty(leaf);
  2824. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  2825. kfree(buf);
  2826. return 0;
  2827. }
  2828. /*
  2829. * This function splits a single item into two items,
  2830. * giving 'new_key' to the new item and splitting the
  2831. * old one at split_offset (from the start of the item).
  2832. *
  2833. * The path may be released by this operation. After
  2834. * the split, the path is pointing to the old item. The
  2835. * new item is going to be in the same node as the old one.
  2836. *
  2837. * Note, the item being split must be smaller enough to live alone on
  2838. * a tree block with room for one extra struct btrfs_item
  2839. *
  2840. * This allows us to split the item in place, keeping a lock on the
  2841. * leaf the entire time.
  2842. */
  2843. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2844. struct btrfs_root *root,
  2845. struct btrfs_path *path,
  2846. struct btrfs_key *new_key,
  2847. unsigned long split_offset)
  2848. {
  2849. int ret;
  2850. ret = setup_leaf_for_split(trans, root, path,
  2851. sizeof(struct btrfs_item));
  2852. if (ret)
  2853. return ret;
  2854. ret = split_item(trans, root, path, new_key, split_offset);
  2855. return ret;
  2856. }
  2857. /*
  2858. * This function duplicate a item, giving 'new_key' to the new item.
  2859. * It guarantees both items live in the same tree leaf and the new item
  2860. * is contiguous with the original item.
  2861. *
  2862. * This allows us to split file extent in place, keeping a lock on the
  2863. * leaf the entire time.
  2864. */
  2865. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  2866. struct btrfs_root *root,
  2867. struct btrfs_path *path,
  2868. struct btrfs_key *new_key)
  2869. {
  2870. struct extent_buffer *leaf;
  2871. int ret;
  2872. u32 item_size;
  2873. leaf = path->nodes[0];
  2874. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2875. ret = setup_leaf_for_split(trans, root, path,
  2876. item_size + sizeof(struct btrfs_item));
  2877. if (ret)
  2878. return ret;
  2879. path->slots[0]++;
  2880. setup_items_for_insert(trans, root, path, new_key, &item_size,
  2881. item_size, item_size +
  2882. sizeof(struct btrfs_item), 1);
  2883. leaf = path->nodes[0];
  2884. memcpy_extent_buffer(leaf,
  2885. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2886. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  2887. item_size);
  2888. return 0;
  2889. }
  2890. /*
  2891. * make the item pointed to by the path smaller. new_size indicates
  2892. * how small to make it, and from_end tells us if we just chop bytes
  2893. * off the end of the item or if we shift the item to chop bytes off
  2894. * the front.
  2895. */
  2896. void btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2897. struct btrfs_root *root,
  2898. struct btrfs_path *path,
  2899. u32 new_size, int from_end)
  2900. {
  2901. int slot;
  2902. struct extent_buffer *leaf;
  2903. struct btrfs_item *item;
  2904. u32 nritems;
  2905. unsigned int data_end;
  2906. unsigned int old_data_start;
  2907. unsigned int old_size;
  2908. unsigned int size_diff;
  2909. int i;
  2910. struct btrfs_map_token token;
  2911. btrfs_init_map_token(&token);
  2912. leaf = path->nodes[0];
  2913. slot = path->slots[0];
  2914. old_size = btrfs_item_size_nr(leaf, slot);
  2915. if (old_size == new_size)
  2916. return;
  2917. nritems = btrfs_header_nritems(leaf);
  2918. data_end = leaf_data_end(root, leaf);
  2919. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2920. size_diff = old_size - new_size;
  2921. BUG_ON(slot < 0);
  2922. BUG_ON(slot >= nritems);
  2923. /*
  2924. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2925. */
  2926. /* first correct the data pointers */
  2927. for (i = slot; i < nritems; i++) {
  2928. u32 ioff;
  2929. item = btrfs_item_nr(leaf, i);
  2930. ioff = btrfs_token_item_offset(leaf, item, &token);
  2931. btrfs_set_token_item_offset(leaf, item,
  2932. ioff + size_diff, &token);
  2933. }
  2934. /* shift the data */
  2935. if (from_end) {
  2936. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2937. data_end + size_diff, btrfs_leaf_data(leaf) +
  2938. data_end, old_data_start + new_size - data_end);
  2939. } else {
  2940. struct btrfs_disk_key disk_key;
  2941. u64 offset;
  2942. btrfs_item_key(leaf, &disk_key, slot);
  2943. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2944. unsigned long ptr;
  2945. struct btrfs_file_extent_item *fi;
  2946. fi = btrfs_item_ptr(leaf, slot,
  2947. struct btrfs_file_extent_item);
  2948. fi = (struct btrfs_file_extent_item *)(
  2949. (unsigned long)fi - size_diff);
  2950. if (btrfs_file_extent_type(leaf, fi) ==
  2951. BTRFS_FILE_EXTENT_INLINE) {
  2952. ptr = btrfs_item_ptr_offset(leaf, slot);
  2953. memmove_extent_buffer(leaf, ptr,
  2954. (unsigned long)fi,
  2955. offsetof(struct btrfs_file_extent_item,
  2956. disk_bytenr));
  2957. }
  2958. }
  2959. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2960. data_end + size_diff, btrfs_leaf_data(leaf) +
  2961. data_end, old_data_start - data_end);
  2962. offset = btrfs_disk_key_offset(&disk_key);
  2963. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2964. btrfs_set_item_key(leaf, &disk_key, slot);
  2965. if (slot == 0)
  2966. fixup_low_keys(trans, root, path, &disk_key, 1);
  2967. }
  2968. item = btrfs_item_nr(leaf, slot);
  2969. btrfs_set_item_size(leaf, item, new_size);
  2970. btrfs_mark_buffer_dirty(leaf);
  2971. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2972. btrfs_print_leaf(root, leaf);
  2973. BUG();
  2974. }
  2975. }
  2976. /*
  2977. * make the item pointed to by the path bigger, data_size is the new size.
  2978. */
  2979. void btrfs_extend_item(struct btrfs_trans_handle *trans,
  2980. struct btrfs_root *root, struct btrfs_path *path,
  2981. u32 data_size)
  2982. {
  2983. int slot;
  2984. struct extent_buffer *leaf;
  2985. struct btrfs_item *item;
  2986. u32 nritems;
  2987. unsigned int data_end;
  2988. unsigned int old_data;
  2989. unsigned int old_size;
  2990. int i;
  2991. struct btrfs_map_token token;
  2992. btrfs_init_map_token(&token);
  2993. leaf = path->nodes[0];
  2994. nritems = btrfs_header_nritems(leaf);
  2995. data_end = leaf_data_end(root, leaf);
  2996. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2997. btrfs_print_leaf(root, leaf);
  2998. BUG();
  2999. }
  3000. slot = path->slots[0];
  3001. old_data = btrfs_item_end_nr(leaf, slot);
  3002. BUG_ON(slot < 0);
  3003. if (slot >= nritems) {
  3004. btrfs_print_leaf(root, leaf);
  3005. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  3006. slot, nritems);
  3007. BUG_ON(1);
  3008. }
  3009. /*
  3010. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3011. */
  3012. /* first correct the data pointers */
  3013. for (i = slot; i < nritems; i++) {
  3014. u32 ioff;
  3015. item = btrfs_item_nr(leaf, i);
  3016. ioff = btrfs_token_item_offset(leaf, item, &token);
  3017. btrfs_set_token_item_offset(leaf, item,
  3018. ioff - data_size, &token);
  3019. }
  3020. /* shift the data */
  3021. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3022. data_end - data_size, btrfs_leaf_data(leaf) +
  3023. data_end, old_data - data_end);
  3024. data_end = old_data;
  3025. old_size = btrfs_item_size_nr(leaf, slot);
  3026. item = btrfs_item_nr(leaf, slot);
  3027. btrfs_set_item_size(leaf, item, old_size + data_size);
  3028. btrfs_mark_buffer_dirty(leaf);
  3029. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3030. btrfs_print_leaf(root, leaf);
  3031. BUG();
  3032. }
  3033. }
  3034. /*
  3035. * Given a key and some data, insert items into the tree.
  3036. * This does all the path init required, making room in the tree if needed.
  3037. * Returns the number of keys that were inserted.
  3038. */
  3039. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  3040. struct btrfs_root *root,
  3041. struct btrfs_path *path,
  3042. struct btrfs_key *cpu_key, u32 *data_size,
  3043. int nr)
  3044. {
  3045. struct extent_buffer *leaf;
  3046. struct btrfs_item *item;
  3047. int ret = 0;
  3048. int slot;
  3049. int i;
  3050. u32 nritems;
  3051. u32 total_data = 0;
  3052. u32 total_size = 0;
  3053. unsigned int data_end;
  3054. struct btrfs_disk_key disk_key;
  3055. struct btrfs_key found_key;
  3056. struct btrfs_map_token token;
  3057. btrfs_init_map_token(&token);
  3058. for (i = 0; i < nr; i++) {
  3059. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  3060. BTRFS_LEAF_DATA_SIZE(root)) {
  3061. break;
  3062. nr = i;
  3063. }
  3064. total_data += data_size[i];
  3065. total_size += data_size[i] + sizeof(struct btrfs_item);
  3066. }
  3067. BUG_ON(nr == 0);
  3068. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3069. if (ret == 0)
  3070. return -EEXIST;
  3071. if (ret < 0)
  3072. goto out;
  3073. leaf = path->nodes[0];
  3074. nritems = btrfs_header_nritems(leaf);
  3075. data_end = leaf_data_end(root, leaf);
  3076. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3077. for (i = nr; i >= 0; i--) {
  3078. total_data -= data_size[i];
  3079. total_size -= data_size[i] + sizeof(struct btrfs_item);
  3080. if (total_size < btrfs_leaf_free_space(root, leaf))
  3081. break;
  3082. }
  3083. nr = i;
  3084. }
  3085. slot = path->slots[0];
  3086. BUG_ON(slot < 0);
  3087. if (slot != nritems) {
  3088. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3089. item = btrfs_item_nr(leaf, slot);
  3090. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3091. /* figure out how many keys we can insert in here */
  3092. total_data = data_size[0];
  3093. for (i = 1; i < nr; i++) {
  3094. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3095. break;
  3096. total_data += data_size[i];
  3097. }
  3098. nr = i;
  3099. if (old_data < data_end) {
  3100. btrfs_print_leaf(root, leaf);
  3101. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3102. slot, old_data, data_end);
  3103. BUG_ON(1);
  3104. }
  3105. /*
  3106. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3107. */
  3108. /* first correct the data pointers */
  3109. for (i = slot; i < nritems; i++) {
  3110. u32 ioff;
  3111. item = btrfs_item_nr(leaf, i);
  3112. ioff = btrfs_token_item_offset(leaf, item, &token);
  3113. btrfs_set_token_item_offset(leaf, item,
  3114. ioff - total_data, &token);
  3115. }
  3116. /* shift the items */
  3117. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3118. btrfs_item_nr_offset(slot),
  3119. (nritems - slot) * sizeof(struct btrfs_item));
  3120. /* shift the data */
  3121. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3122. data_end - total_data, btrfs_leaf_data(leaf) +
  3123. data_end, old_data - data_end);
  3124. data_end = old_data;
  3125. } else {
  3126. /*
  3127. * this sucks but it has to be done, if we are inserting at
  3128. * the end of the leaf only insert 1 of the items, since we
  3129. * have no way of knowing whats on the next leaf and we'd have
  3130. * to drop our current locks to figure it out
  3131. */
  3132. nr = 1;
  3133. }
  3134. /* setup the item for the new data */
  3135. for (i = 0; i < nr; i++) {
  3136. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3137. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3138. item = btrfs_item_nr(leaf, slot + i);
  3139. btrfs_set_token_item_offset(leaf, item,
  3140. data_end - data_size[i], &token);
  3141. data_end -= data_size[i];
  3142. btrfs_set_token_item_size(leaf, item, data_size[i], &token);
  3143. }
  3144. btrfs_set_header_nritems(leaf, nritems + nr);
  3145. btrfs_mark_buffer_dirty(leaf);
  3146. ret = 0;
  3147. if (slot == 0) {
  3148. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3149. fixup_low_keys(trans, root, path, &disk_key, 1);
  3150. }
  3151. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3152. btrfs_print_leaf(root, leaf);
  3153. BUG();
  3154. }
  3155. out:
  3156. if (!ret)
  3157. ret = nr;
  3158. return ret;
  3159. }
  3160. /*
  3161. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3162. * to save stack depth by doing the bulk of the work in a function
  3163. * that doesn't call btrfs_search_slot
  3164. */
  3165. void setup_items_for_insert(struct btrfs_trans_handle *trans,
  3166. struct btrfs_root *root, struct btrfs_path *path,
  3167. struct btrfs_key *cpu_key, u32 *data_size,
  3168. u32 total_data, u32 total_size, int nr)
  3169. {
  3170. struct btrfs_item *item;
  3171. int i;
  3172. u32 nritems;
  3173. unsigned int data_end;
  3174. struct btrfs_disk_key disk_key;
  3175. struct extent_buffer *leaf;
  3176. int slot;
  3177. struct btrfs_map_token token;
  3178. btrfs_init_map_token(&token);
  3179. leaf = path->nodes[0];
  3180. slot = path->slots[0];
  3181. nritems = btrfs_header_nritems(leaf);
  3182. data_end = leaf_data_end(root, leaf);
  3183. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3184. btrfs_print_leaf(root, leaf);
  3185. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3186. total_size, btrfs_leaf_free_space(root, leaf));
  3187. BUG();
  3188. }
  3189. if (slot != nritems) {
  3190. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3191. if (old_data < data_end) {
  3192. btrfs_print_leaf(root, leaf);
  3193. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3194. slot, old_data, data_end);
  3195. BUG_ON(1);
  3196. }
  3197. /*
  3198. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3199. */
  3200. /* first correct the data pointers */
  3201. for (i = slot; i < nritems; i++) {
  3202. u32 ioff;
  3203. item = btrfs_item_nr(leaf, i);
  3204. ioff = btrfs_token_item_offset(leaf, item, &token);
  3205. btrfs_set_token_item_offset(leaf, item,
  3206. ioff - total_data, &token);
  3207. }
  3208. /* shift the items */
  3209. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3210. btrfs_item_nr_offset(slot),
  3211. (nritems - slot) * sizeof(struct btrfs_item));
  3212. /* shift the data */
  3213. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3214. data_end - total_data, btrfs_leaf_data(leaf) +
  3215. data_end, old_data - data_end);
  3216. data_end = old_data;
  3217. }
  3218. /* setup the item for the new data */
  3219. for (i = 0; i < nr; i++) {
  3220. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3221. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3222. item = btrfs_item_nr(leaf, slot + i);
  3223. btrfs_set_token_item_offset(leaf, item,
  3224. data_end - data_size[i], &token);
  3225. data_end -= data_size[i];
  3226. btrfs_set_token_item_size(leaf, item, data_size[i], &token);
  3227. }
  3228. btrfs_set_header_nritems(leaf, nritems + nr);
  3229. if (slot == 0) {
  3230. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3231. fixup_low_keys(trans, root, path, &disk_key, 1);
  3232. }
  3233. btrfs_unlock_up_safe(path, 1);
  3234. btrfs_mark_buffer_dirty(leaf);
  3235. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3236. btrfs_print_leaf(root, leaf);
  3237. BUG();
  3238. }
  3239. }
  3240. /*
  3241. * Given a key and some data, insert items into the tree.
  3242. * This does all the path init required, making room in the tree if needed.
  3243. */
  3244. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3245. struct btrfs_root *root,
  3246. struct btrfs_path *path,
  3247. struct btrfs_key *cpu_key, u32 *data_size,
  3248. int nr)
  3249. {
  3250. int ret = 0;
  3251. int slot;
  3252. int i;
  3253. u32 total_size = 0;
  3254. u32 total_data = 0;
  3255. for (i = 0; i < nr; i++)
  3256. total_data += data_size[i];
  3257. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3258. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3259. if (ret == 0)
  3260. return -EEXIST;
  3261. if (ret < 0)
  3262. return ret;
  3263. slot = path->slots[0];
  3264. BUG_ON(slot < 0);
  3265. setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3266. total_data, total_size, nr);
  3267. return 0;
  3268. }
  3269. /*
  3270. * Given a key and some data, insert an item into the tree.
  3271. * This does all the path init required, making room in the tree if needed.
  3272. */
  3273. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3274. *root, struct btrfs_key *cpu_key, void *data, u32
  3275. data_size)
  3276. {
  3277. int ret = 0;
  3278. struct btrfs_path *path;
  3279. struct extent_buffer *leaf;
  3280. unsigned long ptr;
  3281. path = btrfs_alloc_path();
  3282. if (!path)
  3283. return -ENOMEM;
  3284. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3285. if (!ret) {
  3286. leaf = path->nodes[0];
  3287. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3288. write_extent_buffer(leaf, data, ptr, data_size);
  3289. btrfs_mark_buffer_dirty(leaf);
  3290. }
  3291. btrfs_free_path(path);
  3292. return ret;
  3293. }
  3294. /*
  3295. * delete the pointer from a given node.
  3296. *
  3297. * the tree should have been previously balanced so the deletion does not
  3298. * empty a node.
  3299. */
  3300. static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3301. struct btrfs_path *path, int level, int slot)
  3302. {
  3303. struct extent_buffer *parent = path->nodes[level];
  3304. u32 nritems;
  3305. nritems = btrfs_header_nritems(parent);
  3306. if (slot != nritems - 1) {
  3307. memmove_extent_buffer(parent,
  3308. btrfs_node_key_ptr_offset(slot),
  3309. btrfs_node_key_ptr_offset(slot + 1),
  3310. sizeof(struct btrfs_key_ptr) *
  3311. (nritems - slot - 1));
  3312. }
  3313. nritems--;
  3314. btrfs_set_header_nritems(parent, nritems);
  3315. if (nritems == 0 && parent == root->node) {
  3316. BUG_ON(btrfs_header_level(root->node) != 1);
  3317. /* just turn the root into a leaf and break */
  3318. btrfs_set_header_level(root->node, 0);
  3319. } else if (slot == 0) {
  3320. struct btrfs_disk_key disk_key;
  3321. btrfs_node_key(parent, &disk_key, 0);
  3322. fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3323. }
  3324. btrfs_mark_buffer_dirty(parent);
  3325. }
  3326. /*
  3327. * a helper function to delete the leaf pointed to by path->slots[1] and
  3328. * path->nodes[1].
  3329. *
  3330. * This deletes the pointer in path->nodes[1] and frees the leaf
  3331. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3332. *
  3333. * The path must have already been setup for deleting the leaf, including
  3334. * all the proper balancing. path->nodes[1] must be locked.
  3335. */
  3336. static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3337. struct btrfs_root *root,
  3338. struct btrfs_path *path,
  3339. struct extent_buffer *leaf)
  3340. {
  3341. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3342. del_ptr(trans, root, path, 1, path->slots[1]);
  3343. /*
  3344. * btrfs_free_extent is expensive, we want to make sure we
  3345. * aren't holding any locks when we call it
  3346. */
  3347. btrfs_unlock_up_safe(path, 0);
  3348. root_sub_used(root, leaf->len);
  3349. extent_buffer_get(leaf);
  3350. btrfs_free_tree_block(trans, root, leaf, 0, 1, 0);
  3351. free_extent_buffer_stale(leaf);
  3352. }
  3353. /*
  3354. * delete the item at the leaf level in path. If that empties
  3355. * the leaf, remove it from the tree
  3356. */
  3357. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3358. struct btrfs_path *path, int slot, int nr)
  3359. {
  3360. struct extent_buffer *leaf;
  3361. struct btrfs_item *item;
  3362. int last_off;
  3363. int dsize = 0;
  3364. int ret = 0;
  3365. int wret;
  3366. int i;
  3367. u32 nritems;
  3368. struct btrfs_map_token token;
  3369. btrfs_init_map_token(&token);
  3370. leaf = path->nodes[0];
  3371. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3372. for (i = 0; i < nr; i++)
  3373. dsize += btrfs_item_size_nr(leaf, slot + i);
  3374. nritems = btrfs_header_nritems(leaf);
  3375. if (slot + nr != nritems) {
  3376. int data_end = leaf_data_end(root, leaf);
  3377. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3378. data_end + dsize,
  3379. btrfs_leaf_data(leaf) + data_end,
  3380. last_off - data_end);
  3381. for (i = slot + nr; i < nritems; i++) {
  3382. u32 ioff;
  3383. item = btrfs_item_nr(leaf, i);
  3384. ioff = btrfs_token_item_offset(leaf, item, &token);
  3385. btrfs_set_token_item_offset(leaf, item,
  3386. ioff + dsize, &token);
  3387. }
  3388. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3389. btrfs_item_nr_offset(slot + nr),
  3390. sizeof(struct btrfs_item) *
  3391. (nritems - slot - nr));
  3392. }
  3393. btrfs_set_header_nritems(leaf, nritems - nr);
  3394. nritems -= nr;
  3395. /* delete the leaf if we've emptied it */
  3396. if (nritems == 0) {
  3397. if (leaf == root->node) {
  3398. btrfs_set_header_level(leaf, 0);
  3399. } else {
  3400. btrfs_set_path_blocking(path);
  3401. clean_tree_block(trans, root, leaf);
  3402. btrfs_del_leaf(trans, root, path, leaf);
  3403. }
  3404. } else {
  3405. int used = leaf_space_used(leaf, 0, nritems);
  3406. if (slot == 0) {
  3407. struct btrfs_disk_key disk_key;
  3408. btrfs_item_key(leaf, &disk_key, 0);
  3409. fixup_low_keys(trans, root, path, &disk_key, 1);
  3410. }
  3411. /* delete the leaf if it is mostly empty */
  3412. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  3413. /* push_leaf_left fixes the path.
  3414. * make sure the path still points to our leaf
  3415. * for possible call to del_ptr below
  3416. */
  3417. slot = path->slots[1];
  3418. extent_buffer_get(leaf);
  3419. btrfs_set_path_blocking(path);
  3420. wret = push_leaf_left(trans, root, path, 1, 1,
  3421. 1, (u32)-1);
  3422. if (wret < 0 && wret != -ENOSPC)
  3423. ret = wret;
  3424. if (path->nodes[0] == leaf &&
  3425. btrfs_header_nritems(leaf)) {
  3426. wret = push_leaf_right(trans, root, path, 1,
  3427. 1, 1, 0);
  3428. if (wret < 0 && wret != -ENOSPC)
  3429. ret = wret;
  3430. }
  3431. if (btrfs_header_nritems(leaf) == 0) {
  3432. path->slots[1] = slot;
  3433. btrfs_del_leaf(trans, root, path, leaf);
  3434. free_extent_buffer(leaf);
  3435. ret = 0;
  3436. } else {
  3437. /* if we're still in the path, make sure
  3438. * we're dirty. Otherwise, one of the
  3439. * push_leaf functions must have already
  3440. * dirtied this buffer
  3441. */
  3442. if (path->nodes[0] == leaf)
  3443. btrfs_mark_buffer_dirty(leaf);
  3444. free_extent_buffer(leaf);
  3445. }
  3446. } else {
  3447. btrfs_mark_buffer_dirty(leaf);
  3448. }
  3449. }
  3450. return ret;
  3451. }
  3452. /*
  3453. * search the tree again to find a leaf with lesser keys
  3454. * returns 0 if it found something or 1 if there are no lesser leaves.
  3455. * returns < 0 on io errors.
  3456. *
  3457. * This may release the path, and so you may lose any locks held at the
  3458. * time you call it.
  3459. */
  3460. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3461. {
  3462. struct btrfs_key key;
  3463. struct btrfs_disk_key found_key;
  3464. int ret;
  3465. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3466. if (key.offset > 0)
  3467. key.offset--;
  3468. else if (key.type > 0)
  3469. key.type--;
  3470. else if (key.objectid > 0)
  3471. key.objectid--;
  3472. else
  3473. return 1;
  3474. btrfs_release_path(path);
  3475. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3476. if (ret < 0)
  3477. return ret;
  3478. btrfs_item_key(path->nodes[0], &found_key, 0);
  3479. ret = comp_keys(&found_key, &key);
  3480. if (ret < 0)
  3481. return 0;
  3482. return 1;
  3483. }
  3484. /*
  3485. * A helper function to walk down the tree starting at min_key, and looking
  3486. * for nodes or leaves that are either in cache or have a minimum
  3487. * transaction id. This is used by the btree defrag code, and tree logging
  3488. *
  3489. * This does not cow, but it does stuff the starting key it finds back
  3490. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3491. * key and get a writable path.
  3492. *
  3493. * This does lock as it descends, and path->keep_locks should be set
  3494. * to 1 by the caller.
  3495. *
  3496. * This honors path->lowest_level to prevent descent past a given level
  3497. * of the tree.
  3498. *
  3499. * min_trans indicates the oldest transaction that you are interested
  3500. * in walking through. Any nodes or leaves older than min_trans are
  3501. * skipped over (without reading them).
  3502. *
  3503. * returns zero if something useful was found, < 0 on error and 1 if there
  3504. * was nothing in the tree that matched the search criteria.
  3505. */
  3506. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3507. struct btrfs_key *max_key,
  3508. struct btrfs_path *path, int cache_only,
  3509. u64 min_trans)
  3510. {
  3511. struct extent_buffer *cur;
  3512. struct btrfs_key found_key;
  3513. int slot;
  3514. int sret;
  3515. u32 nritems;
  3516. int level;
  3517. int ret = 1;
  3518. WARN_ON(!path->keep_locks);
  3519. again:
  3520. cur = btrfs_read_lock_root_node(root);
  3521. level = btrfs_header_level(cur);
  3522. WARN_ON(path->nodes[level]);
  3523. path->nodes[level] = cur;
  3524. path->locks[level] = BTRFS_READ_LOCK;
  3525. if (btrfs_header_generation(cur) < min_trans) {
  3526. ret = 1;
  3527. goto out;
  3528. }
  3529. while (1) {
  3530. nritems = btrfs_header_nritems(cur);
  3531. level = btrfs_header_level(cur);
  3532. sret = bin_search(cur, min_key, level, &slot);
  3533. /* at the lowest level, we're done, setup the path and exit */
  3534. if (level == path->lowest_level) {
  3535. if (slot >= nritems)
  3536. goto find_next_key;
  3537. ret = 0;
  3538. path->slots[level] = slot;
  3539. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3540. goto out;
  3541. }
  3542. if (sret && slot > 0)
  3543. slot--;
  3544. /*
  3545. * check this node pointer against the cache_only and
  3546. * min_trans parameters. If it isn't in cache or is too
  3547. * old, skip to the next one.
  3548. */
  3549. while (slot < nritems) {
  3550. u64 blockptr;
  3551. u64 gen;
  3552. struct extent_buffer *tmp;
  3553. struct btrfs_disk_key disk_key;
  3554. blockptr = btrfs_node_blockptr(cur, slot);
  3555. gen = btrfs_node_ptr_generation(cur, slot);
  3556. if (gen < min_trans) {
  3557. slot++;
  3558. continue;
  3559. }
  3560. if (!cache_only)
  3561. break;
  3562. if (max_key) {
  3563. btrfs_node_key(cur, &disk_key, slot);
  3564. if (comp_keys(&disk_key, max_key) >= 0) {
  3565. ret = 1;
  3566. goto out;
  3567. }
  3568. }
  3569. tmp = btrfs_find_tree_block(root, blockptr,
  3570. btrfs_level_size(root, level - 1));
  3571. if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
  3572. free_extent_buffer(tmp);
  3573. break;
  3574. }
  3575. if (tmp)
  3576. free_extent_buffer(tmp);
  3577. slot++;
  3578. }
  3579. find_next_key:
  3580. /*
  3581. * we didn't find a candidate key in this node, walk forward
  3582. * and find another one
  3583. */
  3584. if (slot >= nritems) {
  3585. path->slots[level] = slot;
  3586. btrfs_set_path_blocking(path);
  3587. sret = btrfs_find_next_key(root, path, min_key, level,
  3588. cache_only, min_trans);
  3589. if (sret == 0) {
  3590. btrfs_release_path(path);
  3591. goto again;
  3592. } else {
  3593. goto out;
  3594. }
  3595. }
  3596. /* save our key for returning back */
  3597. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3598. path->slots[level] = slot;
  3599. if (level == path->lowest_level) {
  3600. ret = 0;
  3601. unlock_up(path, level, 1, 0, NULL);
  3602. goto out;
  3603. }
  3604. btrfs_set_path_blocking(path);
  3605. cur = read_node_slot(root, cur, slot);
  3606. BUG_ON(!cur); /* -ENOMEM */
  3607. btrfs_tree_read_lock(cur);
  3608. path->locks[level - 1] = BTRFS_READ_LOCK;
  3609. path->nodes[level - 1] = cur;
  3610. unlock_up(path, level, 1, 0, NULL);
  3611. btrfs_clear_path_blocking(path, NULL, 0);
  3612. }
  3613. out:
  3614. if (ret == 0)
  3615. memcpy(min_key, &found_key, sizeof(found_key));
  3616. btrfs_set_path_blocking(path);
  3617. return ret;
  3618. }
  3619. /*
  3620. * this is similar to btrfs_next_leaf, but does not try to preserve
  3621. * and fixup the path. It looks for and returns the next key in the
  3622. * tree based on the current path and the cache_only and min_trans
  3623. * parameters.
  3624. *
  3625. * 0 is returned if another key is found, < 0 if there are any errors
  3626. * and 1 is returned if there are no higher keys in the tree
  3627. *
  3628. * path->keep_locks should be set to 1 on the search made before
  3629. * calling this function.
  3630. */
  3631. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3632. struct btrfs_key *key, int level,
  3633. int cache_only, u64 min_trans)
  3634. {
  3635. int slot;
  3636. struct extent_buffer *c;
  3637. WARN_ON(!path->keep_locks);
  3638. while (level < BTRFS_MAX_LEVEL) {
  3639. if (!path->nodes[level])
  3640. return 1;
  3641. slot = path->slots[level] + 1;
  3642. c = path->nodes[level];
  3643. next:
  3644. if (slot >= btrfs_header_nritems(c)) {
  3645. int ret;
  3646. int orig_lowest;
  3647. struct btrfs_key cur_key;
  3648. if (level + 1 >= BTRFS_MAX_LEVEL ||
  3649. !path->nodes[level + 1])
  3650. return 1;
  3651. if (path->locks[level + 1]) {
  3652. level++;
  3653. continue;
  3654. }
  3655. slot = btrfs_header_nritems(c) - 1;
  3656. if (level == 0)
  3657. btrfs_item_key_to_cpu(c, &cur_key, slot);
  3658. else
  3659. btrfs_node_key_to_cpu(c, &cur_key, slot);
  3660. orig_lowest = path->lowest_level;
  3661. btrfs_release_path(path);
  3662. path->lowest_level = level;
  3663. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  3664. 0, 0);
  3665. path->lowest_level = orig_lowest;
  3666. if (ret < 0)
  3667. return ret;
  3668. c = path->nodes[level];
  3669. slot = path->slots[level];
  3670. if (ret == 0)
  3671. slot++;
  3672. goto next;
  3673. }
  3674. if (level == 0)
  3675. btrfs_item_key_to_cpu(c, key, slot);
  3676. else {
  3677. u64 blockptr = btrfs_node_blockptr(c, slot);
  3678. u64 gen = btrfs_node_ptr_generation(c, slot);
  3679. if (cache_only) {
  3680. struct extent_buffer *cur;
  3681. cur = btrfs_find_tree_block(root, blockptr,
  3682. btrfs_level_size(root, level - 1));
  3683. if (!cur ||
  3684. btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
  3685. slot++;
  3686. if (cur)
  3687. free_extent_buffer(cur);
  3688. goto next;
  3689. }
  3690. free_extent_buffer(cur);
  3691. }
  3692. if (gen < min_trans) {
  3693. slot++;
  3694. goto next;
  3695. }
  3696. btrfs_node_key_to_cpu(c, key, slot);
  3697. }
  3698. return 0;
  3699. }
  3700. return 1;
  3701. }
  3702. /*
  3703. * search the tree again to find a leaf with greater keys
  3704. * returns 0 if it found something or 1 if there are no greater leaves.
  3705. * returns < 0 on io errors.
  3706. */
  3707. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3708. {
  3709. int slot;
  3710. int level;
  3711. struct extent_buffer *c;
  3712. struct extent_buffer *next;
  3713. struct btrfs_key key;
  3714. u32 nritems;
  3715. int ret;
  3716. int old_spinning = path->leave_spinning;
  3717. int next_rw_lock = 0;
  3718. nritems = btrfs_header_nritems(path->nodes[0]);
  3719. if (nritems == 0)
  3720. return 1;
  3721. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3722. again:
  3723. level = 1;
  3724. next = NULL;
  3725. next_rw_lock = 0;
  3726. btrfs_release_path(path);
  3727. path->keep_locks = 1;
  3728. path->leave_spinning = 1;
  3729. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3730. path->keep_locks = 0;
  3731. if (ret < 0)
  3732. return ret;
  3733. nritems = btrfs_header_nritems(path->nodes[0]);
  3734. /*
  3735. * by releasing the path above we dropped all our locks. A balance
  3736. * could have added more items next to the key that used to be
  3737. * at the very end of the block. So, check again here and
  3738. * advance the path if there are now more items available.
  3739. */
  3740. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3741. if (ret == 0)
  3742. path->slots[0]++;
  3743. ret = 0;
  3744. goto done;
  3745. }
  3746. while (level < BTRFS_MAX_LEVEL) {
  3747. if (!path->nodes[level]) {
  3748. ret = 1;
  3749. goto done;
  3750. }
  3751. slot = path->slots[level] + 1;
  3752. c = path->nodes[level];
  3753. if (slot >= btrfs_header_nritems(c)) {
  3754. level++;
  3755. if (level == BTRFS_MAX_LEVEL) {
  3756. ret = 1;
  3757. goto done;
  3758. }
  3759. continue;
  3760. }
  3761. if (next) {
  3762. btrfs_tree_unlock_rw(next, next_rw_lock);
  3763. free_extent_buffer(next);
  3764. }
  3765. next = c;
  3766. next_rw_lock = path->locks[level];
  3767. ret = read_block_for_search(NULL, root, path, &next, level,
  3768. slot, &key);
  3769. if (ret == -EAGAIN)
  3770. goto again;
  3771. if (ret < 0) {
  3772. btrfs_release_path(path);
  3773. goto done;
  3774. }
  3775. if (!path->skip_locking) {
  3776. ret = btrfs_try_tree_read_lock(next);
  3777. if (!ret) {
  3778. btrfs_set_path_blocking(path);
  3779. btrfs_tree_read_lock(next);
  3780. btrfs_clear_path_blocking(path, next,
  3781. BTRFS_READ_LOCK);
  3782. }
  3783. next_rw_lock = BTRFS_READ_LOCK;
  3784. }
  3785. break;
  3786. }
  3787. path->slots[level] = slot;
  3788. while (1) {
  3789. level--;
  3790. c = path->nodes[level];
  3791. if (path->locks[level])
  3792. btrfs_tree_unlock_rw(c, path->locks[level]);
  3793. free_extent_buffer(c);
  3794. path->nodes[level] = next;
  3795. path->slots[level] = 0;
  3796. if (!path->skip_locking)
  3797. path->locks[level] = next_rw_lock;
  3798. if (!level)
  3799. break;
  3800. ret = read_block_for_search(NULL, root, path, &next, level,
  3801. 0, &key);
  3802. if (ret == -EAGAIN)
  3803. goto again;
  3804. if (ret < 0) {
  3805. btrfs_release_path(path);
  3806. goto done;
  3807. }
  3808. if (!path->skip_locking) {
  3809. ret = btrfs_try_tree_read_lock(next);
  3810. if (!ret) {
  3811. btrfs_set_path_blocking(path);
  3812. btrfs_tree_read_lock(next);
  3813. btrfs_clear_path_blocking(path, next,
  3814. BTRFS_READ_LOCK);
  3815. }
  3816. next_rw_lock = BTRFS_READ_LOCK;
  3817. }
  3818. }
  3819. ret = 0;
  3820. done:
  3821. unlock_up(path, 0, 1, 0, NULL);
  3822. path->leave_spinning = old_spinning;
  3823. if (!old_spinning)
  3824. btrfs_set_path_blocking(path);
  3825. return ret;
  3826. }
  3827. /*
  3828. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3829. * searching until it gets past min_objectid or finds an item of 'type'
  3830. *
  3831. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3832. */
  3833. int btrfs_previous_item(struct btrfs_root *root,
  3834. struct btrfs_path *path, u64 min_objectid,
  3835. int type)
  3836. {
  3837. struct btrfs_key found_key;
  3838. struct extent_buffer *leaf;
  3839. u32 nritems;
  3840. int ret;
  3841. while (1) {
  3842. if (path->slots[0] == 0) {
  3843. btrfs_set_path_blocking(path);
  3844. ret = btrfs_prev_leaf(root, path);
  3845. if (ret != 0)
  3846. return ret;
  3847. } else {
  3848. path->slots[0]--;
  3849. }
  3850. leaf = path->nodes[0];
  3851. nritems = btrfs_header_nritems(leaf);
  3852. if (nritems == 0)
  3853. return 1;
  3854. if (path->slots[0] == nritems)
  3855. path->slots[0]--;
  3856. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3857. if (found_key.objectid < min_objectid)
  3858. break;
  3859. if (found_key.type == type)
  3860. return 0;
  3861. if (found_key.objectid == min_objectid &&
  3862. found_key.type < type)
  3863. break;
  3864. }
  3865. return 1;
  3866. }