perf_event.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401
  1. /*
  2. * Performance event support framework for SuperH hardware counters.
  3. *
  4. * Copyright (C) 2009 Paul Mundt
  5. *
  6. * Heavily based on the x86 and PowerPC implementations.
  7. *
  8. * x86:
  9. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  10. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  11. * Copyright (C) 2009 Jaswinder Singh Rajput
  12. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  13. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  14. * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  15. *
  16. * ppc:
  17. * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
  18. *
  19. * This file is subject to the terms and conditions of the GNU General Public
  20. * License. See the file "COPYING" in the main directory of this archive
  21. * for more details.
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/init.h>
  25. #include <linux/io.h>
  26. #include <linux/irq.h>
  27. #include <linux/perf_event.h>
  28. #include <linux/export.h>
  29. #include <asm/processor.h>
  30. struct cpu_hw_events {
  31. struct perf_event *events[MAX_HWEVENTS];
  32. unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
  33. unsigned long active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
  34. };
  35. DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  36. static struct sh_pmu *sh_pmu __read_mostly;
  37. /* Number of perf_events counting hardware events */
  38. static atomic_t num_events;
  39. /* Used to avoid races in calling reserve/release_pmc_hardware */
  40. static DEFINE_MUTEX(pmc_reserve_mutex);
  41. /*
  42. * Stub these out for now, do something more profound later.
  43. */
  44. int reserve_pmc_hardware(void)
  45. {
  46. return 0;
  47. }
  48. void release_pmc_hardware(void)
  49. {
  50. }
  51. static inline int sh_pmu_initialized(void)
  52. {
  53. return !!sh_pmu;
  54. }
  55. const char *perf_pmu_name(void)
  56. {
  57. if (!sh_pmu)
  58. return NULL;
  59. return sh_pmu->name;
  60. }
  61. EXPORT_SYMBOL_GPL(perf_pmu_name);
  62. int perf_num_counters(void)
  63. {
  64. if (!sh_pmu)
  65. return 0;
  66. return sh_pmu->num_events;
  67. }
  68. EXPORT_SYMBOL_GPL(perf_num_counters);
  69. /*
  70. * Release the PMU if this is the last perf_event.
  71. */
  72. static void hw_perf_event_destroy(struct perf_event *event)
  73. {
  74. if (!atomic_add_unless(&num_events, -1, 1)) {
  75. mutex_lock(&pmc_reserve_mutex);
  76. if (atomic_dec_return(&num_events) == 0)
  77. release_pmc_hardware();
  78. mutex_unlock(&pmc_reserve_mutex);
  79. }
  80. }
  81. static int hw_perf_cache_event(int config, int *evp)
  82. {
  83. unsigned long type, op, result;
  84. int ev;
  85. if (!sh_pmu->cache_events)
  86. return -EINVAL;
  87. /* unpack config */
  88. type = config & 0xff;
  89. op = (config >> 8) & 0xff;
  90. result = (config >> 16) & 0xff;
  91. if (type >= PERF_COUNT_HW_CACHE_MAX ||
  92. op >= PERF_COUNT_HW_CACHE_OP_MAX ||
  93. result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  94. return -EINVAL;
  95. ev = (*sh_pmu->cache_events)[type][op][result];
  96. if (ev == 0)
  97. return -EOPNOTSUPP;
  98. if (ev == -1)
  99. return -EINVAL;
  100. *evp = ev;
  101. return 0;
  102. }
  103. static int __hw_perf_event_init(struct perf_event *event)
  104. {
  105. struct perf_event_attr *attr = &event->attr;
  106. struct hw_perf_event *hwc = &event->hw;
  107. int config = -1;
  108. int err;
  109. if (!sh_pmu_initialized())
  110. return -ENODEV;
  111. /*
  112. * All of the on-chip counters are "limited", in that they have
  113. * no interrupts, and are therefore unable to do sampling without
  114. * further work and timer assistance.
  115. */
  116. if (hwc->sample_period)
  117. return -EINVAL;
  118. /*
  119. * See if we need to reserve the counter.
  120. *
  121. * If no events are currently in use, then we have to take a
  122. * mutex to ensure that we don't race with another task doing
  123. * reserve_pmc_hardware or release_pmc_hardware.
  124. */
  125. err = 0;
  126. if (!atomic_inc_not_zero(&num_events)) {
  127. mutex_lock(&pmc_reserve_mutex);
  128. if (atomic_read(&num_events) == 0 &&
  129. reserve_pmc_hardware())
  130. err = -EBUSY;
  131. else
  132. atomic_inc(&num_events);
  133. mutex_unlock(&pmc_reserve_mutex);
  134. }
  135. if (err)
  136. return err;
  137. event->destroy = hw_perf_event_destroy;
  138. switch (attr->type) {
  139. case PERF_TYPE_RAW:
  140. config = attr->config & sh_pmu->raw_event_mask;
  141. break;
  142. case PERF_TYPE_HW_CACHE:
  143. err = hw_perf_cache_event(attr->config, &config);
  144. if (err)
  145. return err;
  146. break;
  147. case PERF_TYPE_HARDWARE:
  148. if (attr->config >= sh_pmu->max_events)
  149. return -EINVAL;
  150. config = sh_pmu->event_map(attr->config);
  151. break;
  152. }
  153. if (config == -1)
  154. return -EINVAL;
  155. hwc->config |= config;
  156. return 0;
  157. }
  158. static void sh_perf_event_update(struct perf_event *event,
  159. struct hw_perf_event *hwc, int idx)
  160. {
  161. u64 prev_raw_count, new_raw_count;
  162. s64 delta;
  163. int shift = 0;
  164. /*
  165. * Depending on the counter configuration, they may or may not
  166. * be chained, in which case the previous counter value can be
  167. * updated underneath us if the lower-half overflows.
  168. *
  169. * Our tactic to handle this is to first atomically read and
  170. * exchange a new raw count - then add that new-prev delta
  171. * count to the generic counter atomically.
  172. *
  173. * As there is no interrupt associated with the overflow events,
  174. * this is the simplest approach for maintaining consistency.
  175. */
  176. again:
  177. prev_raw_count = local64_read(&hwc->prev_count);
  178. new_raw_count = sh_pmu->read(idx);
  179. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  180. new_raw_count) != prev_raw_count)
  181. goto again;
  182. /*
  183. * Now we have the new raw value and have updated the prev
  184. * timestamp already. We can now calculate the elapsed delta
  185. * (counter-)time and add that to the generic counter.
  186. *
  187. * Careful, not all hw sign-extends above the physical width
  188. * of the count.
  189. */
  190. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  191. delta >>= shift;
  192. local64_add(delta, &event->count);
  193. }
  194. static void sh_pmu_stop(struct perf_event *event, int flags)
  195. {
  196. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  197. struct hw_perf_event *hwc = &event->hw;
  198. int idx = hwc->idx;
  199. if (!(event->hw.state & PERF_HES_STOPPED)) {
  200. sh_pmu->disable(hwc, idx);
  201. cpuc->events[idx] = NULL;
  202. event->hw.state |= PERF_HES_STOPPED;
  203. }
  204. if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
  205. sh_perf_event_update(event, &event->hw, idx);
  206. event->hw.state |= PERF_HES_UPTODATE;
  207. }
  208. }
  209. static void sh_pmu_start(struct perf_event *event, int flags)
  210. {
  211. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  212. struct hw_perf_event *hwc = &event->hw;
  213. int idx = hwc->idx;
  214. if (WARN_ON_ONCE(idx == -1))
  215. return;
  216. if (flags & PERF_EF_RELOAD)
  217. WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
  218. cpuc->events[idx] = event;
  219. event->hw.state = 0;
  220. sh_pmu->enable(hwc, idx);
  221. }
  222. static void sh_pmu_del(struct perf_event *event, int flags)
  223. {
  224. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  225. sh_pmu_stop(event, PERF_EF_UPDATE);
  226. __clear_bit(event->hw.idx, cpuc->used_mask);
  227. perf_event_update_userpage(event);
  228. }
  229. static int sh_pmu_add(struct perf_event *event, int flags)
  230. {
  231. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  232. struct hw_perf_event *hwc = &event->hw;
  233. int idx = hwc->idx;
  234. int ret = -EAGAIN;
  235. perf_pmu_disable(event->pmu);
  236. if (__test_and_set_bit(idx, cpuc->used_mask)) {
  237. idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
  238. if (idx == sh_pmu->num_events)
  239. goto out;
  240. __set_bit(idx, cpuc->used_mask);
  241. hwc->idx = idx;
  242. }
  243. sh_pmu->disable(hwc, idx);
  244. event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
  245. if (flags & PERF_EF_START)
  246. sh_pmu_start(event, PERF_EF_RELOAD);
  247. perf_event_update_userpage(event);
  248. ret = 0;
  249. out:
  250. perf_pmu_enable(event->pmu);
  251. return ret;
  252. }
  253. static void sh_pmu_read(struct perf_event *event)
  254. {
  255. sh_perf_event_update(event, &event->hw, event->hw.idx);
  256. }
  257. static int sh_pmu_event_init(struct perf_event *event)
  258. {
  259. int err;
  260. /* does not support taken branch sampling */
  261. if (has_branch_stack(event))
  262. return -EOPNOTSUPP;
  263. switch (event->attr.type) {
  264. case PERF_TYPE_RAW:
  265. case PERF_TYPE_HW_CACHE:
  266. case PERF_TYPE_HARDWARE:
  267. err = __hw_perf_event_init(event);
  268. break;
  269. default:
  270. return -ENOENT;
  271. }
  272. if (unlikely(err)) {
  273. if (event->destroy)
  274. event->destroy(event);
  275. }
  276. return err;
  277. }
  278. static void sh_pmu_enable(struct pmu *pmu)
  279. {
  280. if (!sh_pmu_initialized())
  281. return;
  282. sh_pmu->enable_all();
  283. }
  284. static void sh_pmu_disable(struct pmu *pmu)
  285. {
  286. if (!sh_pmu_initialized())
  287. return;
  288. sh_pmu->disable_all();
  289. }
  290. static struct pmu pmu = {
  291. .pmu_enable = sh_pmu_enable,
  292. .pmu_disable = sh_pmu_disable,
  293. .event_init = sh_pmu_event_init,
  294. .add = sh_pmu_add,
  295. .del = sh_pmu_del,
  296. .start = sh_pmu_start,
  297. .stop = sh_pmu_stop,
  298. .read = sh_pmu_read,
  299. };
  300. static void sh_pmu_setup(int cpu)
  301. {
  302. struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
  303. memset(cpuhw, 0, sizeof(struct cpu_hw_events));
  304. }
  305. static int __cpuinit
  306. sh_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
  307. {
  308. unsigned int cpu = (long)hcpu;
  309. switch (action & ~CPU_TASKS_FROZEN) {
  310. case CPU_UP_PREPARE:
  311. sh_pmu_setup(cpu);
  312. break;
  313. default:
  314. break;
  315. }
  316. return NOTIFY_OK;
  317. }
  318. int __cpuinit register_sh_pmu(struct sh_pmu *_pmu)
  319. {
  320. if (sh_pmu)
  321. return -EBUSY;
  322. sh_pmu = _pmu;
  323. pr_info("Performance Events: %s support registered\n", _pmu->name);
  324. WARN_ON(_pmu->num_events > MAX_HWEVENTS);
  325. perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
  326. perf_cpu_notifier(sh_pmu_notifier);
  327. return 0;
  328. }