kvm-ia64.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998
  1. /*
  2. * kvm_ia64.c: Basic KVM suppport On Itanium series processors
  3. *
  4. *
  5. * Copyright (C) 2007, Intel Corporation.
  6. * Xiantao Zhang (xiantao.zhang@intel.com)
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  19. * Place - Suite 330, Boston, MA 02111-1307 USA.
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/fs.h>
  26. #include <linux/slab.h>
  27. #include <linux/smp.h>
  28. #include <linux/kvm_host.h>
  29. #include <linux/kvm.h>
  30. #include <linux/bitops.h>
  31. #include <linux/hrtimer.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/iommu.h>
  34. #include <linux/intel-iommu.h>
  35. #include <linux/pci.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/gcc_intrin.h>
  38. #include <asm/pal.h>
  39. #include <asm/cacheflush.h>
  40. #include <asm/div64.h>
  41. #include <asm/tlb.h>
  42. #include <asm/elf.h>
  43. #include <asm/sn/addrs.h>
  44. #include <asm/sn/clksupport.h>
  45. #include <asm/sn/shub_mmr.h>
  46. #include "misc.h"
  47. #include "vti.h"
  48. #include "iodev.h"
  49. #include "ioapic.h"
  50. #include "lapic.h"
  51. #include "irq.h"
  52. static unsigned long kvm_vmm_base;
  53. static unsigned long kvm_vsa_base;
  54. static unsigned long kvm_vm_buffer;
  55. static unsigned long kvm_vm_buffer_size;
  56. unsigned long kvm_vmm_gp;
  57. static long vp_env_info;
  58. static struct kvm_vmm_info *kvm_vmm_info;
  59. static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
  60. struct kvm_stats_debugfs_item debugfs_entries[] = {
  61. { NULL }
  62. };
  63. static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
  64. {
  65. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  66. if (vcpu->kvm->arch.is_sn2)
  67. return rtc_time();
  68. else
  69. #endif
  70. return ia64_getreg(_IA64_REG_AR_ITC);
  71. }
  72. static void kvm_flush_icache(unsigned long start, unsigned long len)
  73. {
  74. int l;
  75. for (l = 0; l < (len + 32); l += 32)
  76. ia64_fc((void *)(start + l));
  77. ia64_sync_i();
  78. ia64_srlz_i();
  79. }
  80. static void kvm_flush_tlb_all(void)
  81. {
  82. unsigned long i, j, count0, count1, stride0, stride1, addr;
  83. long flags;
  84. addr = local_cpu_data->ptce_base;
  85. count0 = local_cpu_data->ptce_count[0];
  86. count1 = local_cpu_data->ptce_count[1];
  87. stride0 = local_cpu_data->ptce_stride[0];
  88. stride1 = local_cpu_data->ptce_stride[1];
  89. local_irq_save(flags);
  90. for (i = 0; i < count0; ++i) {
  91. for (j = 0; j < count1; ++j) {
  92. ia64_ptce(addr);
  93. addr += stride1;
  94. }
  95. addr += stride0;
  96. }
  97. local_irq_restore(flags);
  98. ia64_srlz_i(); /* srlz.i implies srlz.d */
  99. }
  100. long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
  101. {
  102. struct ia64_pal_retval iprv;
  103. PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
  104. (u64)opt_handler);
  105. return iprv.status;
  106. }
  107. static DEFINE_SPINLOCK(vp_lock);
  108. int kvm_arch_hardware_enable(void *garbage)
  109. {
  110. long status;
  111. long tmp_base;
  112. unsigned long pte;
  113. unsigned long saved_psr;
  114. int slot;
  115. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  116. local_irq_save(saved_psr);
  117. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  118. local_irq_restore(saved_psr);
  119. if (slot < 0)
  120. return -EINVAL;
  121. spin_lock(&vp_lock);
  122. status = ia64_pal_vp_init_env(kvm_vsa_base ?
  123. VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
  124. __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
  125. if (status != 0) {
  126. spin_unlock(&vp_lock);
  127. printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
  128. return -EINVAL;
  129. }
  130. if (!kvm_vsa_base) {
  131. kvm_vsa_base = tmp_base;
  132. printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
  133. }
  134. spin_unlock(&vp_lock);
  135. ia64_ptr_entry(0x3, slot);
  136. return 0;
  137. }
  138. void kvm_arch_hardware_disable(void *garbage)
  139. {
  140. long status;
  141. int slot;
  142. unsigned long pte;
  143. unsigned long saved_psr;
  144. unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
  145. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  146. PAGE_KERNEL));
  147. local_irq_save(saved_psr);
  148. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  149. local_irq_restore(saved_psr);
  150. if (slot < 0)
  151. return;
  152. status = ia64_pal_vp_exit_env(host_iva);
  153. if (status)
  154. printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
  155. status);
  156. ia64_ptr_entry(0x3, slot);
  157. }
  158. void kvm_arch_check_processor_compat(void *rtn)
  159. {
  160. *(int *)rtn = 0;
  161. }
  162. int kvm_dev_ioctl_check_extension(long ext)
  163. {
  164. int r;
  165. switch (ext) {
  166. case KVM_CAP_IRQCHIP:
  167. case KVM_CAP_MP_STATE:
  168. case KVM_CAP_IRQ_INJECT_STATUS:
  169. r = 1;
  170. break;
  171. case KVM_CAP_COALESCED_MMIO:
  172. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  173. break;
  174. case KVM_CAP_IOMMU:
  175. r = iommu_present(&pci_bus_type);
  176. break;
  177. default:
  178. r = 0;
  179. }
  180. return r;
  181. }
  182. static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  183. {
  184. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  185. kvm_run->hw.hardware_exit_reason = 1;
  186. return 0;
  187. }
  188. static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  189. {
  190. struct kvm_mmio_req *p;
  191. struct kvm_io_device *mmio_dev;
  192. int r;
  193. p = kvm_get_vcpu_ioreq(vcpu);
  194. if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
  195. goto mmio;
  196. vcpu->mmio_needed = 1;
  197. vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
  198. vcpu->mmio_size = kvm_run->mmio.len = p->size;
  199. vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
  200. if (vcpu->mmio_is_write)
  201. memcpy(vcpu->mmio_data, &p->data, p->size);
  202. memcpy(kvm_run->mmio.data, &p->data, p->size);
  203. kvm_run->exit_reason = KVM_EXIT_MMIO;
  204. return 0;
  205. mmio:
  206. if (p->dir)
  207. r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
  208. p->size, &p->data);
  209. else
  210. r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
  211. p->size, &p->data);
  212. if (r)
  213. printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
  214. p->state = STATE_IORESP_READY;
  215. return 1;
  216. }
  217. static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  218. {
  219. struct exit_ctl_data *p;
  220. p = kvm_get_exit_data(vcpu);
  221. if (p->exit_reason == EXIT_REASON_PAL_CALL)
  222. return kvm_pal_emul(vcpu, kvm_run);
  223. else {
  224. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  225. kvm_run->hw.hardware_exit_reason = 2;
  226. return 0;
  227. }
  228. }
  229. static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  230. {
  231. struct exit_ctl_data *p;
  232. p = kvm_get_exit_data(vcpu);
  233. if (p->exit_reason == EXIT_REASON_SAL_CALL) {
  234. kvm_sal_emul(vcpu);
  235. return 1;
  236. } else {
  237. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  238. kvm_run->hw.hardware_exit_reason = 3;
  239. return 0;
  240. }
  241. }
  242. static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
  243. {
  244. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  245. if (!test_and_set_bit(vector, &vpd->irr[0])) {
  246. vcpu->arch.irq_new_pending = 1;
  247. kvm_vcpu_kick(vcpu);
  248. return 1;
  249. }
  250. return 0;
  251. }
  252. /*
  253. * offset: address offset to IPI space.
  254. * value: deliver value.
  255. */
  256. static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
  257. uint64_t vector)
  258. {
  259. switch (dm) {
  260. case SAPIC_FIXED:
  261. break;
  262. case SAPIC_NMI:
  263. vector = 2;
  264. break;
  265. case SAPIC_EXTINT:
  266. vector = 0;
  267. break;
  268. case SAPIC_INIT:
  269. case SAPIC_PMI:
  270. default:
  271. printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
  272. return;
  273. }
  274. __apic_accept_irq(vcpu, vector);
  275. }
  276. static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
  277. unsigned long eid)
  278. {
  279. union ia64_lid lid;
  280. int i;
  281. struct kvm_vcpu *vcpu;
  282. kvm_for_each_vcpu(i, vcpu, kvm) {
  283. lid.val = VCPU_LID(vcpu);
  284. if (lid.id == id && lid.eid == eid)
  285. return vcpu;
  286. }
  287. return NULL;
  288. }
  289. static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  290. {
  291. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  292. struct kvm_vcpu *target_vcpu;
  293. struct kvm_pt_regs *regs;
  294. union ia64_ipi_a addr = p->u.ipi_data.addr;
  295. union ia64_ipi_d data = p->u.ipi_data.data;
  296. target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
  297. if (!target_vcpu)
  298. return handle_vm_error(vcpu, kvm_run);
  299. if (!target_vcpu->arch.launched) {
  300. regs = vcpu_regs(target_vcpu);
  301. regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
  302. regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
  303. target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  304. if (waitqueue_active(&target_vcpu->wq))
  305. wake_up_interruptible(&target_vcpu->wq);
  306. } else {
  307. vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
  308. if (target_vcpu != vcpu)
  309. kvm_vcpu_kick(target_vcpu);
  310. }
  311. return 1;
  312. }
  313. struct call_data {
  314. struct kvm_ptc_g ptc_g_data;
  315. struct kvm_vcpu *vcpu;
  316. };
  317. static void vcpu_global_purge(void *info)
  318. {
  319. struct call_data *p = (struct call_data *)info;
  320. struct kvm_vcpu *vcpu = p->vcpu;
  321. if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  322. return;
  323. set_bit(KVM_REQ_PTC_G, &vcpu->requests);
  324. if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
  325. vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
  326. p->ptc_g_data;
  327. } else {
  328. clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
  329. vcpu->arch.ptc_g_count = 0;
  330. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  331. }
  332. }
  333. static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  334. {
  335. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  336. struct kvm *kvm = vcpu->kvm;
  337. struct call_data call_data;
  338. int i;
  339. struct kvm_vcpu *vcpui;
  340. call_data.ptc_g_data = p->u.ptc_g_data;
  341. kvm_for_each_vcpu(i, vcpui, kvm) {
  342. if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
  343. vcpu == vcpui)
  344. continue;
  345. if (waitqueue_active(&vcpui->wq))
  346. wake_up_interruptible(&vcpui->wq);
  347. if (vcpui->cpu != -1) {
  348. call_data.vcpu = vcpui;
  349. smp_call_function_single(vcpui->cpu,
  350. vcpu_global_purge, &call_data, 1);
  351. } else
  352. printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
  353. }
  354. return 1;
  355. }
  356. static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  357. {
  358. return 1;
  359. }
  360. static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
  361. {
  362. unsigned long pte, rtc_phys_addr, map_addr;
  363. int slot;
  364. map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
  365. rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
  366. pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
  367. slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
  368. vcpu->arch.sn_rtc_tr_slot = slot;
  369. if (slot < 0) {
  370. printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
  371. slot = 0;
  372. }
  373. return slot;
  374. }
  375. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  376. {
  377. ktime_t kt;
  378. long itc_diff;
  379. unsigned long vcpu_now_itc;
  380. unsigned long expires;
  381. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  382. unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
  383. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  384. if (irqchip_in_kernel(vcpu->kvm)) {
  385. vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
  386. if (time_after(vcpu_now_itc, vpd->itm)) {
  387. vcpu->arch.timer_check = 1;
  388. return 1;
  389. }
  390. itc_diff = vpd->itm - vcpu_now_itc;
  391. if (itc_diff < 0)
  392. itc_diff = -itc_diff;
  393. expires = div64_u64(itc_diff, cyc_per_usec);
  394. kt = ktime_set(0, 1000 * expires);
  395. vcpu->arch.ht_active = 1;
  396. hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
  397. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  398. kvm_vcpu_block(vcpu);
  399. hrtimer_cancel(p_ht);
  400. vcpu->arch.ht_active = 0;
  401. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
  402. kvm_cpu_has_pending_timer(vcpu))
  403. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  404. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  405. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  406. return -EINTR;
  407. return 1;
  408. } else {
  409. printk(KERN_ERR"kvm: Unsupported userspace halt!");
  410. return 0;
  411. }
  412. }
  413. static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
  414. struct kvm_run *kvm_run)
  415. {
  416. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  417. return 0;
  418. }
  419. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  420. struct kvm_run *kvm_run)
  421. {
  422. return 1;
  423. }
  424. static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
  425. struct kvm_run *kvm_run)
  426. {
  427. printk("VMM: %s", vcpu->arch.log_buf);
  428. return 1;
  429. }
  430. static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
  431. struct kvm_run *kvm_run) = {
  432. [EXIT_REASON_VM_PANIC] = handle_vm_error,
  433. [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
  434. [EXIT_REASON_PAL_CALL] = handle_pal_call,
  435. [EXIT_REASON_SAL_CALL] = handle_sal_call,
  436. [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
  437. [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
  438. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  439. [EXIT_REASON_IPI] = handle_ipi,
  440. [EXIT_REASON_PTC_G] = handle_global_purge,
  441. [EXIT_REASON_DEBUG] = handle_vcpu_debug,
  442. };
  443. static const int kvm_vti_max_exit_handlers =
  444. sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
  445. static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
  446. {
  447. struct exit_ctl_data *p_exit_data;
  448. p_exit_data = kvm_get_exit_data(vcpu);
  449. return p_exit_data->exit_reason;
  450. }
  451. /*
  452. * The guest has exited. See if we can fix it or if we need userspace
  453. * assistance.
  454. */
  455. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  456. {
  457. u32 exit_reason = kvm_get_exit_reason(vcpu);
  458. vcpu->arch.last_exit = exit_reason;
  459. if (exit_reason < kvm_vti_max_exit_handlers
  460. && kvm_vti_exit_handlers[exit_reason])
  461. return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
  462. else {
  463. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  464. kvm_run->hw.hardware_exit_reason = exit_reason;
  465. }
  466. return 0;
  467. }
  468. static inline void vti_set_rr6(unsigned long rr6)
  469. {
  470. ia64_set_rr(RR6, rr6);
  471. ia64_srlz_i();
  472. }
  473. static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
  474. {
  475. unsigned long pte;
  476. struct kvm *kvm = vcpu->kvm;
  477. int r;
  478. /*Insert a pair of tr to map vmm*/
  479. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  480. r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  481. if (r < 0)
  482. goto out;
  483. vcpu->arch.vmm_tr_slot = r;
  484. /*Insert a pairt of tr to map data of vm*/
  485. pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
  486. r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
  487. pte, KVM_VM_DATA_SHIFT);
  488. if (r < 0)
  489. goto out;
  490. vcpu->arch.vm_tr_slot = r;
  491. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  492. if (kvm->arch.is_sn2) {
  493. r = kvm_sn2_setup_mappings(vcpu);
  494. if (r < 0)
  495. goto out;
  496. }
  497. #endif
  498. r = 0;
  499. out:
  500. return r;
  501. }
  502. static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
  503. {
  504. struct kvm *kvm = vcpu->kvm;
  505. ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
  506. ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
  507. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  508. if (kvm->arch.is_sn2)
  509. ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
  510. #endif
  511. }
  512. static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
  513. {
  514. unsigned long psr;
  515. int r;
  516. int cpu = smp_processor_id();
  517. if (vcpu->arch.last_run_cpu != cpu ||
  518. per_cpu(last_vcpu, cpu) != vcpu) {
  519. per_cpu(last_vcpu, cpu) = vcpu;
  520. vcpu->arch.last_run_cpu = cpu;
  521. kvm_flush_tlb_all();
  522. }
  523. vcpu->arch.host_rr6 = ia64_get_rr(RR6);
  524. vti_set_rr6(vcpu->arch.vmm_rr);
  525. local_irq_save(psr);
  526. r = kvm_insert_vmm_mapping(vcpu);
  527. local_irq_restore(psr);
  528. return r;
  529. }
  530. static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
  531. {
  532. kvm_purge_vmm_mapping(vcpu);
  533. vti_set_rr6(vcpu->arch.host_rr6);
  534. }
  535. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  536. {
  537. union context *host_ctx, *guest_ctx;
  538. int r, idx;
  539. idx = srcu_read_lock(&vcpu->kvm->srcu);
  540. again:
  541. if (signal_pending(current)) {
  542. r = -EINTR;
  543. kvm_run->exit_reason = KVM_EXIT_INTR;
  544. goto out;
  545. }
  546. preempt_disable();
  547. local_irq_disable();
  548. /*Get host and guest context with guest address space.*/
  549. host_ctx = kvm_get_host_context(vcpu);
  550. guest_ctx = kvm_get_guest_context(vcpu);
  551. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  552. r = kvm_vcpu_pre_transition(vcpu);
  553. if (r < 0)
  554. goto vcpu_run_fail;
  555. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  556. vcpu->mode = IN_GUEST_MODE;
  557. kvm_guest_enter();
  558. /*
  559. * Transition to the guest
  560. */
  561. kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
  562. kvm_vcpu_post_transition(vcpu);
  563. vcpu->arch.launched = 1;
  564. set_bit(KVM_REQ_KICK, &vcpu->requests);
  565. local_irq_enable();
  566. /*
  567. * We must have an instruction between local_irq_enable() and
  568. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  569. * the interrupt shadow. The stat.exits increment will do nicely.
  570. * But we need to prevent reordering, hence this barrier():
  571. */
  572. barrier();
  573. kvm_guest_exit();
  574. vcpu->mode = OUTSIDE_GUEST_MODE;
  575. preempt_enable();
  576. idx = srcu_read_lock(&vcpu->kvm->srcu);
  577. r = kvm_handle_exit(kvm_run, vcpu);
  578. if (r > 0) {
  579. if (!need_resched())
  580. goto again;
  581. }
  582. out:
  583. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  584. if (r > 0) {
  585. kvm_resched(vcpu);
  586. idx = srcu_read_lock(&vcpu->kvm->srcu);
  587. goto again;
  588. }
  589. return r;
  590. vcpu_run_fail:
  591. local_irq_enable();
  592. preempt_enable();
  593. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  594. goto out;
  595. }
  596. static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
  597. {
  598. struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
  599. if (!vcpu->mmio_is_write)
  600. memcpy(&p->data, vcpu->mmio_data, 8);
  601. p->state = STATE_IORESP_READY;
  602. }
  603. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  604. {
  605. int r;
  606. sigset_t sigsaved;
  607. if (vcpu->sigset_active)
  608. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  609. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  610. kvm_vcpu_block(vcpu);
  611. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  612. r = -EAGAIN;
  613. goto out;
  614. }
  615. if (vcpu->mmio_needed) {
  616. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  617. kvm_set_mmio_data(vcpu);
  618. vcpu->mmio_read_completed = 1;
  619. vcpu->mmio_needed = 0;
  620. }
  621. r = __vcpu_run(vcpu, kvm_run);
  622. out:
  623. if (vcpu->sigset_active)
  624. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  625. return r;
  626. }
  627. struct kvm *kvm_arch_alloc_vm(void)
  628. {
  629. struct kvm *kvm;
  630. uint64_t vm_base;
  631. BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
  632. vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
  633. if (!vm_base)
  634. return NULL;
  635. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  636. kvm = (struct kvm *)(vm_base +
  637. offsetof(struct kvm_vm_data, kvm_vm_struct));
  638. kvm->arch.vm_base = vm_base;
  639. printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
  640. return kvm;
  641. }
  642. struct kvm_ia64_io_range {
  643. unsigned long start;
  644. unsigned long size;
  645. unsigned long type;
  646. };
  647. static const struct kvm_ia64_io_range io_ranges[] = {
  648. {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
  649. {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
  650. {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
  651. {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
  652. {PIB_START, PIB_SIZE, GPFN_PIB},
  653. };
  654. static void kvm_build_io_pmt(struct kvm *kvm)
  655. {
  656. unsigned long i, j;
  657. /* Mark I/O ranges */
  658. for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
  659. i++) {
  660. for (j = io_ranges[i].start;
  661. j < io_ranges[i].start + io_ranges[i].size;
  662. j += PAGE_SIZE)
  663. kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
  664. io_ranges[i].type, 0);
  665. }
  666. }
  667. /*Use unused rids to virtualize guest rid.*/
  668. #define GUEST_PHYSICAL_RR0 0x1739
  669. #define GUEST_PHYSICAL_RR4 0x2739
  670. #define VMM_INIT_RR 0x1660
  671. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  672. {
  673. BUG_ON(!kvm);
  674. if (type)
  675. return -EINVAL;
  676. kvm->arch.is_sn2 = ia64_platform_is("sn2");
  677. kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
  678. kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
  679. kvm->arch.vmm_init_rr = VMM_INIT_RR;
  680. /*
  681. *Fill P2M entries for MMIO/IO ranges
  682. */
  683. kvm_build_io_pmt(kvm);
  684. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  685. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  686. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  687. return 0;
  688. }
  689. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
  690. struct kvm_irqchip *chip)
  691. {
  692. int r;
  693. r = 0;
  694. switch (chip->chip_id) {
  695. case KVM_IRQCHIP_IOAPIC:
  696. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  697. break;
  698. default:
  699. r = -EINVAL;
  700. break;
  701. }
  702. return r;
  703. }
  704. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  705. {
  706. int r;
  707. r = 0;
  708. switch (chip->chip_id) {
  709. case KVM_IRQCHIP_IOAPIC:
  710. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  711. break;
  712. default:
  713. r = -EINVAL;
  714. break;
  715. }
  716. return r;
  717. }
  718. #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
  719. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  720. {
  721. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  722. int i;
  723. for (i = 0; i < 16; i++) {
  724. vpd->vgr[i] = regs->vpd.vgr[i];
  725. vpd->vbgr[i] = regs->vpd.vbgr[i];
  726. }
  727. for (i = 0; i < 128; i++)
  728. vpd->vcr[i] = regs->vpd.vcr[i];
  729. vpd->vhpi = regs->vpd.vhpi;
  730. vpd->vnat = regs->vpd.vnat;
  731. vpd->vbnat = regs->vpd.vbnat;
  732. vpd->vpsr = regs->vpd.vpsr;
  733. vpd->vpr = regs->vpd.vpr;
  734. memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
  735. RESTORE_REGS(mp_state);
  736. RESTORE_REGS(vmm_rr);
  737. memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
  738. memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
  739. RESTORE_REGS(itr_regions);
  740. RESTORE_REGS(dtr_regions);
  741. RESTORE_REGS(tc_regions);
  742. RESTORE_REGS(irq_check);
  743. RESTORE_REGS(itc_check);
  744. RESTORE_REGS(timer_check);
  745. RESTORE_REGS(timer_pending);
  746. RESTORE_REGS(last_itc);
  747. for (i = 0; i < 8; i++) {
  748. vcpu->arch.vrr[i] = regs->vrr[i];
  749. vcpu->arch.ibr[i] = regs->ibr[i];
  750. vcpu->arch.dbr[i] = regs->dbr[i];
  751. }
  752. for (i = 0; i < 4; i++)
  753. vcpu->arch.insvc[i] = regs->insvc[i];
  754. RESTORE_REGS(xtp);
  755. RESTORE_REGS(metaphysical_rr0);
  756. RESTORE_REGS(metaphysical_rr4);
  757. RESTORE_REGS(metaphysical_saved_rr0);
  758. RESTORE_REGS(metaphysical_saved_rr4);
  759. RESTORE_REGS(fp_psr);
  760. RESTORE_REGS(saved_gp);
  761. vcpu->arch.irq_new_pending = 1;
  762. vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
  763. set_bit(KVM_REQ_RESUME, &vcpu->requests);
  764. return 0;
  765. }
  766. long kvm_arch_vm_ioctl(struct file *filp,
  767. unsigned int ioctl, unsigned long arg)
  768. {
  769. struct kvm *kvm = filp->private_data;
  770. void __user *argp = (void __user *)arg;
  771. int r = -ENOTTY;
  772. switch (ioctl) {
  773. case KVM_SET_MEMORY_REGION: {
  774. struct kvm_memory_region kvm_mem;
  775. struct kvm_userspace_memory_region kvm_userspace_mem;
  776. r = -EFAULT;
  777. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  778. goto out;
  779. kvm_userspace_mem.slot = kvm_mem.slot;
  780. kvm_userspace_mem.flags = kvm_mem.flags;
  781. kvm_userspace_mem.guest_phys_addr =
  782. kvm_mem.guest_phys_addr;
  783. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  784. r = kvm_vm_ioctl_set_memory_region(kvm,
  785. &kvm_userspace_mem, 0);
  786. if (r)
  787. goto out;
  788. break;
  789. }
  790. case KVM_CREATE_IRQCHIP:
  791. r = -EFAULT;
  792. r = kvm_ioapic_init(kvm);
  793. if (r)
  794. goto out;
  795. r = kvm_setup_default_irq_routing(kvm);
  796. if (r) {
  797. mutex_lock(&kvm->slots_lock);
  798. kvm_ioapic_destroy(kvm);
  799. mutex_unlock(&kvm->slots_lock);
  800. goto out;
  801. }
  802. break;
  803. case KVM_IRQ_LINE_STATUS:
  804. case KVM_IRQ_LINE: {
  805. struct kvm_irq_level irq_event;
  806. r = -EFAULT;
  807. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  808. goto out;
  809. r = -ENXIO;
  810. if (irqchip_in_kernel(kvm)) {
  811. __s32 status;
  812. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  813. irq_event.irq, irq_event.level);
  814. if (ioctl == KVM_IRQ_LINE_STATUS) {
  815. r = -EFAULT;
  816. irq_event.status = status;
  817. if (copy_to_user(argp, &irq_event,
  818. sizeof irq_event))
  819. goto out;
  820. }
  821. r = 0;
  822. }
  823. break;
  824. }
  825. case KVM_GET_IRQCHIP: {
  826. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  827. struct kvm_irqchip chip;
  828. r = -EFAULT;
  829. if (copy_from_user(&chip, argp, sizeof chip))
  830. goto out;
  831. r = -ENXIO;
  832. if (!irqchip_in_kernel(kvm))
  833. goto out;
  834. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  835. if (r)
  836. goto out;
  837. r = -EFAULT;
  838. if (copy_to_user(argp, &chip, sizeof chip))
  839. goto out;
  840. r = 0;
  841. break;
  842. }
  843. case KVM_SET_IRQCHIP: {
  844. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  845. struct kvm_irqchip chip;
  846. r = -EFAULT;
  847. if (copy_from_user(&chip, argp, sizeof chip))
  848. goto out;
  849. r = -ENXIO;
  850. if (!irqchip_in_kernel(kvm))
  851. goto out;
  852. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  853. if (r)
  854. goto out;
  855. r = 0;
  856. break;
  857. }
  858. default:
  859. ;
  860. }
  861. out:
  862. return r;
  863. }
  864. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  865. struct kvm_sregs *sregs)
  866. {
  867. return -EINVAL;
  868. }
  869. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  870. struct kvm_sregs *sregs)
  871. {
  872. return -EINVAL;
  873. }
  874. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  875. struct kvm_translation *tr)
  876. {
  877. return -EINVAL;
  878. }
  879. static int kvm_alloc_vmm_area(void)
  880. {
  881. if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
  882. kvm_vmm_base = __get_free_pages(GFP_KERNEL,
  883. get_order(KVM_VMM_SIZE));
  884. if (!kvm_vmm_base)
  885. return -ENOMEM;
  886. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  887. kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
  888. printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
  889. kvm_vmm_base, kvm_vm_buffer);
  890. }
  891. return 0;
  892. }
  893. static void kvm_free_vmm_area(void)
  894. {
  895. if (kvm_vmm_base) {
  896. /*Zero this area before free to avoid bits leak!!*/
  897. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  898. free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
  899. kvm_vmm_base = 0;
  900. kvm_vm_buffer = 0;
  901. kvm_vsa_base = 0;
  902. }
  903. }
  904. static int vti_init_vpd(struct kvm_vcpu *vcpu)
  905. {
  906. int i;
  907. union cpuid3_t cpuid3;
  908. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  909. if (IS_ERR(vpd))
  910. return PTR_ERR(vpd);
  911. /* CPUID init */
  912. for (i = 0; i < 5; i++)
  913. vpd->vcpuid[i] = ia64_get_cpuid(i);
  914. /* Limit the CPUID number to 5 */
  915. cpuid3.value = vpd->vcpuid[3];
  916. cpuid3.number = 4; /* 5 - 1 */
  917. vpd->vcpuid[3] = cpuid3.value;
  918. /*Set vac and vdc fields*/
  919. vpd->vac.a_from_int_cr = 1;
  920. vpd->vac.a_to_int_cr = 1;
  921. vpd->vac.a_from_psr = 1;
  922. vpd->vac.a_from_cpuid = 1;
  923. vpd->vac.a_cover = 1;
  924. vpd->vac.a_bsw = 1;
  925. vpd->vac.a_int = 1;
  926. vpd->vdc.d_vmsw = 1;
  927. /*Set virtual buffer*/
  928. vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
  929. return 0;
  930. }
  931. static int vti_create_vp(struct kvm_vcpu *vcpu)
  932. {
  933. long ret;
  934. struct vpd *vpd = vcpu->arch.vpd;
  935. unsigned long vmm_ivt;
  936. vmm_ivt = kvm_vmm_info->vmm_ivt;
  937. printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
  938. ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
  939. if (ret) {
  940. printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
  941. return -EINVAL;
  942. }
  943. return 0;
  944. }
  945. static void init_ptce_info(struct kvm_vcpu *vcpu)
  946. {
  947. ia64_ptce_info_t ptce = {0};
  948. ia64_get_ptce(&ptce);
  949. vcpu->arch.ptce_base = ptce.base;
  950. vcpu->arch.ptce_count[0] = ptce.count[0];
  951. vcpu->arch.ptce_count[1] = ptce.count[1];
  952. vcpu->arch.ptce_stride[0] = ptce.stride[0];
  953. vcpu->arch.ptce_stride[1] = ptce.stride[1];
  954. }
  955. static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
  956. {
  957. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  958. if (hrtimer_cancel(p_ht))
  959. hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
  960. }
  961. static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
  962. {
  963. struct kvm_vcpu *vcpu;
  964. wait_queue_head_t *q;
  965. vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
  966. q = &vcpu->wq;
  967. if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
  968. goto out;
  969. if (waitqueue_active(q))
  970. wake_up_interruptible(q);
  971. out:
  972. vcpu->arch.timer_fired = 1;
  973. vcpu->arch.timer_check = 1;
  974. return HRTIMER_NORESTART;
  975. }
  976. #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
  977. bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
  978. {
  979. return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
  980. }
  981. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  982. {
  983. struct kvm_vcpu *v;
  984. int r;
  985. int i;
  986. long itc_offset;
  987. struct kvm *kvm = vcpu->kvm;
  988. struct kvm_pt_regs *regs = vcpu_regs(vcpu);
  989. union context *p_ctx = &vcpu->arch.guest;
  990. struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
  991. /*Init vcpu context for first run.*/
  992. if (IS_ERR(vmm_vcpu))
  993. return PTR_ERR(vmm_vcpu);
  994. if (kvm_vcpu_is_bsp(vcpu)) {
  995. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  996. /*Set entry address for first run.*/
  997. regs->cr_iip = PALE_RESET_ENTRY;
  998. /*Initialize itc offset for vcpus*/
  999. itc_offset = 0UL - kvm_get_itc(vcpu);
  1000. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  1001. v = (struct kvm_vcpu *)((char *)vcpu +
  1002. sizeof(struct kvm_vcpu_data) * i);
  1003. v->arch.itc_offset = itc_offset;
  1004. v->arch.last_itc = 0;
  1005. }
  1006. } else
  1007. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  1008. r = -ENOMEM;
  1009. vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
  1010. if (!vcpu->arch.apic)
  1011. goto out;
  1012. vcpu->arch.apic->vcpu = vcpu;
  1013. p_ctx->gr[1] = 0;
  1014. p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
  1015. p_ctx->gr[13] = (unsigned long)vmm_vcpu;
  1016. p_ctx->psr = 0x1008522000UL;
  1017. p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
  1018. p_ctx->caller_unat = 0;
  1019. p_ctx->pr = 0x0;
  1020. p_ctx->ar[36] = 0x0; /*unat*/
  1021. p_ctx->ar[19] = 0x0; /*rnat*/
  1022. p_ctx->ar[18] = (unsigned long)vmm_vcpu +
  1023. ((sizeof(struct kvm_vcpu)+15) & ~15);
  1024. p_ctx->ar[64] = 0x0; /*pfs*/
  1025. p_ctx->cr[0] = 0x7e04UL;
  1026. p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
  1027. p_ctx->cr[8] = 0x3c;
  1028. /*Initialize region register*/
  1029. p_ctx->rr[0] = 0x30;
  1030. p_ctx->rr[1] = 0x30;
  1031. p_ctx->rr[2] = 0x30;
  1032. p_ctx->rr[3] = 0x30;
  1033. p_ctx->rr[4] = 0x30;
  1034. p_ctx->rr[5] = 0x30;
  1035. p_ctx->rr[7] = 0x30;
  1036. /*Initialize branch register 0*/
  1037. p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
  1038. vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
  1039. vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
  1040. vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
  1041. hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1042. vcpu->arch.hlt_timer.function = hlt_timer_fn;
  1043. vcpu->arch.last_run_cpu = -1;
  1044. vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
  1045. vcpu->arch.vsa_base = kvm_vsa_base;
  1046. vcpu->arch.__gp = kvm_vmm_gp;
  1047. vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
  1048. vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
  1049. vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
  1050. init_ptce_info(vcpu);
  1051. r = 0;
  1052. out:
  1053. return r;
  1054. }
  1055. static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
  1056. {
  1057. unsigned long psr;
  1058. int r;
  1059. local_irq_save(psr);
  1060. r = kvm_insert_vmm_mapping(vcpu);
  1061. local_irq_restore(psr);
  1062. if (r)
  1063. goto fail;
  1064. r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
  1065. if (r)
  1066. goto fail;
  1067. r = vti_init_vpd(vcpu);
  1068. if (r) {
  1069. printk(KERN_DEBUG"kvm: vpd init error!!\n");
  1070. goto uninit;
  1071. }
  1072. r = vti_create_vp(vcpu);
  1073. if (r)
  1074. goto uninit;
  1075. kvm_purge_vmm_mapping(vcpu);
  1076. return 0;
  1077. uninit:
  1078. kvm_vcpu_uninit(vcpu);
  1079. fail:
  1080. return r;
  1081. }
  1082. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  1083. unsigned int id)
  1084. {
  1085. struct kvm_vcpu *vcpu;
  1086. unsigned long vm_base = kvm->arch.vm_base;
  1087. int r;
  1088. int cpu;
  1089. BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
  1090. r = -EINVAL;
  1091. if (id >= KVM_MAX_VCPUS) {
  1092. printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
  1093. KVM_MAX_VCPUS);
  1094. goto fail;
  1095. }
  1096. r = -ENOMEM;
  1097. if (!vm_base) {
  1098. printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
  1099. goto fail;
  1100. }
  1101. vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
  1102. vcpu_data[id].vcpu_struct));
  1103. vcpu->kvm = kvm;
  1104. cpu = get_cpu();
  1105. r = vti_vcpu_setup(vcpu, id);
  1106. put_cpu();
  1107. if (r) {
  1108. printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
  1109. goto fail;
  1110. }
  1111. return vcpu;
  1112. fail:
  1113. return ERR_PTR(r);
  1114. }
  1115. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1116. {
  1117. return 0;
  1118. }
  1119. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1120. {
  1121. return -EINVAL;
  1122. }
  1123. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1124. {
  1125. return -EINVAL;
  1126. }
  1127. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  1128. struct kvm_guest_debug *dbg)
  1129. {
  1130. return -EINVAL;
  1131. }
  1132. void kvm_arch_free_vm(struct kvm *kvm)
  1133. {
  1134. unsigned long vm_base = kvm->arch.vm_base;
  1135. if (vm_base) {
  1136. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  1137. free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
  1138. }
  1139. }
  1140. static void kvm_release_vm_pages(struct kvm *kvm)
  1141. {
  1142. struct kvm_memslots *slots;
  1143. struct kvm_memory_slot *memslot;
  1144. int j;
  1145. unsigned long base_gfn;
  1146. slots = kvm_memslots(kvm);
  1147. kvm_for_each_memslot(memslot, slots) {
  1148. base_gfn = memslot->base_gfn;
  1149. for (j = 0; j < memslot->npages; j++) {
  1150. if (memslot->rmap[j])
  1151. put_page((struct page *)memslot->rmap[j]);
  1152. }
  1153. }
  1154. }
  1155. void kvm_arch_sync_events(struct kvm *kvm)
  1156. {
  1157. }
  1158. void kvm_arch_destroy_vm(struct kvm *kvm)
  1159. {
  1160. kvm_iommu_unmap_guest(kvm);
  1161. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1162. kvm_free_all_assigned_devices(kvm);
  1163. #endif
  1164. kfree(kvm->arch.vioapic);
  1165. kvm_release_vm_pages(kvm);
  1166. }
  1167. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1168. {
  1169. }
  1170. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1171. {
  1172. if (cpu != vcpu->cpu) {
  1173. vcpu->cpu = cpu;
  1174. if (vcpu->arch.ht_active)
  1175. kvm_migrate_hlt_timer(vcpu);
  1176. }
  1177. }
  1178. #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
  1179. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1180. {
  1181. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1182. int i;
  1183. vcpu_load(vcpu);
  1184. for (i = 0; i < 16; i++) {
  1185. regs->vpd.vgr[i] = vpd->vgr[i];
  1186. regs->vpd.vbgr[i] = vpd->vbgr[i];
  1187. }
  1188. for (i = 0; i < 128; i++)
  1189. regs->vpd.vcr[i] = vpd->vcr[i];
  1190. regs->vpd.vhpi = vpd->vhpi;
  1191. regs->vpd.vnat = vpd->vnat;
  1192. regs->vpd.vbnat = vpd->vbnat;
  1193. regs->vpd.vpsr = vpd->vpsr;
  1194. regs->vpd.vpr = vpd->vpr;
  1195. memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
  1196. SAVE_REGS(mp_state);
  1197. SAVE_REGS(vmm_rr);
  1198. memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
  1199. memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
  1200. SAVE_REGS(itr_regions);
  1201. SAVE_REGS(dtr_regions);
  1202. SAVE_REGS(tc_regions);
  1203. SAVE_REGS(irq_check);
  1204. SAVE_REGS(itc_check);
  1205. SAVE_REGS(timer_check);
  1206. SAVE_REGS(timer_pending);
  1207. SAVE_REGS(last_itc);
  1208. for (i = 0; i < 8; i++) {
  1209. regs->vrr[i] = vcpu->arch.vrr[i];
  1210. regs->ibr[i] = vcpu->arch.ibr[i];
  1211. regs->dbr[i] = vcpu->arch.dbr[i];
  1212. }
  1213. for (i = 0; i < 4; i++)
  1214. regs->insvc[i] = vcpu->arch.insvc[i];
  1215. regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
  1216. SAVE_REGS(xtp);
  1217. SAVE_REGS(metaphysical_rr0);
  1218. SAVE_REGS(metaphysical_rr4);
  1219. SAVE_REGS(metaphysical_saved_rr0);
  1220. SAVE_REGS(metaphysical_saved_rr4);
  1221. SAVE_REGS(fp_psr);
  1222. SAVE_REGS(saved_gp);
  1223. vcpu_put(vcpu);
  1224. return 0;
  1225. }
  1226. int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
  1227. struct kvm_ia64_vcpu_stack *stack)
  1228. {
  1229. memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
  1230. return 0;
  1231. }
  1232. int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
  1233. struct kvm_ia64_vcpu_stack *stack)
  1234. {
  1235. memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
  1236. sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
  1237. vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
  1238. return 0;
  1239. }
  1240. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  1241. {
  1242. hrtimer_cancel(&vcpu->arch.hlt_timer);
  1243. kfree(vcpu->arch.apic);
  1244. }
  1245. long kvm_arch_vcpu_ioctl(struct file *filp,
  1246. unsigned int ioctl, unsigned long arg)
  1247. {
  1248. struct kvm_vcpu *vcpu = filp->private_data;
  1249. void __user *argp = (void __user *)arg;
  1250. struct kvm_ia64_vcpu_stack *stack = NULL;
  1251. long r;
  1252. switch (ioctl) {
  1253. case KVM_IA64_VCPU_GET_STACK: {
  1254. struct kvm_ia64_vcpu_stack __user *user_stack;
  1255. void __user *first_p = argp;
  1256. r = -EFAULT;
  1257. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1258. goto out;
  1259. if (!access_ok(VERIFY_WRITE, user_stack,
  1260. sizeof(struct kvm_ia64_vcpu_stack))) {
  1261. printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
  1262. "Illegal user destination address for stack\n");
  1263. goto out;
  1264. }
  1265. stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1266. if (!stack) {
  1267. r = -ENOMEM;
  1268. goto out;
  1269. }
  1270. r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
  1271. if (r)
  1272. goto out;
  1273. if (copy_to_user(user_stack, stack,
  1274. sizeof(struct kvm_ia64_vcpu_stack))) {
  1275. r = -EFAULT;
  1276. goto out;
  1277. }
  1278. break;
  1279. }
  1280. case KVM_IA64_VCPU_SET_STACK: {
  1281. struct kvm_ia64_vcpu_stack __user *user_stack;
  1282. void __user *first_p = argp;
  1283. r = -EFAULT;
  1284. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1285. goto out;
  1286. if (!access_ok(VERIFY_READ, user_stack,
  1287. sizeof(struct kvm_ia64_vcpu_stack))) {
  1288. printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
  1289. "Illegal user address for stack\n");
  1290. goto out;
  1291. }
  1292. stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1293. if (!stack) {
  1294. r = -ENOMEM;
  1295. goto out;
  1296. }
  1297. if (copy_from_user(stack, user_stack,
  1298. sizeof(struct kvm_ia64_vcpu_stack)))
  1299. goto out;
  1300. r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
  1301. break;
  1302. }
  1303. default:
  1304. r = -EINVAL;
  1305. }
  1306. out:
  1307. kfree(stack);
  1308. return r;
  1309. }
  1310. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  1311. {
  1312. return VM_FAULT_SIGBUS;
  1313. }
  1314. void kvm_arch_free_memslot(struct kvm_memory_slot *free,
  1315. struct kvm_memory_slot *dont)
  1316. {
  1317. }
  1318. int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
  1319. {
  1320. return 0;
  1321. }
  1322. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  1323. struct kvm_memory_slot *memslot,
  1324. struct kvm_memory_slot old,
  1325. struct kvm_userspace_memory_region *mem,
  1326. int user_alloc)
  1327. {
  1328. unsigned long i;
  1329. unsigned long pfn;
  1330. int npages = memslot->npages;
  1331. unsigned long base_gfn = memslot->base_gfn;
  1332. if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
  1333. return -ENOMEM;
  1334. for (i = 0; i < npages; i++) {
  1335. pfn = gfn_to_pfn(kvm, base_gfn + i);
  1336. if (!kvm_is_mmio_pfn(pfn)) {
  1337. kvm_set_pmt_entry(kvm, base_gfn + i,
  1338. pfn << PAGE_SHIFT,
  1339. _PAGE_AR_RWX | _PAGE_MA_WB);
  1340. memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
  1341. } else {
  1342. kvm_set_pmt_entry(kvm, base_gfn + i,
  1343. GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
  1344. _PAGE_MA_UC);
  1345. memslot->rmap[i] = 0;
  1346. }
  1347. }
  1348. return 0;
  1349. }
  1350. void kvm_arch_commit_memory_region(struct kvm *kvm,
  1351. struct kvm_userspace_memory_region *mem,
  1352. struct kvm_memory_slot old,
  1353. int user_alloc)
  1354. {
  1355. return;
  1356. }
  1357. void kvm_arch_flush_shadow(struct kvm *kvm)
  1358. {
  1359. kvm_flush_remote_tlbs(kvm);
  1360. }
  1361. long kvm_arch_dev_ioctl(struct file *filp,
  1362. unsigned int ioctl, unsigned long arg)
  1363. {
  1364. return -EINVAL;
  1365. }
  1366. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  1367. {
  1368. kvm_vcpu_uninit(vcpu);
  1369. }
  1370. static int vti_cpu_has_kvm_support(void)
  1371. {
  1372. long avail = 1, status = 1, control = 1;
  1373. long ret;
  1374. ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
  1375. if (ret)
  1376. goto out;
  1377. if (!(avail & PAL_PROC_VM_BIT))
  1378. goto out;
  1379. printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
  1380. ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
  1381. if (ret)
  1382. goto out;
  1383. printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
  1384. if (!(vp_env_info & VP_OPCODE)) {
  1385. printk(KERN_WARNING"kvm: No opcode ability on hardware, "
  1386. "vm_env_info:0x%lx\n", vp_env_info);
  1387. }
  1388. return 1;
  1389. out:
  1390. return 0;
  1391. }
  1392. /*
  1393. * On SN2, the ITC isn't stable, so copy in fast path code to use the
  1394. * SN2 RTC, replacing the ITC based default verion.
  1395. */
  1396. static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
  1397. struct module *module)
  1398. {
  1399. unsigned long new_ar, new_ar_sn2;
  1400. unsigned long module_base;
  1401. if (!ia64_platform_is("sn2"))
  1402. return;
  1403. module_base = (unsigned long)module->module_core;
  1404. new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
  1405. new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
  1406. printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
  1407. "as source\n");
  1408. /*
  1409. * Copy the SN2 version of mov_ar into place. They are both
  1410. * the same size, so 6 bundles is sufficient (6 * 0x10).
  1411. */
  1412. memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
  1413. }
  1414. static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
  1415. struct module *module)
  1416. {
  1417. unsigned long module_base;
  1418. unsigned long vmm_size;
  1419. unsigned long vmm_offset, func_offset, fdesc_offset;
  1420. struct fdesc *p_fdesc;
  1421. BUG_ON(!module);
  1422. if (!kvm_vmm_base) {
  1423. printk("kvm: kvm area hasn't been initialized yet!!\n");
  1424. return -EFAULT;
  1425. }
  1426. /*Calculate new position of relocated vmm module.*/
  1427. module_base = (unsigned long)module->module_core;
  1428. vmm_size = module->core_size;
  1429. if (unlikely(vmm_size > KVM_VMM_SIZE))
  1430. return -EFAULT;
  1431. memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
  1432. kvm_patch_vmm(vmm_info, module);
  1433. kvm_flush_icache(kvm_vmm_base, vmm_size);
  1434. /*Recalculate kvm_vmm_info based on new VMM*/
  1435. vmm_offset = vmm_info->vmm_ivt - module_base;
  1436. kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
  1437. printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
  1438. kvm_vmm_info->vmm_ivt);
  1439. fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
  1440. kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
  1441. fdesc_offset);
  1442. func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
  1443. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1444. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1445. p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
  1446. printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
  1447. KVM_VMM_BASE+func_offset);
  1448. fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
  1449. kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
  1450. fdesc_offset);
  1451. func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
  1452. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1453. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1454. p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
  1455. kvm_vmm_gp = p_fdesc->gp;
  1456. printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
  1457. kvm_vmm_info->vmm_entry);
  1458. printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
  1459. KVM_VMM_BASE + func_offset);
  1460. return 0;
  1461. }
  1462. int kvm_arch_init(void *opaque)
  1463. {
  1464. int r;
  1465. struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
  1466. if (!vti_cpu_has_kvm_support()) {
  1467. printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
  1468. r = -EOPNOTSUPP;
  1469. goto out;
  1470. }
  1471. if (kvm_vmm_info) {
  1472. printk(KERN_ERR "kvm: Already loaded VMM module!\n");
  1473. r = -EEXIST;
  1474. goto out;
  1475. }
  1476. r = -ENOMEM;
  1477. kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
  1478. if (!kvm_vmm_info)
  1479. goto out;
  1480. if (kvm_alloc_vmm_area())
  1481. goto out_free0;
  1482. r = kvm_relocate_vmm(vmm_info, vmm_info->module);
  1483. if (r)
  1484. goto out_free1;
  1485. return 0;
  1486. out_free1:
  1487. kvm_free_vmm_area();
  1488. out_free0:
  1489. kfree(kvm_vmm_info);
  1490. out:
  1491. return r;
  1492. }
  1493. void kvm_arch_exit(void)
  1494. {
  1495. kvm_free_vmm_area();
  1496. kfree(kvm_vmm_info);
  1497. kvm_vmm_info = NULL;
  1498. }
  1499. static void kvm_ia64_sync_dirty_log(struct kvm *kvm,
  1500. struct kvm_memory_slot *memslot)
  1501. {
  1502. int i;
  1503. long base;
  1504. unsigned long n;
  1505. unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
  1506. offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
  1507. n = kvm_dirty_bitmap_bytes(memslot);
  1508. base = memslot->base_gfn / BITS_PER_LONG;
  1509. spin_lock(&kvm->arch.dirty_log_lock);
  1510. for (i = 0; i < n/sizeof(long); ++i) {
  1511. memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
  1512. dirty_bitmap[base + i] = 0;
  1513. }
  1514. spin_unlock(&kvm->arch.dirty_log_lock);
  1515. }
  1516. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1517. struct kvm_dirty_log *log)
  1518. {
  1519. int r;
  1520. unsigned long n;
  1521. struct kvm_memory_slot *memslot;
  1522. int is_dirty = 0;
  1523. mutex_lock(&kvm->slots_lock);
  1524. r = -EINVAL;
  1525. if (log->slot >= KVM_MEMORY_SLOTS)
  1526. goto out;
  1527. memslot = id_to_memslot(kvm->memslots, log->slot);
  1528. r = -ENOENT;
  1529. if (!memslot->dirty_bitmap)
  1530. goto out;
  1531. kvm_ia64_sync_dirty_log(kvm, memslot);
  1532. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1533. if (r)
  1534. goto out;
  1535. /* If nothing is dirty, don't bother messing with page tables. */
  1536. if (is_dirty) {
  1537. kvm_flush_remote_tlbs(kvm);
  1538. n = kvm_dirty_bitmap_bytes(memslot);
  1539. memset(memslot->dirty_bitmap, 0, n);
  1540. }
  1541. r = 0;
  1542. out:
  1543. mutex_unlock(&kvm->slots_lock);
  1544. return r;
  1545. }
  1546. int kvm_arch_hardware_setup(void)
  1547. {
  1548. return 0;
  1549. }
  1550. void kvm_arch_hardware_unsetup(void)
  1551. {
  1552. }
  1553. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1554. {
  1555. int me;
  1556. int cpu = vcpu->cpu;
  1557. if (waitqueue_active(&vcpu->wq))
  1558. wake_up_interruptible(&vcpu->wq);
  1559. me = get_cpu();
  1560. if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
  1561. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  1562. smp_send_reschedule(cpu);
  1563. put_cpu();
  1564. }
  1565. int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
  1566. {
  1567. return __apic_accept_irq(vcpu, irq->vector);
  1568. }
  1569. int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
  1570. {
  1571. return apic->vcpu->vcpu_id == dest;
  1572. }
  1573. int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
  1574. {
  1575. return 0;
  1576. }
  1577. int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
  1578. {
  1579. return vcpu1->arch.xtp - vcpu2->arch.xtp;
  1580. }
  1581. int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
  1582. int short_hand, int dest, int dest_mode)
  1583. {
  1584. struct kvm_lapic *target = vcpu->arch.apic;
  1585. return (dest_mode == 0) ?
  1586. kvm_apic_match_physical_addr(target, dest) :
  1587. kvm_apic_match_logical_addr(target, dest);
  1588. }
  1589. static int find_highest_bits(int *dat)
  1590. {
  1591. u32 bits, bitnum;
  1592. int i;
  1593. /* loop for all 256 bits */
  1594. for (i = 7; i >= 0 ; i--) {
  1595. bits = dat[i];
  1596. if (bits) {
  1597. bitnum = fls(bits);
  1598. return i * 32 + bitnum - 1;
  1599. }
  1600. }
  1601. return -1;
  1602. }
  1603. int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
  1604. {
  1605. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1606. if (vpd->irr[0] & (1UL << NMI_VECTOR))
  1607. return NMI_VECTOR;
  1608. if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
  1609. return ExtINT_VECTOR;
  1610. return find_highest_bits((int *)&vpd->irr[0]);
  1611. }
  1612. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1613. {
  1614. return vcpu->arch.timer_fired;
  1615. }
  1616. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  1617. {
  1618. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
  1619. (kvm_highest_pending_irq(vcpu) != -1);
  1620. }
  1621. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  1622. struct kvm_mp_state *mp_state)
  1623. {
  1624. mp_state->mp_state = vcpu->arch.mp_state;
  1625. return 0;
  1626. }
  1627. static int vcpu_reset(struct kvm_vcpu *vcpu)
  1628. {
  1629. int r;
  1630. long psr;
  1631. local_irq_save(psr);
  1632. r = kvm_insert_vmm_mapping(vcpu);
  1633. local_irq_restore(psr);
  1634. if (r)
  1635. goto fail;
  1636. vcpu->arch.launched = 0;
  1637. kvm_arch_vcpu_uninit(vcpu);
  1638. r = kvm_arch_vcpu_init(vcpu);
  1639. if (r)
  1640. goto fail;
  1641. kvm_purge_vmm_mapping(vcpu);
  1642. r = 0;
  1643. fail:
  1644. return r;
  1645. }
  1646. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  1647. struct kvm_mp_state *mp_state)
  1648. {
  1649. int r = 0;
  1650. vcpu->arch.mp_state = mp_state->mp_state;
  1651. if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
  1652. r = vcpu_reset(vcpu);
  1653. return r;
  1654. }