process.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  7. *
  8. * 2005-10-07 Keith Owens <kaos@sgi.com>
  9. * Add notify_die() hooks.
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/pm.h>
  13. #include <linux/elf.h>
  14. #include <linux/errno.h>
  15. #include <linux/kallsyms.h>
  16. #include <linux/kernel.h>
  17. #include <linux/mm.h>
  18. #include <linux/slab.h>
  19. #include <linux/module.h>
  20. #include <linux/notifier.h>
  21. #include <linux/personality.h>
  22. #include <linux/sched.h>
  23. #include <linux/stddef.h>
  24. #include <linux/thread_info.h>
  25. #include <linux/unistd.h>
  26. #include <linux/efi.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/delay.h>
  29. #include <linux/kdebug.h>
  30. #include <linux/utsname.h>
  31. #include <linux/tracehook.h>
  32. #include <linux/rcupdate.h>
  33. #include <asm/cpu.h>
  34. #include <asm/delay.h>
  35. #include <asm/elf.h>
  36. #include <asm/irq.h>
  37. #include <asm/kexec.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/processor.h>
  40. #include <asm/sal.h>
  41. #include <asm/switch_to.h>
  42. #include <asm/tlbflush.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/unwind.h>
  45. #include <asm/user.h>
  46. #include "entry.h"
  47. #ifdef CONFIG_PERFMON
  48. # include <asm/perfmon.h>
  49. #endif
  50. #include "sigframe.h"
  51. void (*ia64_mark_idle)(int);
  52. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  53. EXPORT_SYMBOL(boot_option_idle_override);
  54. void (*pm_idle) (void);
  55. EXPORT_SYMBOL(pm_idle);
  56. void (*pm_power_off) (void);
  57. EXPORT_SYMBOL(pm_power_off);
  58. void
  59. ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  60. {
  61. unsigned long ip, sp, bsp;
  62. char buf[128]; /* don't make it so big that it overflows the stack! */
  63. printk("\nCall Trace:\n");
  64. do {
  65. unw_get_ip(info, &ip);
  66. if (ip == 0)
  67. break;
  68. unw_get_sp(info, &sp);
  69. unw_get_bsp(info, &bsp);
  70. snprintf(buf, sizeof(buf),
  71. " [<%016lx>] %%s\n"
  72. " sp=%016lx bsp=%016lx\n",
  73. ip, sp, bsp);
  74. print_symbol(buf, ip);
  75. } while (unw_unwind(info) >= 0);
  76. }
  77. void
  78. show_stack (struct task_struct *task, unsigned long *sp)
  79. {
  80. if (!task)
  81. unw_init_running(ia64_do_show_stack, NULL);
  82. else {
  83. struct unw_frame_info info;
  84. unw_init_from_blocked_task(&info, task);
  85. ia64_do_show_stack(&info, NULL);
  86. }
  87. }
  88. void
  89. dump_stack (void)
  90. {
  91. show_stack(NULL, NULL);
  92. }
  93. EXPORT_SYMBOL(dump_stack);
  94. void
  95. show_regs (struct pt_regs *regs)
  96. {
  97. unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
  98. print_modules();
  99. printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
  100. smp_processor_id(), current->comm);
  101. printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
  102. regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
  103. init_utsname()->release);
  104. print_symbol("ip is at %s\n", ip);
  105. printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
  106. regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
  107. printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
  108. regs->ar_rnat, regs->ar_bspstore, regs->pr);
  109. printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
  110. regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
  111. printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
  112. printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
  113. printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
  114. regs->f6.u.bits[1], regs->f6.u.bits[0],
  115. regs->f7.u.bits[1], regs->f7.u.bits[0]);
  116. printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
  117. regs->f8.u.bits[1], regs->f8.u.bits[0],
  118. regs->f9.u.bits[1], regs->f9.u.bits[0]);
  119. printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
  120. regs->f10.u.bits[1], regs->f10.u.bits[0],
  121. regs->f11.u.bits[1], regs->f11.u.bits[0]);
  122. printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
  123. printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
  124. printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
  125. printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
  126. printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
  127. printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
  128. printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
  129. printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
  130. printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
  131. if (user_mode(regs)) {
  132. /* print the stacked registers */
  133. unsigned long val, *bsp, ndirty;
  134. int i, sof, is_nat = 0;
  135. sof = regs->cr_ifs & 0x7f; /* size of frame */
  136. ndirty = (regs->loadrs >> 19);
  137. bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
  138. for (i = 0; i < sof; ++i) {
  139. get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
  140. printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
  141. ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
  142. }
  143. } else
  144. show_stack(NULL, NULL);
  145. }
  146. /* local support for deprecated console_print */
  147. void
  148. console_print(const char *s)
  149. {
  150. printk(KERN_EMERG "%s", s);
  151. }
  152. void
  153. do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
  154. {
  155. if (fsys_mode(current, &scr->pt)) {
  156. /*
  157. * defer signal-handling etc. until we return to
  158. * privilege-level 0.
  159. */
  160. if (!ia64_psr(&scr->pt)->lp)
  161. ia64_psr(&scr->pt)->lp = 1;
  162. return;
  163. }
  164. #ifdef CONFIG_PERFMON
  165. if (current->thread.pfm_needs_checking)
  166. /*
  167. * Note: pfm_handle_work() allow us to call it with interrupts
  168. * disabled, and may enable interrupts within the function.
  169. */
  170. pfm_handle_work();
  171. #endif
  172. /* deal with pending signal delivery */
  173. if (test_thread_flag(TIF_SIGPENDING)) {
  174. local_irq_enable(); /* force interrupt enable */
  175. ia64_do_signal(scr, in_syscall);
  176. }
  177. if (test_thread_flag(TIF_NOTIFY_RESUME)) {
  178. clear_thread_flag(TIF_NOTIFY_RESUME);
  179. tracehook_notify_resume(&scr->pt);
  180. if (current->replacement_session_keyring)
  181. key_replace_session_keyring();
  182. }
  183. /* copy user rbs to kernel rbs */
  184. if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
  185. local_irq_enable(); /* force interrupt enable */
  186. ia64_sync_krbs();
  187. }
  188. local_irq_disable(); /* force interrupt disable */
  189. }
  190. static int pal_halt = 1;
  191. static int can_do_pal_halt = 1;
  192. static int __init nohalt_setup(char * str)
  193. {
  194. pal_halt = can_do_pal_halt = 0;
  195. return 1;
  196. }
  197. __setup("nohalt", nohalt_setup);
  198. void
  199. update_pal_halt_status(int status)
  200. {
  201. can_do_pal_halt = pal_halt && status;
  202. }
  203. /*
  204. * We use this if we don't have any better idle routine..
  205. */
  206. void
  207. default_idle (void)
  208. {
  209. local_irq_enable();
  210. while (!need_resched()) {
  211. if (can_do_pal_halt) {
  212. local_irq_disable();
  213. if (!need_resched()) {
  214. safe_halt();
  215. }
  216. local_irq_enable();
  217. } else
  218. cpu_relax();
  219. }
  220. }
  221. #ifdef CONFIG_HOTPLUG_CPU
  222. /* We don't actually take CPU down, just spin without interrupts. */
  223. static inline void play_dead(void)
  224. {
  225. unsigned int this_cpu = smp_processor_id();
  226. /* Ack it */
  227. __get_cpu_var(cpu_state) = CPU_DEAD;
  228. max_xtp();
  229. local_irq_disable();
  230. idle_task_exit();
  231. ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
  232. /*
  233. * The above is a point of no-return, the processor is
  234. * expected to be in SAL loop now.
  235. */
  236. BUG();
  237. }
  238. #else
  239. static inline void play_dead(void)
  240. {
  241. BUG();
  242. }
  243. #endif /* CONFIG_HOTPLUG_CPU */
  244. static void do_nothing(void *unused)
  245. {
  246. }
  247. /*
  248. * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
  249. * pm_idle and update to new pm_idle value. Required while changing pm_idle
  250. * handler on SMP systems.
  251. *
  252. * Caller must have changed pm_idle to the new value before the call. Old
  253. * pm_idle value will not be used by any CPU after the return of this function.
  254. */
  255. void cpu_idle_wait(void)
  256. {
  257. smp_mb();
  258. /* kick all the CPUs so that they exit out of pm_idle */
  259. smp_call_function(do_nothing, NULL, 1);
  260. }
  261. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  262. void __attribute__((noreturn))
  263. cpu_idle (void)
  264. {
  265. void (*mark_idle)(int) = ia64_mark_idle;
  266. int cpu = smp_processor_id();
  267. /* endless idle loop with no priority at all */
  268. while (1) {
  269. rcu_idle_enter();
  270. if (can_do_pal_halt) {
  271. current_thread_info()->status &= ~TS_POLLING;
  272. /*
  273. * TS_POLLING-cleared state must be visible before we
  274. * test NEED_RESCHED:
  275. */
  276. smp_mb();
  277. } else {
  278. current_thread_info()->status |= TS_POLLING;
  279. }
  280. if (!need_resched()) {
  281. void (*idle)(void);
  282. #ifdef CONFIG_SMP
  283. min_xtp();
  284. #endif
  285. rmb();
  286. if (mark_idle)
  287. (*mark_idle)(1);
  288. idle = pm_idle;
  289. if (!idle)
  290. idle = default_idle;
  291. (*idle)();
  292. if (mark_idle)
  293. (*mark_idle)(0);
  294. #ifdef CONFIG_SMP
  295. normal_xtp();
  296. #endif
  297. }
  298. rcu_idle_exit();
  299. schedule_preempt_disabled();
  300. check_pgt_cache();
  301. if (cpu_is_offline(cpu))
  302. play_dead();
  303. }
  304. }
  305. void
  306. ia64_save_extra (struct task_struct *task)
  307. {
  308. #ifdef CONFIG_PERFMON
  309. unsigned long info;
  310. #endif
  311. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  312. ia64_save_debug_regs(&task->thread.dbr[0]);
  313. #ifdef CONFIG_PERFMON
  314. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  315. pfm_save_regs(task);
  316. info = __get_cpu_var(pfm_syst_info);
  317. if (info & PFM_CPUINFO_SYST_WIDE)
  318. pfm_syst_wide_update_task(task, info, 0);
  319. #endif
  320. }
  321. void
  322. ia64_load_extra (struct task_struct *task)
  323. {
  324. #ifdef CONFIG_PERFMON
  325. unsigned long info;
  326. #endif
  327. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  328. ia64_load_debug_regs(&task->thread.dbr[0]);
  329. #ifdef CONFIG_PERFMON
  330. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  331. pfm_load_regs(task);
  332. info = __get_cpu_var(pfm_syst_info);
  333. if (info & PFM_CPUINFO_SYST_WIDE)
  334. pfm_syst_wide_update_task(task, info, 1);
  335. #endif
  336. }
  337. /*
  338. * Copy the state of an ia-64 thread.
  339. *
  340. * We get here through the following call chain:
  341. *
  342. * from user-level: from kernel:
  343. *
  344. * <clone syscall> <some kernel call frames>
  345. * sys_clone :
  346. * do_fork do_fork
  347. * copy_thread copy_thread
  348. *
  349. * This means that the stack layout is as follows:
  350. *
  351. * +---------------------+ (highest addr)
  352. * | struct pt_regs |
  353. * +---------------------+
  354. * | struct switch_stack |
  355. * +---------------------+
  356. * | |
  357. * | memory stack |
  358. * | | <-- sp (lowest addr)
  359. * +---------------------+
  360. *
  361. * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
  362. * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
  363. * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
  364. * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
  365. * the stack is page aligned and the page size is at least 4KB, this is always the case,
  366. * so there is nothing to worry about.
  367. */
  368. int
  369. copy_thread(unsigned long clone_flags,
  370. unsigned long user_stack_base, unsigned long user_stack_size,
  371. struct task_struct *p, struct pt_regs *regs)
  372. {
  373. extern char ia64_ret_from_clone;
  374. struct switch_stack *child_stack, *stack;
  375. unsigned long rbs, child_rbs, rbs_size;
  376. struct pt_regs *child_ptregs;
  377. int retval = 0;
  378. #ifdef CONFIG_SMP
  379. /*
  380. * For SMP idle threads, fork_by_hand() calls do_fork with
  381. * NULL regs.
  382. */
  383. if (!regs)
  384. return 0;
  385. #endif
  386. stack = ((struct switch_stack *) regs) - 1;
  387. child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
  388. child_stack = (struct switch_stack *) child_ptregs - 1;
  389. /* copy parent's switch_stack & pt_regs to child: */
  390. memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
  391. rbs = (unsigned long) current + IA64_RBS_OFFSET;
  392. child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
  393. rbs_size = stack->ar_bspstore - rbs;
  394. /* copy the parent's register backing store to the child: */
  395. memcpy((void *) child_rbs, (void *) rbs, rbs_size);
  396. if (likely(user_mode(child_ptregs))) {
  397. if (clone_flags & CLONE_SETTLS)
  398. child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
  399. if (user_stack_base) {
  400. child_ptregs->r12 = user_stack_base + user_stack_size - 16;
  401. child_ptregs->ar_bspstore = user_stack_base;
  402. child_ptregs->ar_rnat = 0;
  403. child_ptregs->loadrs = 0;
  404. }
  405. } else {
  406. /*
  407. * Note: we simply preserve the relative position of
  408. * the stack pointer here. There is no need to
  409. * allocate a scratch area here, since that will have
  410. * been taken care of by the caller of sys_clone()
  411. * already.
  412. */
  413. child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
  414. child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
  415. }
  416. child_stack->ar_bspstore = child_rbs + rbs_size;
  417. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  418. /* copy parts of thread_struct: */
  419. p->thread.ksp = (unsigned long) child_stack - 16;
  420. /* stop some PSR bits from being inherited.
  421. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  422. * therefore we must specify them explicitly here and not include them in
  423. * IA64_PSR_BITS_TO_CLEAR.
  424. */
  425. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  426. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  427. /*
  428. * NOTE: The calling convention considers all floating point
  429. * registers in the high partition (fph) to be scratch. Since
  430. * the only way to get to this point is through a system call,
  431. * we know that the values in fph are all dead. Hence, there
  432. * is no need to inherit the fph state from the parent to the
  433. * child and all we have to do is to make sure that
  434. * IA64_THREAD_FPH_VALID is cleared in the child.
  435. *
  436. * XXX We could push this optimization a bit further by
  437. * clearing IA64_THREAD_FPH_VALID on ANY system call.
  438. * However, it's not clear this is worth doing. Also, it
  439. * would be a slight deviation from the normal Linux system
  440. * call behavior where scratch registers are preserved across
  441. * system calls (unless used by the system call itself).
  442. */
  443. # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
  444. | IA64_THREAD_PM_VALID)
  445. # define THREAD_FLAGS_TO_SET 0
  446. p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
  447. | THREAD_FLAGS_TO_SET);
  448. ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
  449. #ifdef CONFIG_PERFMON
  450. if (current->thread.pfm_context)
  451. pfm_inherit(p, child_ptregs);
  452. #endif
  453. return retval;
  454. }
  455. static void
  456. do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
  457. {
  458. unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
  459. unsigned long uninitialized_var(ip); /* GCC be quiet */
  460. elf_greg_t *dst = arg;
  461. struct pt_regs *pt;
  462. char nat;
  463. int i;
  464. memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
  465. if (unw_unwind_to_user(info) < 0)
  466. return;
  467. unw_get_sp(info, &sp);
  468. pt = (struct pt_regs *) (sp + 16);
  469. urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
  470. if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
  471. return;
  472. ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
  473. &ar_rnat);
  474. /*
  475. * coredump format:
  476. * r0-r31
  477. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  478. * predicate registers (p0-p63)
  479. * b0-b7
  480. * ip cfm user-mask
  481. * ar.rsc ar.bsp ar.bspstore ar.rnat
  482. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  483. */
  484. /* r0 is zero */
  485. for (i = 1, mask = (1UL << i); i < 32; ++i) {
  486. unw_get_gr(info, i, &dst[i], &nat);
  487. if (nat)
  488. nat_bits |= mask;
  489. mask <<= 1;
  490. }
  491. dst[32] = nat_bits;
  492. unw_get_pr(info, &dst[33]);
  493. for (i = 0; i < 8; ++i)
  494. unw_get_br(info, i, &dst[34 + i]);
  495. unw_get_rp(info, &ip);
  496. dst[42] = ip + ia64_psr(pt)->ri;
  497. dst[43] = cfm;
  498. dst[44] = pt->cr_ipsr & IA64_PSR_UM;
  499. unw_get_ar(info, UNW_AR_RSC, &dst[45]);
  500. /*
  501. * For bsp and bspstore, unw_get_ar() would return the kernel
  502. * addresses, but we need the user-level addresses instead:
  503. */
  504. dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
  505. dst[47] = pt->ar_bspstore;
  506. dst[48] = ar_rnat;
  507. unw_get_ar(info, UNW_AR_CCV, &dst[49]);
  508. unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
  509. unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
  510. dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
  511. unw_get_ar(info, UNW_AR_LC, &dst[53]);
  512. unw_get_ar(info, UNW_AR_EC, &dst[54]);
  513. unw_get_ar(info, UNW_AR_CSD, &dst[55]);
  514. unw_get_ar(info, UNW_AR_SSD, &dst[56]);
  515. }
  516. void
  517. do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
  518. {
  519. elf_fpreg_t *dst = arg;
  520. int i;
  521. memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
  522. if (unw_unwind_to_user(info) < 0)
  523. return;
  524. /* f0 is 0.0, f1 is 1.0 */
  525. for (i = 2; i < 32; ++i)
  526. unw_get_fr(info, i, dst + i);
  527. ia64_flush_fph(task);
  528. if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
  529. memcpy(dst + 32, task->thread.fph, 96*16);
  530. }
  531. void
  532. do_copy_regs (struct unw_frame_info *info, void *arg)
  533. {
  534. do_copy_task_regs(current, info, arg);
  535. }
  536. void
  537. do_dump_fpu (struct unw_frame_info *info, void *arg)
  538. {
  539. do_dump_task_fpu(current, info, arg);
  540. }
  541. void
  542. ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
  543. {
  544. unw_init_running(do_copy_regs, dst);
  545. }
  546. int
  547. dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
  548. {
  549. unw_init_running(do_dump_fpu, dst);
  550. return 1; /* f0-f31 are always valid so we always return 1 */
  551. }
  552. long
  553. sys_execve (const char __user *filename,
  554. const char __user *const __user *argv,
  555. const char __user *const __user *envp,
  556. struct pt_regs *regs)
  557. {
  558. char *fname;
  559. int error;
  560. fname = getname(filename);
  561. error = PTR_ERR(fname);
  562. if (IS_ERR(fname))
  563. goto out;
  564. error = do_execve(fname, argv, envp, regs);
  565. putname(fname);
  566. out:
  567. return error;
  568. }
  569. pid_t
  570. kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
  571. {
  572. extern void start_kernel_thread (void);
  573. unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
  574. struct {
  575. struct switch_stack sw;
  576. struct pt_regs pt;
  577. } regs;
  578. memset(&regs, 0, sizeof(regs));
  579. regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
  580. regs.pt.r1 = helper_fptr[1]; /* set GP */
  581. regs.pt.r9 = (unsigned long) fn; /* 1st argument */
  582. regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
  583. /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
  584. regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
  585. regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
  586. regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
  587. regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
  588. regs.sw.pr = (1 << PRED_KERNEL_STACK);
  589. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
  590. }
  591. EXPORT_SYMBOL(kernel_thread);
  592. /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
  593. int
  594. kernel_thread_helper (int (*fn)(void *), void *arg)
  595. {
  596. return (*fn)(arg);
  597. }
  598. /*
  599. * Flush thread state. This is called when a thread does an execve().
  600. */
  601. void
  602. flush_thread (void)
  603. {
  604. /* drop floating-point and debug-register state if it exists: */
  605. current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
  606. ia64_drop_fpu(current);
  607. }
  608. /*
  609. * Clean up state associated with current thread. This is called when
  610. * the thread calls exit().
  611. */
  612. void
  613. exit_thread (void)
  614. {
  615. ia64_drop_fpu(current);
  616. #ifdef CONFIG_PERFMON
  617. /* if needed, stop monitoring and flush state to perfmon context */
  618. if (current->thread.pfm_context)
  619. pfm_exit_thread(current);
  620. /* free debug register resources */
  621. if (current->thread.flags & IA64_THREAD_DBG_VALID)
  622. pfm_release_debug_registers(current);
  623. #endif
  624. }
  625. unsigned long
  626. get_wchan (struct task_struct *p)
  627. {
  628. struct unw_frame_info info;
  629. unsigned long ip;
  630. int count = 0;
  631. if (!p || p == current || p->state == TASK_RUNNING)
  632. return 0;
  633. /*
  634. * Note: p may not be a blocked task (it could be current or
  635. * another process running on some other CPU. Rather than
  636. * trying to determine if p is really blocked, we just assume
  637. * it's blocked and rely on the unwind routines to fail
  638. * gracefully if the process wasn't really blocked after all.
  639. * --davidm 99/12/15
  640. */
  641. unw_init_from_blocked_task(&info, p);
  642. do {
  643. if (p->state == TASK_RUNNING)
  644. return 0;
  645. if (unw_unwind(&info) < 0)
  646. return 0;
  647. unw_get_ip(&info, &ip);
  648. if (!in_sched_functions(ip))
  649. return ip;
  650. } while (count++ < 16);
  651. return 0;
  652. }
  653. void
  654. cpu_halt (void)
  655. {
  656. pal_power_mgmt_info_u_t power_info[8];
  657. unsigned long min_power;
  658. int i, min_power_state;
  659. if (ia64_pal_halt_info(power_info) != 0)
  660. return;
  661. min_power_state = 0;
  662. min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
  663. for (i = 1; i < 8; ++i)
  664. if (power_info[i].pal_power_mgmt_info_s.im
  665. && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
  666. min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
  667. min_power_state = i;
  668. }
  669. while (1)
  670. ia64_pal_halt(min_power_state);
  671. }
  672. void machine_shutdown(void)
  673. {
  674. #ifdef CONFIG_HOTPLUG_CPU
  675. int cpu;
  676. for_each_online_cpu(cpu) {
  677. if (cpu != smp_processor_id())
  678. cpu_down(cpu);
  679. }
  680. #endif
  681. #ifdef CONFIG_KEXEC
  682. kexec_disable_iosapic();
  683. #endif
  684. }
  685. void
  686. machine_restart (char *restart_cmd)
  687. {
  688. (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
  689. (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
  690. }
  691. void
  692. machine_halt (void)
  693. {
  694. (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
  695. cpu_halt();
  696. }
  697. void
  698. machine_power_off (void)
  699. {
  700. if (pm_power_off)
  701. pm_power_off();
  702. machine_halt();
  703. }