perfmon.c 168 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829
  1. /*
  2. * This file implements the perfmon-2 subsystem which is used
  3. * to program the IA-64 Performance Monitoring Unit (PMU).
  4. *
  5. * The initial version of perfmon.c was written by
  6. * Ganesh Venkitachalam, IBM Corp.
  7. *
  8. * Then it was modified for perfmon-1.x by Stephane Eranian and
  9. * David Mosberger, Hewlett Packard Co.
  10. *
  11. * Version Perfmon-2.x is a rewrite of perfmon-1.x
  12. * by Stephane Eranian, Hewlett Packard Co.
  13. *
  14. * Copyright (C) 1999-2005 Hewlett Packard Co
  15. * Stephane Eranian <eranian@hpl.hp.com>
  16. * David Mosberger-Tang <davidm@hpl.hp.com>
  17. *
  18. * More information about perfmon available at:
  19. * http://www.hpl.hp.com/research/linux/perfmon
  20. */
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/sched.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/proc_fs.h>
  26. #include <linux/seq_file.h>
  27. #include <linux/init.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/mm.h>
  30. #include <linux/sysctl.h>
  31. #include <linux/list.h>
  32. #include <linux/file.h>
  33. #include <linux/poll.h>
  34. #include <linux/vfs.h>
  35. #include <linux/smp.h>
  36. #include <linux/pagemap.h>
  37. #include <linux/mount.h>
  38. #include <linux/bitops.h>
  39. #include <linux/capability.h>
  40. #include <linux/rcupdate.h>
  41. #include <linux/completion.h>
  42. #include <linux/tracehook.h>
  43. #include <linux/slab.h>
  44. #include <asm/errno.h>
  45. #include <asm/intrinsics.h>
  46. #include <asm/page.h>
  47. #include <asm/perfmon.h>
  48. #include <asm/processor.h>
  49. #include <asm/signal.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/delay.h>
  52. #ifdef CONFIG_PERFMON
  53. /*
  54. * perfmon context state
  55. */
  56. #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
  57. #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
  58. #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
  59. #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
  60. #define PFM_INVALID_ACTIVATION (~0UL)
  61. #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
  62. #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
  63. /*
  64. * depth of message queue
  65. */
  66. #define PFM_MAX_MSGS 32
  67. #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
  68. /*
  69. * type of a PMU register (bitmask).
  70. * bitmask structure:
  71. * bit0 : register implemented
  72. * bit1 : end marker
  73. * bit2-3 : reserved
  74. * bit4 : pmc has pmc.pm
  75. * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
  76. * bit6-7 : register type
  77. * bit8-31: reserved
  78. */
  79. #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
  80. #define PFM_REG_IMPL 0x1 /* register implemented */
  81. #define PFM_REG_END 0x2 /* end marker */
  82. #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
  83. #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
  84. #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
  85. #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
  86. #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
  87. #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
  88. #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
  89. #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
  90. /* i assumed unsigned */
  91. #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
  92. #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
  93. /* XXX: these assume that register i is implemented */
  94. #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
  95. #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
  96. #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
  97. #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
  98. #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
  99. #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
  100. #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
  101. #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
  102. #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
  103. #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
  104. #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
  105. #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
  106. #define PFM_CTX_TASK(h) (h)->ctx_task
  107. #define PMU_PMC_OI 5 /* position of pmc.oi bit */
  108. /* XXX: does not support more than 64 PMDs */
  109. #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
  110. #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
  111. #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
  112. #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
  113. #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
  114. #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
  115. #define PFM_CODE_RR 0 /* requesting code range restriction */
  116. #define PFM_DATA_RR 1 /* requestion data range restriction */
  117. #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
  118. #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
  119. #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
  120. #define RDEP(x) (1UL<<(x))
  121. /*
  122. * context protection macros
  123. * in SMP:
  124. * - we need to protect against CPU concurrency (spin_lock)
  125. * - we need to protect against PMU overflow interrupts (local_irq_disable)
  126. * in UP:
  127. * - we need to protect against PMU overflow interrupts (local_irq_disable)
  128. *
  129. * spin_lock_irqsave()/spin_unlock_irqrestore():
  130. * in SMP: local_irq_disable + spin_lock
  131. * in UP : local_irq_disable
  132. *
  133. * spin_lock()/spin_lock():
  134. * in UP : removed automatically
  135. * in SMP: protect against context accesses from other CPU. interrupts
  136. * are not masked. This is useful for the PMU interrupt handler
  137. * because we know we will not get PMU concurrency in that code.
  138. */
  139. #define PROTECT_CTX(c, f) \
  140. do { \
  141. DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
  142. spin_lock_irqsave(&(c)->ctx_lock, f); \
  143. DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
  144. } while(0)
  145. #define UNPROTECT_CTX(c, f) \
  146. do { \
  147. DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
  148. spin_unlock_irqrestore(&(c)->ctx_lock, f); \
  149. } while(0)
  150. #define PROTECT_CTX_NOPRINT(c, f) \
  151. do { \
  152. spin_lock_irqsave(&(c)->ctx_lock, f); \
  153. } while(0)
  154. #define UNPROTECT_CTX_NOPRINT(c, f) \
  155. do { \
  156. spin_unlock_irqrestore(&(c)->ctx_lock, f); \
  157. } while(0)
  158. #define PROTECT_CTX_NOIRQ(c) \
  159. do { \
  160. spin_lock(&(c)->ctx_lock); \
  161. } while(0)
  162. #define UNPROTECT_CTX_NOIRQ(c) \
  163. do { \
  164. spin_unlock(&(c)->ctx_lock); \
  165. } while(0)
  166. #ifdef CONFIG_SMP
  167. #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
  168. #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
  169. #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
  170. #else /* !CONFIG_SMP */
  171. #define SET_ACTIVATION(t) do {} while(0)
  172. #define GET_ACTIVATION(t) do {} while(0)
  173. #define INC_ACTIVATION(t) do {} while(0)
  174. #endif /* CONFIG_SMP */
  175. #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
  176. #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
  177. #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
  178. #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
  179. #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
  180. #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
  181. /*
  182. * cmp0 must be the value of pmc0
  183. */
  184. #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
  185. #define PFMFS_MAGIC 0xa0b4d889
  186. /*
  187. * debugging
  188. */
  189. #define PFM_DEBUGGING 1
  190. #ifdef PFM_DEBUGGING
  191. #define DPRINT(a) \
  192. do { \
  193. if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
  194. } while (0)
  195. #define DPRINT_ovfl(a) \
  196. do { \
  197. if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
  198. } while (0)
  199. #endif
  200. /*
  201. * 64-bit software counter structure
  202. *
  203. * the next_reset_type is applied to the next call to pfm_reset_regs()
  204. */
  205. typedef struct {
  206. unsigned long val; /* virtual 64bit counter value */
  207. unsigned long lval; /* last reset value */
  208. unsigned long long_reset; /* reset value on sampling overflow */
  209. unsigned long short_reset; /* reset value on overflow */
  210. unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
  211. unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
  212. unsigned long seed; /* seed for random-number generator */
  213. unsigned long mask; /* mask for random-number generator */
  214. unsigned int flags; /* notify/do not notify */
  215. unsigned long eventid; /* overflow event identifier */
  216. } pfm_counter_t;
  217. /*
  218. * context flags
  219. */
  220. typedef struct {
  221. unsigned int block:1; /* when 1, task will blocked on user notifications */
  222. unsigned int system:1; /* do system wide monitoring */
  223. unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
  224. unsigned int is_sampling:1; /* true if using a custom format */
  225. unsigned int excl_idle:1; /* exclude idle task in system wide session */
  226. unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
  227. unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
  228. unsigned int no_msg:1; /* no message sent on overflow */
  229. unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
  230. unsigned int reserved:22;
  231. } pfm_context_flags_t;
  232. #define PFM_TRAP_REASON_NONE 0x0 /* default value */
  233. #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
  234. #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
  235. /*
  236. * perfmon context: encapsulates all the state of a monitoring session
  237. */
  238. typedef struct pfm_context {
  239. spinlock_t ctx_lock; /* context protection */
  240. pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
  241. unsigned int ctx_state; /* state: active/inactive (no bitfield) */
  242. struct task_struct *ctx_task; /* task to which context is attached */
  243. unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
  244. struct completion ctx_restart_done; /* use for blocking notification mode */
  245. unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
  246. unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
  247. unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
  248. unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
  249. unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
  250. unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
  251. unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
  252. unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
  253. unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
  254. unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
  255. unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
  256. pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
  257. unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
  258. unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
  259. unsigned long ctx_saved_psr_up; /* only contains psr.up value */
  260. unsigned long ctx_last_activation; /* context last activation number for last_cpu */
  261. unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
  262. unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
  263. int ctx_fd; /* file descriptor used my this context */
  264. pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
  265. pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
  266. void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
  267. unsigned long ctx_smpl_size; /* size of sampling buffer */
  268. void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
  269. wait_queue_head_t ctx_msgq_wait;
  270. pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
  271. int ctx_msgq_head;
  272. int ctx_msgq_tail;
  273. struct fasync_struct *ctx_async_queue;
  274. wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
  275. } pfm_context_t;
  276. /*
  277. * magic number used to verify that structure is really
  278. * a perfmon context
  279. */
  280. #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
  281. #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
  282. #ifdef CONFIG_SMP
  283. #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
  284. #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
  285. #else
  286. #define SET_LAST_CPU(ctx, v) do {} while(0)
  287. #define GET_LAST_CPU(ctx) do {} while(0)
  288. #endif
  289. #define ctx_fl_block ctx_flags.block
  290. #define ctx_fl_system ctx_flags.system
  291. #define ctx_fl_using_dbreg ctx_flags.using_dbreg
  292. #define ctx_fl_is_sampling ctx_flags.is_sampling
  293. #define ctx_fl_excl_idle ctx_flags.excl_idle
  294. #define ctx_fl_going_zombie ctx_flags.going_zombie
  295. #define ctx_fl_trap_reason ctx_flags.trap_reason
  296. #define ctx_fl_no_msg ctx_flags.no_msg
  297. #define ctx_fl_can_restart ctx_flags.can_restart
  298. #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
  299. #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
  300. /*
  301. * global information about all sessions
  302. * mostly used to synchronize between system wide and per-process
  303. */
  304. typedef struct {
  305. spinlock_t pfs_lock; /* lock the structure */
  306. unsigned int pfs_task_sessions; /* number of per task sessions */
  307. unsigned int pfs_sys_sessions; /* number of per system wide sessions */
  308. unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
  309. unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
  310. struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
  311. } pfm_session_t;
  312. /*
  313. * information about a PMC or PMD.
  314. * dep_pmd[]: a bitmask of dependent PMD registers
  315. * dep_pmc[]: a bitmask of dependent PMC registers
  316. */
  317. typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
  318. typedef struct {
  319. unsigned int type;
  320. int pm_pos;
  321. unsigned long default_value; /* power-on default value */
  322. unsigned long reserved_mask; /* bitmask of reserved bits */
  323. pfm_reg_check_t read_check;
  324. pfm_reg_check_t write_check;
  325. unsigned long dep_pmd[4];
  326. unsigned long dep_pmc[4];
  327. } pfm_reg_desc_t;
  328. /* assume cnum is a valid monitor */
  329. #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
  330. /*
  331. * This structure is initialized at boot time and contains
  332. * a description of the PMU main characteristics.
  333. *
  334. * If the probe function is defined, detection is based
  335. * on its return value:
  336. * - 0 means recognized PMU
  337. * - anything else means not supported
  338. * When the probe function is not defined, then the pmu_family field
  339. * is used and it must match the host CPU family such that:
  340. * - cpu->family & config->pmu_family != 0
  341. */
  342. typedef struct {
  343. unsigned long ovfl_val; /* overflow value for counters */
  344. pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
  345. pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
  346. unsigned int num_pmcs; /* number of PMCS: computed at init time */
  347. unsigned int num_pmds; /* number of PMDS: computed at init time */
  348. unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
  349. unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
  350. char *pmu_name; /* PMU family name */
  351. unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
  352. unsigned int flags; /* pmu specific flags */
  353. unsigned int num_ibrs; /* number of IBRS: computed at init time */
  354. unsigned int num_dbrs; /* number of DBRS: computed at init time */
  355. unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
  356. int (*probe)(void); /* customized probe routine */
  357. unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
  358. } pmu_config_t;
  359. /*
  360. * PMU specific flags
  361. */
  362. #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
  363. /*
  364. * debug register related type definitions
  365. */
  366. typedef struct {
  367. unsigned long ibr_mask:56;
  368. unsigned long ibr_plm:4;
  369. unsigned long ibr_ig:3;
  370. unsigned long ibr_x:1;
  371. } ibr_mask_reg_t;
  372. typedef struct {
  373. unsigned long dbr_mask:56;
  374. unsigned long dbr_plm:4;
  375. unsigned long dbr_ig:2;
  376. unsigned long dbr_w:1;
  377. unsigned long dbr_r:1;
  378. } dbr_mask_reg_t;
  379. typedef union {
  380. unsigned long val;
  381. ibr_mask_reg_t ibr;
  382. dbr_mask_reg_t dbr;
  383. } dbreg_t;
  384. /*
  385. * perfmon command descriptions
  386. */
  387. typedef struct {
  388. int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  389. char *cmd_name;
  390. int cmd_flags;
  391. unsigned int cmd_narg;
  392. size_t cmd_argsize;
  393. int (*cmd_getsize)(void *arg, size_t *sz);
  394. } pfm_cmd_desc_t;
  395. #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
  396. #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
  397. #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
  398. #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
  399. #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
  400. #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
  401. #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
  402. #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
  403. #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
  404. #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
  405. typedef struct {
  406. unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
  407. unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
  408. unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
  409. unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
  410. unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
  411. unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
  412. unsigned long pfm_smpl_handler_calls;
  413. unsigned long pfm_smpl_handler_cycles;
  414. char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
  415. } pfm_stats_t;
  416. /*
  417. * perfmon internal variables
  418. */
  419. static pfm_stats_t pfm_stats[NR_CPUS];
  420. static pfm_session_t pfm_sessions; /* global sessions information */
  421. static DEFINE_SPINLOCK(pfm_alt_install_check);
  422. static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
  423. static struct proc_dir_entry *perfmon_dir;
  424. static pfm_uuid_t pfm_null_uuid = {0,};
  425. static spinlock_t pfm_buffer_fmt_lock;
  426. static LIST_HEAD(pfm_buffer_fmt_list);
  427. static pmu_config_t *pmu_conf;
  428. /* sysctl() controls */
  429. pfm_sysctl_t pfm_sysctl;
  430. EXPORT_SYMBOL(pfm_sysctl);
  431. static ctl_table pfm_ctl_table[]={
  432. {
  433. .procname = "debug",
  434. .data = &pfm_sysctl.debug,
  435. .maxlen = sizeof(int),
  436. .mode = 0666,
  437. .proc_handler = proc_dointvec,
  438. },
  439. {
  440. .procname = "debug_ovfl",
  441. .data = &pfm_sysctl.debug_ovfl,
  442. .maxlen = sizeof(int),
  443. .mode = 0666,
  444. .proc_handler = proc_dointvec,
  445. },
  446. {
  447. .procname = "fastctxsw",
  448. .data = &pfm_sysctl.fastctxsw,
  449. .maxlen = sizeof(int),
  450. .mode = 0600,
  451. .proc_handler = proc_dointvec,
  452. },
  453. {
  454. .procname = "expert_mode",
  455. .data = &pfm_sysctl.expert_mode,
  456. .maxlen = sizeof(int),
  457. .mode = 0600,
  458. .proc_handler = proc_dointvec,
  459. },
  460. {}
  461. };
  462. static ctl_table pfm_sysctl_dir[] = {
  463. {
  464. .procname = "perfmon",
  465. .mode = 0555,
  466. .child = pfm_ctl_table,
  467. },
  468. {}
  469. };
  470. static ctl_table pfm_sysctl_root[] = {
  471. {
  472. .procname = "kernel",
  473. .mode = 0555,
  474. .child = pfm_sysctl_dir,
  475. },
  476. {}
  477. };
  478. static struct ctl_table_header *pfm_sysctl_header;
  479. static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  480. #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
  481. #define pfm_get_cpu_data(a,b) per_cpu(a, b)
  482. static inline void
  483. pfm_put_task(struct task_struct *task)
  484. {
  485. if (task != current) put_task_struct(task);
  486. }
  487. static inline void
  488. pfm_reserve_page(unsigned long a)
  489. {
  490. SetPageReserved(vmalloc_to_page((void *)a));
  491. }
  492. static inline void
  493. pfm_unreserve_page(unsigned long a)
  494. {
  495. ClearPageReserved(vmalloc_to_page((void*)a));
  496. }
  497. static inline unsigned long
  498. pfm_protect_ctx_ctxsw(pfm_context_t *x)
  499. {
  500. spin_lock(&(x)->ctx_lock);
  501. return 0UL;
  502. }
  503. static inline void
  504. pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
  505. {
  506. spin_unlock(&(x)->ctx_lock);
  507. }
  508. static inline unsigned long
  509. pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
  510. {
  511. return get_unmapped_area(file, addr, len, pgoff, flags);
  512. }
  513. /* forward declaration */
  514. static const struct dentry_operations pfmfs_dentry_operations;
  515. static struct dentry *
  516. pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
  517. {
  518. return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
  519. PFMFS_MAGIC);
  520. }
  521. static struct file_system_type pfm_fs_type = {
  522. .name = "pfmfs",
  523. .mount = pfmfs_mount,
  524. .kill_sb = kill_anon_super,
  525. };
  526. MODULE_ALIAS_FS("pfmfs");
  527. DEFINE_PER_CPU(unsigned long, pfm_syst_info);
  528. DEFINE_PER_CPU(struct task_struct *, pmu_owner);
  529. DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
  530. DEFINE_PER_CPU(unsigned long, pmu_activation_number);
  531. EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
  532. /* forward declaration */
  533. static const struct file_operations pfm_file_ops;
  534. /*
  535. * forward declarations
  536. */
  537. #ifndef CONFIG_SMP
  538. static void pfm_lazy_save_regs (struct task_struct *ta);
  539. #endif
  540. void dump_pmu_state(const char *);
  541. static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  542. #include "perfmon_itanium.h"
  543. #include "perfmon_mckinley.h"
  544. #include "perfmon_montecito.h"
  545. #include "perfmon_generic.h"
  546. static pmu_config_t *pmu_confs[]={
  547. &pmu_conf_mont,
  548. &pmu_conf_mck,
  549. &pmu_conf_ita,
  550. &pmu_conf_gen, /* must be last */
  551. NULL
  552. };
  553. static int pfm_end_notify_user(pfm_context_t *ctx);
  554. static inline void
  555. pfm_clear_psr_pp(void)
  556. {
  557. ia64_rsm(IA64_PSR_PP);
  558. ia64_srlz_i();
  559. }
  560. static inline void
  561. pfm_set_psr_pp(void)
  562. {
  563. ia64_ssm(IA64_PSR_PP);
  564. ia64_srlz_i();
  565. }
  566. static inline void
  567. pfm_clear_psr_up(void)
  568. {
  569. ia64_rsm(IA64_PSR_UP);
  570. ia64_srlz_i();
  571. }
  572. static inline void
  573. pfm_set_psr_up(void)
  574. {
  575. ia64_ssm(IA64_PSR_UP);
  576. ia64_srlz_i();
  577. }
  578. static inline unsigned long
  579. pfm_get_psr(void)
  580. {
  581. unsigned long tmp;
  582. tmp = ia64_getreg(_IA64_REG_PSR);
  583. ia64_srlz_i();
  584. return tmp;
  585. }
  586. static inline void
  587. pfm_set_psr_l(unsigned long val)
  588. {
  589. ia64_setreg(_IA64_REG_PSR_L, val);
  590. ia64_srlz_i();
  591. }
  592. static inline void
  593. pfm_freeze_pmu(void)
  594. {
  595. ia64_set_pmc(0,1UL);
  596. ia64_srlz_d();
  597. }
  598. static inline void
  599. pfm_unfreeze_pmu(void)
  600. {
  601. ia64_set_pmc(0,0UL);
  602. ia64_srlz_d();
  603. }
  604. static inline void
  605. pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
  606. {
  607. int i;
  608. for (i=0; i < nibrs; i++) {
  609. ia64_set_ibr(i, ibrs[i]);
  610. ia64_dv_serialize_instruction();
  611. }
  612. ia64_srlz_i();
  613. }
  614. static inline void
  615. pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
  616. {
  617. int i;
  618. for (i=0; i < ndbrs; i++) {
  619. ia64_set_dbr(i, dbrs[i]);
  620. ia64_dv_serialize_data();
  621. }
  622. ia64_srlz_d();
  623. }
  624. /*
  625. * PMD[i] must be a counter. no check is made
  626. */
  627. static inline unsigned long
  628. pfm_read_soft_counter(pfm_context_t *ctx, int i)
  629. {
  630. return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
  631. }
  632. /*
  633. * PMD[i] must be a counter. no check is made
  634. */
  635. static inline void
  636. pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
  637. {
  638. unsigned long ovfl_val = pmu_conf->ovfl_val;
  639. ctx->ctx_pmds[i].val = val & ~ovfl_val;
  640. /*
  641. * writing to unimplemented part is ignore, so we do not need to
  642. * mask off top part
  643. */
  644. ia64_set_pmd(i, val & ovfl_val);
  645. }
  646. static pfm_msg_t *
  647. pfm_get_new_msg(pfm_context_t *ctx)
  648. {
  649. int idx, next;
  650. next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
  651. DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
  652. if (next == ctx->ctx_msgq_head) return NULL;
  653. idx = ctx->ctx_msgq_tail;
  654. ctx->ctx_msgq_tail = next;
  655. DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
  656. return ctx->ctx_msgq+idx;
  657. }
  658. static pfm_msg_t *
  659. pfm_get_next_msg(pfm_context_t *ctx)
  660. {
  661. pfm_msg_t *msg;
  662. DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
  663. if (PFM_CTXQ_EMPTY(ctx)) return NULL;
  664. /*
  665. * get oldest message
  666. */
  667. msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
  668. /*
  669. * and move forward
  670. */
  671. ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
  672. DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
  673. return msg;
  674. }
  675. static void
  676. pfm_reset_msgq(pfm_context_t *ctx)
  677. {
  678. ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
  679. DPRINT(("ctx=%p msgq reset\n", ctx));
  680. }
  681. static void *
  682. pfm_rvmalloc(unsigned long size)
  683. {
  684. void *mem;
  685. unsigned long addr;
  686. size = PAGE_ALIGN(size);
  687. mem = vzalloc(size);
  688. if (mem) {
  689. //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
  690. addr = (unsigned long)mem;
  691. while (size > 0) {
  692. pfm_reserve_page(addr);
  693. addr+=PAGE_SIZE;
  694. size-=PAGE_SIZE;
  695. }
  696. }
  697. return mem;
  698. }
  699. static void
  700. pfm_rvfree(void *mem, unsigned long size)
  701. {
  702. unsigned long addr;
  703. if (mem) {
  704. DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
  705. addr = (unsigned long) mem;
  706. while ((long) size > 0) {
  707. pfm_unreserve_page(addr);
  708. addr+=PAGE_SIZE;
  709. size-=PAGE_SIZE;
  710. }
  711. vfree(mem);
  712. }
  713. return;
  714. }
  715. static pfm_context_t *
  716. pfm_context_alloc(int ctx_flags)
  717. {
  718. pfm_context_t *ctx;
  719. /*
  720. * allocate context descriptor
  721. * must be able to free with interrupts disabled
  722. */
  723. ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
  724. if (ctx) {
  725. DPRINT(("alloc ctx @%p\n", ctx));
  726. /*
  727. * init context protection lock
  728. */
  729. spin_lock_init(&ctx->ctx_lock);
  730. /*
  731. * context is unloaded
  732. */
  733. ctx->ctx_state = PFM_CTX_UNLOADED;
  734. /*
  735. * initialization of context's flags
  736. */
  737. ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
  738. ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
  739. ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
  740. /*
  741. * will move to set properties
  742. * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
  743. */
  744. /*
  745. * init restart semaphore to locked
  746. */
  747. init_completion(&ctx->ctx_restart_done);
  748. /*
  749. * activation is used in SMP only
  750. */
  751. ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
  752. SET_LAST_CPU(ctx, -1);
  753. /*
  754. * initialize notification message queue
  755. */
  756. ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
  757. init_waitqueue_head(&ctx->ctx_msgq_wait);
  758. init_waitqueue_head(&ctx->ctx_zombieq);
  759. }
  760. return ctx;
  761. }
  762. static void
  763. pfm_context_free(pfm_context_t *ctx)
  764. {
  765. if (ctx) {
  766. DPRINT(("free ctx @%p\n", ctx));
  767. kfree(ctx);
  768. }
  769. }
  770. static void
  771. pfm_mask_monitoring(struct task_struct *task)
  772. {
  773. pfm_context_t *ctx = PFM_GET_CTX(task);
  774. unsigned long mask, val, ovfl_mask;
  775. int i;
  776. DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
  777. ovfl_mask = pmu_conf->ovfl_val;
  778. /*
  779. * monitoring can only be masked as a result of a valid
  780. * counter overflow. In UP, it means that the PMU still
  781. * has an owner. Note that the owner can be different
  782. * from the current task. However the PMU state belongs
  783. * to the owner.
  784. * In SMP, a valid overflow only happens when task is
  785. * current. Therefore if we come here, we know that
  786. * the PMU state belongs to the current task, therefore
  787. * we can access the live registers.
  788. *
  789. * So in both cases, the live register contains the owner's
  790. * state. We can ONLY touch the PMU registers and NOT the PSR.
  791. *
  792. * As a consequence to this call, the ctx->th_pmds[] array
  793. * contains stale information which must be ignored
  794. * when context is reloaded AND monitoring is active (see
  795. * pfm_restart).
  796. */
  797. mask = ctx->ctx_used_pmds[0];
  798. for (i = 0; mask; i++, mask>>=1) {
  799. /* skip non used pmds */
  800. if ((mask & 0x1) == 0) continue;
  801. val = ia64_get_pmd(i);
  802. if (PMD_IS_COUNTING(i)) {
  803. /*
  804. * we rebuild the full 64 bit value of the counter
  805. */
  806. ctx->ctx_pmds[i].val += (val & ovfl_mask);
  807. } else {
  808. ctx->ctx_pmds[i].val = val;
  809. }
  810. DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
  811. i,
  812. ctx->ctx_pmds[i].val,
  813. val & ovfl_mask));
  814. }
  815. /*
  816. * mask monitoring by setting the privilege level to 0
  817. * we cannot use psr.pp/psr.up for this, it is controlled by
  818. * the user
  819. *
  820. * if task is current, modify actual registers, otherwise modify
  821. * thread save state, i.e., what will be restored in pfm_load_regs()
  822. */
  823. mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
  824. for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
  825. if ((mask & 0x1) == 0UL) continue;
  826. ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
  827. ctx->th_pmcs[i] &= ~0xfUL;
  828. DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
  829. }
  830. /*
  831. * make all of this visible
  832. */
  833. ia64_srlz_d();
  834. }
  835. /*
  836. * must always be done with task == current
  837. *
  838. * context must be in MASKED state when calling
  839. */
  840. static void
  841. pfm_restore_monitoring(struct task_struct *task)
  842. {
  843. pfm_context_t *ctx = PFM_GET_CTX(task);
  844. unsigned long mask, ovfl_mask;
  845. unsigned long psr, val;
  846. int i, is_system;
  847. is_system = ctx->ctx_fl_system;
  848. ovfl_mask = pmu_conf->ovfl_val;
  849. if (task != current) {
  850. printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
  851. return;
  852. }
  853. if (ctx->ctx_state != PFM_CTX_MASKED) {
  854. printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
  855. task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
  856. return;
  857. }
  858. psr = pfm_get_psr();
  859. /*
  860. * monitoring is masked via the PMC.
  861. * As we restore their value, we do not want each counter to
  862. * restart right away. We stop monitoring using the PSR,
  863. * restore the PMC (and PMD) and then re-establish the psr
  864. * as it was. Note that there can be no pending overflow at
  865. * this point, because monitoring was MASKED.
  866. *
  867. * system-wide session are pinned and self-monitoring
  868. */
  869. if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
  870. /* disable dcr pp */
  871. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
  872. pfm_clear_psr_pp();
  873. } else {
  874. pfm_clear_psr_up();
  875. }
  876. /*
  877. * first, we restore the PMD
  878. */
  879. mask = ctx->ctx_used_pmds[0];
  880. for (i = 0; mask; i++, mask>>=1) {
  881. /* skip non used pmds */
  882. if ((mask & 0x1) == 0) continue;
  883. if (PMD_IS_COUNTING(i)) {
  884. /*
  885. * we split the 64bit value according to
  886. * counter width
  887. */
  888. val = ctx->ctx_pmds[i].val & ovfl_mask;
  889. ctx->ctx_pmds[i].val &= ~ovfl_mask;
  890. } else {
  891. val = ctx->ctx_pmds[i].val;
  892. }
  893. ia64_set_pmd(i, val);
  894. DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
  895. i,
  896. ctx->ctx_pmds[i].val,
  897. val));
  898. }
  899. /*
  900. * restore the PMCs
  901. */
  902. mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
  903. for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
  904. if ((mask & 0x1) == 0UL) continue;
  905. ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
  906. ia64_set_pmc(i, ctx->th_pmcs[i]);
  907. DPRINT(("[%d] pmc[%d]=0x%lx\n",
  908. task_pid_nr(task), i, ctx->th_pmcs[i]));
  909. }
  910. ia64_srlz_d();
  911. /*
  912. * must restore DBR/IBR because could be modified while masked
  913. * XXX: need to optimize
  914. */
  915. if (ctx->ctx_fl_using_dbreg) {
  916. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  917. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  918. }
  919. /*
  920. * now restore PSR
  921. */
  922. if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
  923. /* enable dcr pp */
  924. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
  925. ia64_srlz_i();
  926. }
  927. pfm_set_psr_l(psr);
  928. }
  929. static inline void
  930. pfm_save_pmds(unsigned long *pmds, unsigned long mask)
  931. {
  932. int i;
  933. ia64_srlz_d();
  934. for (i=0; mask; i++, mask>>=1) {
  935. if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
  936. }
  937. }
  938. /*
  939. * reload from thread state (used for ctxw only)
  940. */
  941. static inline void
  942. pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
  943. {
  944. int i;
  945. unsigned long val, ovfl_val = pmu_conf->ovfl_val;
  946. for (i=0; mask; i++, mask>>=1) {
  947. if ((mask & 0x1) == 0) continue;
  948. val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
  949. ia64_set_pmd(i, val);
  950. }
  951. ia64_srlz_d();
  952. }
  953. /*
  954. * propagate PMD from context to thread-state
  955. */
  956. static inline void
  957. pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
  958. {
  959. unsigned long ovfl_val = pmu_conf->ovfl_val;
  960. unsigned long mask = ctx->ctx_all_pmds[0];
  961. unsigned long val;
  962. int i;
  963. DPRINT(("mask=0x%lx\n", mask));
  964. for (i=0; mask; i++, mask>>=1) {
  965. val = ctx->ctx_pmds[i].val;
  966. /*
  967. * We break up the 64 bit value into 2 pieces
  968. * the lower bits go to the machine state in the
  969. * thread (will be reloaded on ctxsw in).
  970. * The upper part stays in the soft-counter.
  971. */
  972. if (PMD_IS_COUNTING(i)) {
  973. ctx->ctx_pmds[i].val = val & ~ovfl_val;
  974. val &= ovfl_val;
  975. }
  976. ctx->th_pmds[i] = val;
  977. DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
  978. i,
  979. ctx->th_pmds[i],
  980. ctx->ctx_pmds[i].val));
  981. }
  982. }
  983. /*
  984. * propagate PMC from context to thread-state
  985. */
  986. static inline void
  987. pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
  988. {
  989. unsigned long mask = ctx->ctx_all_pmcs[0];
  990. int i;
  991. DPRINT(("mask=0x%lx\n", mask));
  992. for (i=0; mask; i++, mask>>=1) {
  993. /* masking 0 with ovfl_val yields 0 */
  994. ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
  995. DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
  996. }
  997. }
  998. static inline void
  999. pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
  1000. {
  1001. int i;
  1002. for (i=0; mask; i++, mask>>=1) {
  1003. if ((mask & 0x1) == 0) continue;
  1004. ia64_set_pmc(i, pmcs[i]);
  1005. }
  1006. ia64_srlz_d();
  1007. }
  1008. static inline int
  1009. pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
  1010. {
  1011. return memcmp(a, b, sizeof(pfm_uuid_t));
  1012. }
  1013. static inline int
  1014. pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
  1015. {
  1016. int ret = 0;
  1017. if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
  1018. return ret;
  1019. }
  1020. static inline int
  1021. pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
  1022. {
  1023. int ret = 0;
  1024. if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
  1025. return ret;
  1026. }
  1027. static inline int
  1028. pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
  1029. int cpu, void *arg)
  1030. {
  1031. int ret = 0;
  1032. if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
  1033. return ret;
  1034. }
  1035. static inline int
  1036. pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
  1037. int cpu, void *arg)
  1038. {
  1039. int ret = 0;
  1040. if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
  1041. return ret;
  1042. }
  1043. static inline int
  1044. pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
  1045. {
  1046. int ret = 0;
  1047. if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
  1048. return ret;
  1049. }
  1050. static inline int
  1051. pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
  1052. {
  1053. int ret = 0;
  1054. if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
  1055. return ret;
  1056. }
  1057. static pfm_buffer_fmt_t *
  1058. __pfm_find_buffer_fmt(pfm_uuid_t uuid)
  1059. {
  1060. struct list_head * pos;
  1061. pfm_buffer_fmt_t * entry;
  1062. list_for_each(pos, &pfm_buffer_fmt_list) {
  1063. entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
  1064. if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
  1065. return entry;
  1066. }
  1067. return NULL;
  1068. }
  1069. /*
  1070. * find a buffer format based on its uuid
  1071. */
  1072. static pfm_buffer_fmt_t *
  1073. pfm_find_buffer_fmt(pfm_uuid_t uuid)
  1074. {
  1075. pfm_buffer_fmt_t * fmt;
  1076. spin_lock(&pfm_buffer_fmt_lock);
  1077. fmt = __pfm_find_buffer_fmt(uuid);
  1078. spin_unlock(&pfm_buffer_fmt_lock);
  1079. return fmt;
  1080. }
  1081. int
  1082. pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
  1083. {
  1084. int ret = 0;
  1085. /* some sanity checks */
  1086. if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
  1087. /* we need at least a handler */
  1088. if (fmt->fmt_handler == NULL) return -EINVAL;
  1089. /*
  1090. * XXX: need check validity of fmt_arg_size
  1091. */
  1092. spin_lock(&pfm_buffer_fmt_lock);
  1093. if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
  1094. printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
  1095. ret = -EBUSY;
  1096. goto out;
  1097. }
  1098. list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
  1099. printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
  1100. out:
  1101. spin_unlock(&pfm_buffer_fmt_lock);
  1102. return ret;
  1103. }
  1104. EXPORT_SYMBOL(pfm_register_buffer_fmt);
  1105. int
  1106. pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
  1107. {
  1108. pfm_buffer_fmt_t *fmt;
  1109. int ret = 0;
  1110. spin_lock(&pfm_buffer_fmt_lock);
  1111. fmt = __pfm_find_buffer_fmt(uuid);
  1112. if (!fmt) {
  1113. printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
  1114. ret = -EINVAL;
  1115. goto out;
  1116. }
  1117. list_del_init(&fmt->fmt_list);
  1118. printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
  1119. out:
  1120. spin_unlock(&pfm_buffer_fmt_lock);
  1121. return ret;
  1122. }
  1123. EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
  1124. extern void update_pal_halt_status(int);
  1125. static int
  1126. pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
  1127. {
  1128. unsigned long flags;
  1129. /*
  1130. * validity checks on cpu_mask have been done upstream
  1131. */
  1132. LOCK_PFS(flags);
  1133. DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1134. pfm_sessions.pfs_sys_sessions,
  1135. pfm_sessions.pfs_task_sessions,
  1136. pfm_sessions.pfs_sys_use_dbregs,
  1137. is_syswide,
  1138. cpu));
  1139. if (is_syswide) {
  1140. /*
  1141. * cannot mix system wide and per-task sessions
  1142. */
  1143. if (pfm_sessions.pfs_task_sessions > 0UL) {
  1144. DPRINT(("system wide not possible, %u conflicting task_sessions\n",
  1145. pfm_sessions.pfs_task_sessions));
  1146. goto abort;
  1147. }
  1148. if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
  1149. DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
  1150. pfm_sessions.pfs_sys_session[cpu] = task;
  1151. pfm_sessions.pfs_sys_sessions++ ;
  1152. } else {
  1153. if (pfm_sessions.pfs_sys_sessions) goto abort;
  1154. pfm_sessions.pfs_task_sessions++;
  1155. }
  1156. DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1157. pfm_sessions.pfs_sys_sessions,
  1158. pfm_sessions.pfs_task_sessions,
  1159. pfm_sessions.pfs_sys_use_dbregs,
  1160. is_syswide,
  1161. cpu));
  1162. /*
  1163. * disable default_idle() to go to PAL_HALT
  1164. */
  1165. update_pal_halt_status(0);
  1166. UNLOCK_PFS(flags);
  1167. return 0;
  1168. error_conflict:
  1169. DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
  1170. task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
  1171. cpu));
  1172. abort:
  1173. UNLOCK_PFS(flags);
  1174. return -EBUSY;
  1175. }
  1176. static int
  1177. pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
  1178. {
  1179. unsigned long flags;
  1180. /*
  1181. * validity checks on cpu_mask have been done upstream
  1182. */
  1183. LOCK_PFS(flags);
  1184. DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1185. pfm_sessions.pfs_sys_sessions,
  1186. pfm_sessions.pfs_task_sessions,
  1187. pfm_sessions.pfs_sys_use_dbregs,
  1188. is_syswide,
  1189. cpu));
  1190. if (is_syswide) {
  1191. pfm_sessions.pfs_sys_session[cpu] = NULL;
  1192. /*
  1193. * would not work with perfmon+more than one bit in cpu_mask
  1194. */
  1195. if (ctx && ctx->ctx_fl_using_dbreg) {
  1196. if (pfm_sessions.pfs_sys_use_dbregs == 0) {
  1197. printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
  1198. } else {
  1199. pfm_sessions.pfs_sys_use_dbregs--;
  1200. }
  1201. }
  1202. pfm_sessions.pfs_sys_sessions--;
  1203. } else {
  1204. pfm_sessions.pfs_task_sessions--;
  1205. }
  1206. DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1207. pfm_sessions.pfs_sys_sessions,
  1208. pfm_sessions.pfs_task_sessions,
  1209. pfm_sessions.pfs_sys_use_dbregs,
  1210. is_syswide,
  1211. cpu));
  1212. /*
  1213. * if possible, enable default_idle() to go into PAL_HALT
  1214. */
  1215. if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
  1216. update_pal_halt_status(1);
  1217. UNLOCK_PFS(flags);
  1218. return 0;
  1219. }
  1220. /*
  1221. * removes virtual mapping of the sampling buffer.
  1222. * IMPORTANT: cannot be called with interrupts disable, e.g. inside
  1223. * a PROTECT_CTX() section.
  1224. */
  1225. static int
  1226. pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
  1227. {
  1228. struct task_struct *task = current;
  1229. int r;
  1230. /* sanity checks */
  1231. if (task->mm == NULL || size == 0UL || vaddr == NULL) {
  1232. printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
  1233. return -EINVAL;
  1234. }
  1235. DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
  1236. /*
  1237. * does the actual unmapping
  1238. */
  1239. r = vm_munmap((unsigned long)vaddr, size);
  1240. if (r !=0) {
  1241. printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
  1242. }
  1243. DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
  1244. return 0;
  1245. }
  1246. /*
  1247. * free actual physical storage used by sampling buffer
  1248. */
  1249. #if 0
  1250. static int
  1251. pfm_free_smpl_buffer(pfm_context_t *ctx)
  1252. {
  1253. pfm_buffer_fmt_t *fmt;
  1254. if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
  1255. /*
  1256. * we won't use the buffer format anymore
  1257. */
  1258. fmt = ctx->ctx_buf_fmt;
  1259. DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
  1260. ctx->ctx_smpl_hdr,
  1261. ctx->ctx_smpl_size,
  1262. ctx->ctx_smpl_vaddr));
  1263. pfm_buf_fmt_exit(fmt, current, NULL, NULL);
  1264. /*
  1265. * free the buffer
  1266. */
  1267. pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
  1268. ctx->ctx_smpl_hdr = NULL;
  1269. ctx->ctx_smpl_size = 0UL;
  1270. return 0;
  1271. invalid_free:
  1272. printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
  1273. return -EINVAL;
  1274. }
  1275. #endif
  1276. static inline void
  1277. pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
  1278. {
  1279. if (fmt == NULL) return;
  1280. pfm_buf_fmt_exit(fmt, current, NULL, NULL);
  1281. }
  1282. /*
  1283. * pfmfs should _never_ be mounted by userland - too much of security hassle,
  1284. * no real gain from having the whole whorehouse mounted. So we don't need
  1285. * any operations on the root directory. However, we need a non-trivial
  1286. * d_name - pfm: will go nicely and kill the special-casing in procfs.
  1287. */
  1288. static struct vfsmount *pfmfs_mnt __read_mostly;
  1289. static int __init
  1290. init_pfm_fs(void)
  1291. {
  1292. int err = register_filesystem(&pfm_fs_type);
  1293. if (!err) {
  1294. pfmfs_mnt = kern_mount(&pfm_fs_type);
  1295. err = PTR_ERR(pfmfs_mnt);
  1296. if (IS_ERR(pfmfs_mnt))
  1297. unregister_filesystem(&pfm_fs_type);
  1298. else
  1299. err = 0;
  1300. }
  1301. return err;
  1302. }
  1303. static ssize_t
  1304. pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
  1305. {
  1306. pfm_context_t *ctx;
  1307. pfm_msg_t *msg;
  1308. ssize_t ret;
  1309. unsigned long flags;
  1310. DECLARE_WAITQUEUE(wait, current);
  1311. if (PFM_IS_FILE(filp) == 0) {
  1312. printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
  1313. return -EINVAL;
  1314. }
  1315. ctx = filp->private_data;
  1316. if (ctx == NULL) {
  1317. printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
  1318. return -EINVAL;
  1319. }
  1320. /*
  1321. * check even when there is no message
  1322. */
  1323. if (size < sizeof(pfm_msg_t)) {
  1324. DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
  1325. return -EINVAL;
  1326. }
  1327. PROTECT_CTX(ctx, flags);
  1328. /*
  1329. * put ourselves on the wait queue
  1330. */
  1331. add_wait_queue(&ctx->ctx_msgq_wait, &wait);
  1332. for(;;) {
  1333. /*
  1334. * check wait queue
  1335. */
  1336. set_current_state(TASK_INTERRUPTIBLE);
  1337. DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
  1338. ret = 0;
  1339. if(PFM_CTXQ_EMPTY(ctx) == 0) break;
  1340. UNPROTECT_CTX(ctx, flags);
  1341. /*
  1342. * check non-blocking read
  1343. */
  1344. ret = -EAGAIN;
  1345. if(filp->f_flags & O_NONBLOCK) break;
  1346. /*
  1347. * check pending signals
  1348. */
  1349. if(signal_pending(current)) {
  1350. ret = -EINTR;
  1351. break;
  1352. }
  1353. /*
  1354. * no message, so wait
  1355. */
  1356. schedule();
  1357. PROTECT_CTX(ctx, flags);
  1358. }
  1359. DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
  1360. set_current_state(TASK_RUNNING);
  1361. remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
  1362. if (ret < 0) goto abort;
  1363. ret = -EINVAL;
  1364. msg = pfm_get_next_msg(ctx);
  1365. if (msg == NULL) {
  1366. printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
  1367. goto abort_locked;
  1368. }
  1369. DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
  1370. ret = -EFAULT;
  1371. if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
  1372. abort_locked:
  1373. UNPROTECT_CTX(ctx, flags);
  1374. abort:
  1375. return ret;
  1376. }
  1377. static ssize_t
  1378. pfm_write(struct file *file, const char __user *ubuf,
  1379. size_t size, loff_t *ppos)
  1380. {
  1381. DPRINT(("pfm_write called\n"));
  1382. return -EINVAL;
  1383. }
  1384. static unsigned int
  1385. pfm_poll(struct file *filp, poll_table * wait)
  1386. {
  1387. pfm_context_t *ctx;
  1388. unsigned long flags;
  1389. unsigned int mask = 0;
  1390. if (PFM_IS_FILE(filp) == 0) {
  1391. printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
  1392. return 0;
  1393. }
  1394. ctx = filp->private_data;
  1395. if (ctx == NULL) {
  1396. printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
  1397. return 0;
  1398. }
  1399. DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
  1400. poll_wait(filp, &ctx->ctx_msgq_wait, wait);
  1401. PROTECT_CTX(ctx, flags);
  1402. if (PFM_CTXQ_EMPTY(ctx) == 0)
  1403. mask = POLLIN | POLLRDNORM;
  1404. UNPROTECT_CTX(ctx, flags);
  1405. DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
  1406. return mask;
  1407. }
  1408. static long
  1409. pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1410. {
  1411. DPRINT(("pfm_ioctl called\n"));
  1412. return -EINVAL;
  1413. }
  1414. /*
  1415. * interrupt cannot be masked when coming here
  1416. */
  1417. static inline int
  1418. pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
  1419. {
  1420. int ret;
  1421. ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
  1422. DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
  1423. task_pid_nr(current),
  1424. fd,
  1425. on,
  1426. ctx->ctx_async_queue, ret));
  1427. return ret;
  1428. }
  1429. static int
  1430. pfm_fasync(int fd, struct file *filp, int on)
  1431. {
  1432. pfm_context_t *ctx;
  1433. int ret;
  1434. if (PFM_IS_FILE(filp) == 0) {
  1435. printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
  1436. return -EBADF;
  1437. }
  1438. ctx = filp->private_data;
  1439. if (ctx == NULL) {
  1440. printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
  1441. return -EBADF;
  1442. }
  1443. /*
  1444. * we cannot mask interrupts during this call because this may
  1445. * may go to sleep if memory is not readily avalaible.
  1446. *
  1447. * We are protected from the conetxt disappearing by the get_fd()/put_fd()
  1448. * done in caller. Serialization of this function is ensured by caller.
  1449. */
  1450. ret = pfm_do_fasync(fd, filp, ctx, on);
  1451. DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
  1452. fd,
  1453. on,
  1454. ctx->ctx_async_queue, ret));
  1455. return ret;
  1456. }
  1457. #ifdef CONFIG_SMP
  1458. /*
  1459. * this function is exclusively called from pfm_close().
  1460. * The context is not protected at that time, nor are interrupts
  1461. * on the remote CPU. That's necessary to avoid deadlocks.
  1462. */
  1463. static void
  1464. pfm_syswide_force_stop(void *info)
  1465. {
  1466. pfm_context_t *ctx = (pfm_context_t *)info;
  1467. struct pt_regs *regs = task_pt_regs(current);
  1468. struct task_struct *owner;
  1469. unsigned long flags;
  1470. int ret;
  1471. if (ctx->ctx_cpu != smp_processor_id()) {
  1472. printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
  1473. ctx->ctx_cpu,
  1474. smp_processor_id());
  1475. return;
  1476. }
  1477. owner = GET_PMU_OWNER();
  1478. if (owner != ctx->ctx_task) {
  1479. printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
  1480. smp_processor_id(),
  1481. task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
  1482. return;
  1483. }
  1484. if (GET_PMU_CTX() != ctx) {
  1485. printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
  1486. smp_processor_id(),
  1487. GET_PMU_CTX(), ctx);
  1488. return;
  1489. }
  1490. DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
  1491. /*
  1492. * the context is already protected in pfm_close(), we simply
  1493. * need to mask interrupts to avoid a PMU interrupt race on
  1494. * this CPU
  1495. */
  1496. local_irq_save(flags);
  1497. ret = pfm_context_unload(ctx, NULL, 0, regs);
  1498. if (ret) {
  1499. DPRINT(("context_unload returned %d\n", ret));
  1500. }
  1501. /*
  1502. * unmask interrupts, PMU interrupts are now spurious here
  1503. */
  1504. local_irq_restore(flags);
  1505. }
  1506. static void
  1507. pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
  1508. {
  1509. int ret;
  1510. DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
  1511. ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
  1512. DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
  1513. }
  1514. #endif /* CONFIG_SMP */
  1515. /*
  1516. * called for each close(). Partially free resources.
  1517. * When caller is self-monitoring, the context is unloaded.
  1518. */
  1519. static int
  1520. pfm_flush(struct file *filp, fl_owner_t id)
  1521. {
  1522. pfm_context_t *ctx;
  1523. struct task_struct *task;
  1524. struct pt_regs *regs;
  1525. unsigned long flags;
  1526. unsigned long smpl_buf_size = 0UL;
  1527. void *smpl_buf_vaddr = NULL;
  1528. int state, is_system;
  1529. if (PFM_IS_FILE(filp) == 0) {
  1530. DPRINT(("bad magic for\n"));
  1531. return -EBADF;
  1532. }
  1533. ctx = filp->private_data;
  1534. if (ctx == NULL) {
  1535. printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
  1536. return -EBADF;
  1537. }
  1538. /*
  1539. * remove our file from the async queue, if we use this mode.
  1540. * This can be done without the context being protected. We come
  1541. * here when the context has become unreachable by other tasks.
  1542. *
  1543. * We may still have active monitoring at this point and we may
  1544. * end up in pfm_overflow_handler(). However, fasync_helper()
  1545. * operates with interrupts disabled and it cleans up the
  1546. * queue. If the PMU handler is called prior to entering
  1547. * fasync_helper() then it will send a signal. If it is
  1548. * invoked after, it will find an empty queue and no
  1549. * signal will be sent. In both case, we are safe
  1550. */
  1551. PROTECT_CTX(ctx, flags);
  1552. state = ctx->ctx_state;
  1553. is_system = ctx->ctx_fl_system;
  1554. task = PFM_CTX_TASK(ctx);
  1555. regs = task_pt_regs(task);
  1556. DPRINT(("ctx_state=%d is_current=%d\n",
  1557. state,
  1558. task == current ? 1 : 0));
  1559. /*
  1560. * if state == UNLOADED, then task is NULL
  1561. */
  1562. /*
  1563. * we must stop and unload because we are losing access to the context.
  1564. */
  1565. if (task == current) {
  1566. #ifdef CONFIG_SMP
  1567. /*
  1568. * the task IS the owner but it migrated to another CPU: that's bad
  1569. * but we must handle this cleanly. Unfortunately, the kernel does
  1570. * not provide a mechanism to block migration (while the context is loaded).
  1571. *
  1572. * We need to release the resource on the ORIGINAL cpu.
  1573. */
  1574. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  1575. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  1576. /*
  1577. * keep context protected but unmask interrupt for IPI
  1578. */
  1579. local_irq_restore(flags);
  1580. pfm_syswide_cleanup_other_cpu(ctx);
  1581. /*
  1582. * restore interrupt masking
  1583. */
  1584. local_irq_save(flags);
  1585. /*
  1586. * context is unloaded at this point
  1587. */
  1588. } else
  1589. #endif /* CONFIG_SMP */
  1590. {
  1591. DPRINT(("forcing unload\n"));
  1592. /*
  1593. * stop and unload, returning with state UNLOADED
  1594. * and session unreserved.
  1595. */
  1596. pfm_context_unload(ctx, NULL, 0, regs);
  1597. DPRINT(("ctx_state=%d\n", ctx->ctx_state));
  1598. }
  1599. }
  1600. /*
  1601. * remove virtual mapping, if any, for the calling task.
  1602. * cannot reset ctx field until last user is calling close().
  1603. *
  1604. * ctx_smpl_vaddr must never be cleared because it is needed
  1605. * by every task with access to the context
  1606. *
  1607. * When called from do_exit(), the mm context is gone already, therefore
  1608. * mm is NULL, i.e., the VMA is already gone and we do not have to
  1609. * do anything here
  1610. */
  1611. if (ctx->ctx_smpl_vaddr && current->mm) {
  1612. smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
  1613. smpl_buf_size = ctx->ctx_smpl_size;
  1614. }
  1615. UNPROTECT_CTX(ctx, flags);
  1616. /*
  1617. * if there was a mapping, then we systematically remove it
  1618. * at this point. Cannot be done inside critical section
  1619. * because some VM function reenables interrupts.
  1620. *
  1621. */
  1622. if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
  1623. return 0;
  1624. }
  1625. /*
  1626. * called either on explicit close() or from exit_files().
  1627. * Only the LAST user of the file gets to this point, i.e., it is
  1628. * called only ONCE.
  1629. *
  1630. * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
  1631. * (fput()),i.e, last task to access the file. Nobody else can access the
  1632. * file at this point.
  1633. *
  1634. * When called from exit_files(), the VMA has been freed because exit_mm()
  1635. * is executed before exit_files().
  1636. *
  1637. * When called from exit_files(), the current task is not yet ZOMBIE but we
  1638. * flush the PMU state to the context.
  1639. */
  1640. static int
  1641. pfm_close(struct inode *inode, struct file *filp)
  1642. {
  1643. pfm_context_t *ctx;
  1644. struct task_struct *task;
  1645. struct pt_regs *regs;
  1646. DECLARE_WAITQUEUE(wait, current);
  1647. unsigned long flags;
  1648. unsigned long smpl_buf_size = 0UL;
  1649. void *smpl_buf_addr = NULL;
  1650. int free_possible = 1;
  1651. int state, is_system;
  1652. DPRINT(("pfm_close called private=%p\n", filp->private_data));
  1653. if (PFM_IS_FILE(filp) == 0) {
  1654. DPRINT(("bad magic\n"));
  1655. return -EBADF;
  1656. }
  1657. ctx = filp->private_data;
  1658. if (ctx == NULL) {
  1659. printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
  1660. return -EBADF;
  1661. }
  1662. PROTECT_CTX(ctx, flags);
  1663. state = ctx->ctx_state;
  1664. is_system = ctx->ctx_fl_system;
  1665. task = PFM_CTX_TASK(ctx);
  1666. regs = task_pt_regs(task);
  1667. DPRINT(("ctx_state=%d is_current=%d\n",
  1668. state,
  1669. task == current ? 1 : 0));
  1670. /*
  1671. * if task == current, then pfm_flush() unloaded the context
  1672. */
  1673. if (state == PFM_CTX_UNLOADED) goto doit;
  1674. /*
  1675. * context is loaded/masked and task != current, we need to
  1676. * either force an unload or go zombie
  1677. */
  1678. /*
  1679. * The task is currently blocked or will block after an overflow.
  1680. * we must force it to wakeup to get out of the
  1681. * MASKED state and transition to the unloaded state by itself.
  1682. *
  1683. * This situation is only possible for per-task mode
  1684. */
  1685. if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
  1686. /*
  1687. * set a "partial" zombie state to be checked
  1688. * upon return from down() in pfm_handle_work().
  1689. *
  1690. * We cannot use the ZOMBIE state, because it is checked
  1691. * by pfm_load_regs() which is called upon wakeup from down().
  1692. * In such case, it would free the context and then we would
  1693. * return to pfm_handle_work() which would access the
  1694. * stale context. Instead, we set a flag invisible to pfm_load_regs()
  1695. * but visible to pfm_handle_work().
  1696. *
  1697. * For some window of time, we have a zombie context with
  1698. * ctx_state = MASKED and not ZOMBIE
  1699. */
  1700. ctx->ctx_fl_going_zombie = 1;
  1701. /*
  1702. * force task to wake up from MASKED state
  1703. */
  1704. complete(&ctx->ctx_restart_done);
  1705. DPRINT(("waking up ctx_state=%d\n", state));
  1706. /*
  1707. * put ourself to sleep waiting for the other
  1708. * task to report completion
  1709. *
  1710. * the context is protected by mutex, therefore there
  1711. * is no risk of being notified of completion before
  1712. * begin actually on the waitq.
  1713. */
  1714. set_current_state(TASK_INTERRUPTIBLE);
  1715. add_wait_queue(&ctx->ctx_zombieq, &wait);
  1716. UNPROTECT_CTX(ctx, flags);
  1717. /*
  1718. * XXX: check for signals :
  1719. * - ok for explicit close
  1720. * - not ok when coming from exit_files()
  1721. */
  1722. schedule();
  1723. PROTECT_CTX(ctx, flags);
  1724. remove_wait_queue(&ctx->ctx_zombieq, &wait);
  1725. set_current_state(TASK_RUNNING);
  1726. /*
  1727. * context is unloaded at this point
  1728. */
  1729. DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
  1730. }
  1731. else if (task != current) {
  1732. #ifdef CONFIG_SMP
  1733. /*
  1734. * switch context to zombie state
  1735. */
  1736. ctx->ctx_state = PFM_CTX_ZOMBIE;
  1737. DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
  1738. /*
  1739. * cannot free the context on the spot. deferred until
  1740. * the task notices the ZOMBIE state
  1741. */
  1742. free_possible = 0;
  1743. #else
  1744. pfm_context_unload(ctx, NULL, 0, regs);
  1745. #endif
  1746. }
  1747. doit:
  1748. /* reload state, may have changed during opening of critical section */
  1749. state = ctx->ctx_state;
  1750. /*
  1751. * the context is still attached to a task (possibly current)
  1752. * we cannot destroy it right now
  1753. */
  1754. /*
  1755. * we must free the sampling buffer right here because
  1756. * we cannot rely on it being cleaned up later by the
  1757. * monitored task. It is not possible to free vmalloc'ed
  1758. * memory in pfm_load_regs(). Instead, we remove the buffer
  1759. * now. should there be subsequent PMU overflow originally
  1760. * meant for sampling, the will be converted to spurious
  1761. * and that's fine because the monitoring tools is gone anyway.
  1762. */
  1763. if (ctx->ctx_smpl_hdr) {
  1764. smpl_buf_addr = ctx->ctx_smpl_hdr;
  1765. smpl_buf_size = ctx->ctx_smpl_size;
  1766. /* no more sampling */
  1767. ctx->ctx_smpl_hdr = NULL;
  1768. ctx->ctx_fl_is_sampling = 0;
  1769. }
  1770. DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
  1771. state,
  1772. free_possible,
  1773. smpl_buf_addr,
  1774. smpl_buf_size));
  1775. if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
  1776. /*
  1777. * UNLOADED that the session has already been unreserved.
  1778. */
  1779. if (state == PFM_CTX_ZOMBIE) {
  1780. pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
  1781. }
  1782. /*
  1783. * disconnect file descriptor from context must be done
  1784. * before we unlock.
  1785. */
  1786. filp->private_data = NULL;
  1787. /*
  1788. * if we free on the spot, the context is now completely unreachable
  1789. * from the callers side. The monitored task side is also cut, so we
  1790. * can freely cut.
  1791. *
  1792. * If we have a deferred free, only the caller side is disconnected.
  1793. */
  1794. UNPROTECT_CTX(ctx, flags);
  1795. /*
  1796. * All memory free operations (especially for vmalloc'ed memory)
  1797. * MUST be done with interrupts ENABLED.
  1798. */
  1799. if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
  1800. /*
  1801. * return the memory used by the context
  1802. */
  1803. if (free_possible) pfm_context_free(ctx);
  1804. return 0;
  1805. }
  1806. static int
  1807. pfm_no_open(struct inode *irrelevant, struct file *dontcare)
  1808. {
  1809. DPRINT(("pfm_no_open called\n"));
  1810. return -ENXIO;
  1811. }
  1812. static const struct file_operations pfm_file_ops = {
  1813. .llseek = no_llseek,
  1814. .read = pfm_read,
  1815. .write = pfm_write,
  1816. .poll = pfm_poll,
  1817. .unlocked_ioctl = pfm_ioctl,
  1818. .open = pfm_no_open, /* special open code to disallow open via /proc */
  1819. .fasync = pfm_fasync,
  1820. .release = pfm_close,
  1821. .flush = pfm_flush
  1822. };
  1823. static int
  1824. pfmfs_delete_dentry(const struct dentry *dentry)
  1825. {
  1826. return 1;
  1827. }
  1828. static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
  1829. {
  1830. return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
  1831. dentry->d_inode->i_ino);
  1832. }
  1833. static const struct dentry_operations pfmfs_dentry_operations = {
  1834. .d_delete = pfmfs_delete_dentry,
  1835. .d_dname = pfmfs_dname,
  1836. };
  1837. static struct file *
  1838. pfm_alloc_file(pfm_context_t *ctx)
  1839. {
  1840. struct file *file;
  1841. struct inode *inode;
  1842. struct path path;
  1843. struct qstr this = { .name = "" };
  1844. /*
  1845. * allocate a new inode
  1846. */
  1847. inode = new_inode(pfmfs_mnt->mnt_sb);
  1848. if (!inode)
  1849. return ERR_PTR(-ENOMEM);
  1850. DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
  1851. inode->i_mode = S_IFCHR|S_IRUGO;
  1852. inode->i_uid = current_fsuid();
  1853. inode->i_gid = current_fsgid();
  1854. /*
  1855. * allocate a new dcache entry
  1856. */
  1857. path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
  1858. if (!path.dentry) {
  1859. iput(inode);
  1860. return ERR_PTR(-ENOMEM);
  1861. }
  1862. path.mnt = mntget(pfmfs_mnt);
  1863. d_add(path.dentry, inode);
  1864. file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
  1865. if (!file) {
  1866. path_put(&path);
  1867. return ERR_PTR(-ENFILE);
  1868. }
  1869. file->f_flags = O_RDONLY;
  1870. file->private_data = ctx;
  1871. return file;
  1872. }
  1873. static int
  1874. pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
  1875. {
  1876. DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
  1877. while (size > 0) {
  1878. unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
  1879. if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
  1880. return -ENOMEM;
  1881. addr += PAGE_SIZE;
  1882. buf += PAGE_SIZE;
  1883. size -= PAGE_SIZE;
  1884. }
  1885. return 0;
  1886. }
  1887. /*
  1888. * allocate a sampling buffer and remaps it into the user address space of the task
  1889. */
  1890. static int
  1891. pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
  1892. {
  1893. struct mm_struct *mm = task->mm;
  1894. struct vm_area_struct *vma = NULL;
  1895. unsigned long size;
  1896. void *smpl_buf;
  1897. /*
  1898. * the fixed header + requested size and align to page boundary
  1899. */
  1900. size = PAGE_ALIGN(rsize);
  1901. DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
  1902. /*
  1903. * check requested size to avoid Denial-of-service attacks
  1904. * XXX: may have to refine this test
  1905. * Check against address space limit.
  1906. *
  1907. * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
  1908. * return -ENOMEM;
  1909. */
  1910. if (size > task_rlimit(task, RLIMIT_MEMLOCK))
  1911. return -ENOMEM;
  1912. /*
  1913. * We do the easy to undo allocations first.
  1914. *
  1915. * pfm_rvmalloc(), clears the buffer, so there is no leak
  1916. */
  1917. smpl_buf = pfm_rvmalloc(size);
  1918. if (smpl_buf == NULL) {
  1919. DPRINT(("Can't allocate sampling buffer\n"));
  1920. return -ENOMEM;
  1921. }
  1922. DPRINT(("smpl_buf @%p\n", smpl_buf));
  1923. /* allocate vma */
  1924. vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  1925. if (!vma) {
  1926. DPRINT(("Cannot allocate vma\n"));
  1927. goto error_kmem;
  1928. }
  1929. INIT_LIST_HEAD(&vma->anon_vma_chain);
  1930. /*
  1931. * partially initialize the vma for the sampling buffer
  1932. */
  1933. vma->vm_mm = mm;
  1934. vma->vm_file = filp;
  1935. vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
  1936. vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
  1937. /*
  1938. * Now we have everything we need and we can initialize
  1939. * and connect all the data structures
  1940. */
  1941. ctx->ctx_smpl_hdr = smpl_buf;
  1942. ctx->ctx_smpl_size = size; /* aligned size */
  1943. /*
  1944. * Let's do the difficult operations next.
  1945. *
  1946. * now we atomically find some area in the address space and
  1947. * remap the buffer in it.
  1948. */
  1949. down_write(&task->mm->mmap_sem);
  1950. /* find some free area in address space, must have mmap sem held */
  1951. vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
  1952. if (vma->vm_start == 0UL) {
  1953. DPRINT(("Cannot find unmapped area for size %ld\n", size));
  1954. up_write(&task->mm->mmap_sem);
  1955. goto error;
  1956. }
  1957. vma->vm_end = vma->vm_start + size;
  1958. vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
  1959. DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
  1960. /* can only be applied to current task, need to have the mm semaphore held when called */
  1961. if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
  1962. DPRINT(("Can't remap buffer\n"));
  1963. up_write(&task->mm->mmap_sem);
  1964. goto error;
  1965. }
  1966. get_file(filp);
  1967. /*
  1968. * now insert the vma in the vm list for the process, must be
  1969. * done with mmap lock held
  1970. */
  1971. insert_vm_struct(mm, vma);
  1972. mm->total_vm += size >> PAGE_SHIFT;
  1973. vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
  1974. vma_pages(vma));
  1975. up_write(&task->mm->mmap_sem);
  1976. /*
  1977. * keep track of user level virtual address
  1978. */
  1979. ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
  1980. *(unsigned long *)user_vaddr = vma->vm_start;
  1981. return 0;
  1982. error:
  1983. kmem_cache_free(vm_area_cachep, vma);
  1984. error_kmem:
  1985. pfm_rvfree(smpl_buf, size);
  1986. return -ENOMEM;
  1987. }
  1988. /*
  1989. * XXX: do something better here
  1990. */
  1991. static int
  1992. pfm_bad_permissions(struct task_struct *task)
  1993. {
  1994. const struct cred *tcred;
  1995. uid_t uid = current_uid();
  1996. gid_t gid = current_gid();
  1997. int ret;
  1998. rcu_read_lock();
  1999. tcred = __task_cred(task);
  2000. /* inspired by ptrace_attach() */
  2001. DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
  2002. uid,
  2003. gid,
  2004. tcred->euid,
  2005. tcred->suid,
  2006. tcred->uid,
  2007. tcred->egid,
  2008. tcred->sgid));
  2009. ret = ((uid != tcred->euid)
  2010. || (uid != tcred->suid)
  2011. || (uid != tcred->uid)
  2012. || (gid != tcred->egid)
  2013. || (gid != tcred->sgid)
  2014. || (gid != tcred->gid)) && !capable(CAP_SYS_PTRACE);
  2015. rcu_read_unlock();
  2016. return ret;
  2017. }
  2018. static int
  2019. pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
  2020. {
  2021. int ctx_flags;
  2022. /* valid signal */
  2023. ctx_flags = pfx->ctx_flags;
  2024. if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
  2025. /*
  2026. * cannot block in this mode
  2027. */
  2028. if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
  2029. DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
  2030. return -EINVAL;
  2031. }
  2032. } else {
  2033. }
  2034. /* probably more to add here */
  2035. return 0;
  2036. }
  2037. static int
  2038. pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
  2039. unsigned int cpu, pfarg_context_t *arg)
  2040. {
  2041. pfm_buffer_fmt_t *fmt = NULL;
  2042. unsigned long size = 0UL;
  2043. void *uaddr = NULL;
  2044. void *fmt_arg = NULL;
  2045. int ret = 0;
  2046. #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
  2047. /* invoke and lock buffer format, if found */
  2048. fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
  2049. if (fmt == NULL) {
  2050. DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
  2051. return -EINVAL;
  2052. }
  2053. /*
  2054. * buffer argument MUST be contiguous to pfarg_context_t
  2055. */
  2056. if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
  2057. ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
  2058. DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
  2059. if (ret) goto error;
  2060. /* link buffer format and context */
  2061. ctx->ctx_buf_fmt = fmt;
  2062. ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
  2063. /*
  2064. * check if buffer format wants to use perfmon buffer allocation/mapping service
  2065. */
  2066. ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
  2067. if (ret) goto error;
  2068. if (size) {
  2069. /*
  2070. * buffer is always remapped into the caller's address space
  2071. */
  2072. ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
  2073. if (ret) goto error;
  2074. /* keep track of user address of buffer */
  2075. arg->ctx_smpl_vaddr = uaddr;
  2076. }
  2077. ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
  2078. error:
  2079. return ret;
  2080. }
  2081. static void
  2082. pfm_reset_pmu_state(pfm_context_t *ctx)
  2083. {
  2084. int i;
  2085. /*
  2086. * install reset values for PMC.
  2087. */
  2088. for (i=1; PMC_IS_LAST(i) == 0; i++) {
  2089. if (PMC_IS_IMPL(i) == 0) continue;
  2090. ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
  2091. DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
  2092. }
  2093. /*
  2094. * PMD registers are set to 0UL when the context in memset()
  2095. */
  2096. /*
  2097. * On context switched restore, we must restore ALL pmc and ALL pmd even
  2098. * when they are not actively used by the task. In UP, the incoming process
  2099. * may otherwise pick up left over PMC, PMD state from the previous process.
  2100. * As opposed to PMD, stale PMC can cause harm to the incoming
  2101. * process because they may change what is being measured.
  2102. * Therefore, we must systematically reinstall the entire
  2103. * PMC state. In SMP, the same thing is possible on the
  2104. * same CPU but also on between 2 CPUs.
  2105. *
  2106. * The problem with PMD is information leaking especially
  2107. * to user level when psr.sp=0
  2108. *
  2109. * There is unfortunately no easy way to avoid this problem
  2110. * on either UP or SMP. This definitively slows down the
  2111. * pfm_load_regs() function.
  2112. */
  2113. /*
  2114. * bitmask of all PMCs accessible to this context
  2115. *
  2116. * PMC0 is treated differently.
  2117. */
  2118. ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
  2119. /*
  2120. * bitmask of all PMDs that are accessible to this context
  2121. */
  2122. ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
  2123. DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
  2124. /*
  2125. * useful in case of re-enable after disable
  2126. */
  2127. ctx->ctx_used_ibrs[0] = 0UL;
  2128. ctx->ctx_used_dbrs[0] = 0UL;
  2129. }
  2130. static int
  2131. pfm_ctx_getsize(void *arg, size_t *sz)
  2132. {
  2133. pfarg_context_t *req = (pfarg_context_t *)arg;
  2134. pfm_buffer_fmt_t *fmt;
  2135. *sz = 0;
  2136. if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
  2137. fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
  2138. if (fmt == NULL) {
  2139. DPRINT(("cannot find buffer format\n"));
  2140. return -EINVAL;
  2141. }
  2142. /* get just enough to copy in user parameters */
  2143. *sz = fmt->fmt_arg_size;
  2144. DPRINT(("arg_size=%lu\n", *sz));
  2145. return 0;
  2146. }
  2147. /*
  2148. * cannot attach if :
  2149. * - kernel task
  2150. * - task not owned by caller
  2151. * - task incompatible with context mode
  2152. */
  2153. static int
  2154. pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
  2155. {
  2156. /*
  2157. * no kernel task or task not owner by caller
  2158. */
  2159. if (task->mm == NULL) {
  2160. DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
  2161. return -EPERM;
  2162. }
  2163. if (pfm_bad_permissions(task)) {
  2164. DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
  2165. return -EPERM;
  2166. }
  2167. /*
  2168. * cannot block in self-monitoring mode
  2169. */
  2170. if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
  2171. DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
  2172. return -EINVAL;
  2173. }
  2174. if (task->exit_state == EXIT_ZOMBIE) {
  2175. DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
  2176. return -EBUSY;
  2177. }
  2178. /*
  2179. * always ok for self
  2180. */
  2181. if (task == current) return 0;
  2182. if (!task_is_stopped_or_traced(task)) {
  2183. DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
  2184. return -EBUSY;
  2185. }
  2186. /*
  2187. * make sure the task is off any CPU
  2188. */
  2189. wait_task_inactive(task, 0);
  2190. /* more to come... */
  2191. return 0;
  2192. }
  2193. static int
  2194. pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
  2195. {
  2196. struct task_struct *p = current;
  2197. int ret;
  2198. /* XXX: need to add more checks here */
  2199. if (pid < 2) return -EPERM;
  2200. if (pid != task_pid_vnr(current)) {
  2201. read_lock(&tasklist_lock);
  2202. p = find_task_by_vpid(pid);
  2203. /* make sure task cannot go away while we operate on it */
  2204. if (p) get_task_struct(p);
  2205. read_unlock(&tasklist_lock);
  2206. if (p == NULL) return -ESRCH;
  2207. }
  2208. ret = pfm_task_incompatible(ctx, p);
  2209. if (ret == 0) {
  2210. *task = p;
  2211. } else if (p != current) {
  2212. pfm_put_task(p);
  2213. }
  2214. return ret;
  2215. }
  2216. static int
  2217. pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2218. {
  2219. pfarg_context_t *req = (pfarg_context_t *)arg;
  2220. struct file *filp;
  2221. struct path path;
  2222. int ctx_flags;
  2223. int fd;
  2224. int ret;
  2225. /* let's check the arguments first */
  2226. ret = pfarg_is_sane(current, req);
  2227. if (ret < 0)
  2228. return ret;
  2229. ctx_flags = req->ctx_flags;
  2230. ret = -ENOMEM;
  2231. fd = get_unused_fd();
  2232. if (fd < 0)
  2233. return fd;
  2234. ctx = pfm_context_alloc(ctx_flags);
  2235. if (!ctx)
  2236. goto error;
  2237. filp = pfm_alloc_file(ctx);
  2238. if (IS_ERR(filp)) {
  2239. ret = PTR_ERR(filp);
  2240. goto error_file;
  2241. }
  2242. req->ctx_fd = ctx->ctx_fd = fd;
  2243. /*
  2244. * does the user want to sample?
  2245. */
  2246. if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
  2247. ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
  2248. if (ret)
  2249. goto buffer_error;
  2250. }
  2251. DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
  2252. ctx,
  2253. ctx_flags,
  2254. ctx->ctx_fl_system,
  2255. ctx->ctx_fl_block,
  2256. ctx->ctx_fl_excl_idle,
  2257. ctx->ctx_fl_no_msg,
  2258. ctx->ctx_fd));
  2259. /*
  2260. * initialize soft PMU state
  2261. */
  2262. pfm_reset_pmu_state(ctx);
  2263. fd_install(fd, filp);
  2264. return 0;
  2265. buffer_error:
  2266. path = filp->f_path;
  2267. put_filp(filp);
  2268. path_put(&path);
  2269. if (ctx->ctx_buf_fmt) {
  2270. pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
  2271. }
  2272. error_file:
  2273. pfm_context_free(ctx);
  2274. error:
  2275. put_unused_fd(fd);
  2276. return ret;
  2277. }
  2278. static inline unsigned long
  2279. pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
  2280. {
  2281. unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
  2282. unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
  2283. extern unsigned long carta_random32 (unsigned long seed);
  2284. if (reg->flags & PFM_REGFL_RANDOM) {
  2285. new_seed = carta_random32(old_seed);
  2286. val -= (old_seed & mask); /* counter values are negative numbers! */
  2287. if ((mask >> 32) != 0)
  2288. /* construct a full 64-bit random value: */
  2289. new_seed |= carta_random32(old_seed >> 32) << 32;
  2290. reg->seed = new_seed;
  2291. }
  2292. reg->lval = val;
  2293. return val;
  2294. }
  2295. static void
  2296. pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
  2297. {
  2298. unsigned long mask = ovfl_regs[0];
  2299. unsigned long reset_others = 0UL;
  2300. unsigned long val;
  2301. int i;
  2302. /*
  2303. * now restore reset value on sampling overflowed counters
  2304. */
  2305. mask >>= PMU_FIRST_COUNTER;
  2306. for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
  2307. if ((mask & 0x1UL) == 0UL) continue;
  2308. ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
  2309. reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
  2310. DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
  2311. }
  2312. /*
  2313. * Now take care of resetting the other registers
  2314. */
  2315. for(i = 0; reset_others; i++, reset_others >>= 1) {
  2316. if ((reset_others & 0x1) == 0) continue;
  2317. ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
  2318. DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
  2319. is_long_reset ? "long" : "short", i, val));
  2320. }
  2321. }
  2322. static void
  2323. pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
  2324. {
  2325. unsigned long mask = ovfl_regs[0];
  2326. unsigned long reset_others = 0UL;
  2327. unsigned long val;
  2328. int i;
  2329. DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
  2330. if (ctx->ctx_state == PFM_CTX_MASKED) {
  2331. pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
  2332. return;
  2333. }
  2334. /*
  2335. * now restore reset value on sampling overflowed counters
  2336. */
  2337. mask >>= PMU_FIRST_COUNTER;
  2338. for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
  2339. if ((mask & 0x1UL) == 0UL) continue;
  2340. val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
  2341. reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
  2342. DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
  2343. pfm_write_soft_counter(ctx, i, val);
  2344. }
  2345. /*
  2346. * Now take care of resetting the other registers
  2347. */
  2348. for(i = 0; reset_others; i++, reset_others >>= 1) {
  2349. if ((reset_others & 0x1) == 0) continue;
  2350. val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
  2351. if (PMD_IS_COUNTING(i)) {
  2352. pfm_write_soft_counter(ctx, i, val);
  2353. } else {
  2354. ia64_set_pmd(i, val);
  2355. }
  2356. DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
  2357. is_long_reset ? "long" : "short", i, val));
  2358. }
  2359. ia64_srlz_d();
  2360. }
  2361. static int
  2362. pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2363. {
  2364. struct task_struct *task;
  2365. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  2366. unsigned long value, pmc_pm;
  2367. unsigned long smpl_pmds, reset_pmds, impl_pmds;
  2368. unsigned int cnum, reg_flags, flags, pmc_type;
  2369. int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
  2370. int is_monitor, is_counting, state;
  2371. int ret = -EINVAL;
  2372. pfm_reg_check_t wr_func;
  2373. #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
  2374. state = ctx->ctx_state;
  2375. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  2376. is_system = ctx->ctx_fl_system;
  2377. task = ctx->ctx_task;
  2378. impl_pmds = pmu_conf->impl_pmds[0];
  2379. if (state == PFM_CTX_ZOMBIE) return -EINVAL;
  2380. if (is_loaded) {
  2381. /*
  2382. * In system wide and when the context is loaded, access can only happen
  2383. * when the caller is running on the CPU being monitored by the session.
  2384. * It does not have to be the owner (ctx_task) of the context per se.
  2385. */
  2386. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  2387. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  2388. return -EBUSY;
  2389. }
  2390. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  2391. }
  2392. expert_mode = pfm_sysctl.expert_mode;
  2393. for (i = 0; i < count; i++, req++) {
  2394. cnum = req->reg_num;
  2395. reg_flags = req->reg_flags;
  2396. value = req->reg_value;
  2397. smpl_pmds = req->reg_smpl_pmds[0];
  2398. reset_pmds = req->reg_reset_pmds[0];
  2399. flags = 0;
  2400. if (cnum >= PMU_MAX_PMCS) {
  2401. DPRINT(("pmc%u is invalid\n", cnum));
  2402. goto error;
  2403. }
  2404. pmc_type = pmu_conf->pmc_desc[cnum].type;
  2405. pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
  2406. is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
  2407. is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
  2408. /*
  2409. * we reject all non implemented PMC as well
  2410. * as attempts to modify PMC[0-3] which are used
  2411. * as status registers by the PMU
  2412. */
  2413. if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
  2414. DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
  2415. goto error;
  2416. }
  2417. wr_func = pmu_conf->pmc_desc[cnum].write_check;
  2418. /*
  2419. * If the PMC is a monitor, then if the value is not the default:
  2420. * - system-wide session: PMCx.pm=1 (privileged monitor)
  2421. * - per-task : PMCx.pm=0 (user monitor)
  2422. */
  2423. if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
  2424. DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
  2425. cnum,
  2426. pmc_pm,
  2427. is_system));
  2428. goto error;
  2429. }
  2430. if (is_counting) {
  2431. /*
  2432. * enforce generation of overflow interrupt. Necessary on all
  2433. * CPUs.
  2434. */
  2435. value |= 1 << PMU_PMC_OI;
  2436. if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
  2437. flags |= PFM_REGFL_OVFL_NOTIFY;
  2438. }
  2439. if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
  2440. /* verify validity of smpl_pmds */
  2441. if ((smpl_pmds & impl_pmds) != smpl_pmds) {
  2442. DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
  2443. goto error;
  2444. }
  2445. /* verify validity of reset_pmds */
  2446. if ((reset_pmds & impl_pmds) != reset_pmds) {
  2447. DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
  2448. goto error;
  2449. }
  2450. } else {
  2451. if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
  2452. DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
  2453. goto error;
  2454. }
  2455. /* eventid on non-counting monitors are ignored */
  2456. }
  2457. /*
  2458. * execute write checker, if any
  2459. */
  2460. if (likely(expert_mode == 0 && wr_func)) {
  2461. ret = (*wr_func)(task, ctx, cnum, &value, regs);
  2462. if (ret) goto error;
  2463. ret = -EINVAL;
  2464. }
  2465. /*
  2466. * no error on this register
  2467. */
  2468. PFM_REG_RETFLAG_SET(req->reg_flags, 0);
  2469. /*
  2470. * Now we commit the changes to the software state
  2471. */
  2472. /*
  2473. * update overflow information
  2474. */
  2475. if (is_counting) {
  2476. /*
  2477. * full flag update each time a register is programmed
  2478. */
  2479. ctx->ctx_pmds[cnum].flags = flags;
  2480. ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
  2481. ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
  2482. ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
  2483. /*
  2484. * Mark all PMDS to be accessed as used.
  2485. *
  2486. * We do not keep track of PMC because we have to
  2487. * systematically restore ALL of them.
  2488. *
  2489. * We do not update the used_monitors mask, because
  2490. * if we have not programmed them, then will be in
  2491. * a quiescent state, therefore we will not need to
  2492. * mask/restore then when context is MASKED.
  2493. */
  2494. CTX_USED_PMD(ctx, reset_pmds);
  2495. CTX_USED_PMD(ctx, smpl_pmds);
  2496. /*
  2497. * make sure we do not try to reset on
  2498. * restart because we have established new values
  2499. */
  2500. if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
  2501. }
  2502. /*
  2503. * Needed in case the user does not initialize the equivalent
  2504. * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
  2505. * possible leak here.
  2506. */
  2507. CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
  2508. /*
  2509. * keep track of the monitor PMC that we are using.
  2510. * we save the value of the pmc in ctx_pmcs[] and if
  2511. * the monitoring is not stopped for the context we also
  2512. * place it in the saved state area so that it will be
  2513. * picked up later by the context switch code.
  2514. *
  2515. * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
  2516. *
  2517. * The value in th_pmcs[] may be modified on overflow, i.e., when
  2518. * monitoring needs to be stopped.
  2519. */
  2520. if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
  2521. /*
  2522. * update context state
  2523. */
  2524. ctx->ctx_pmcs[cnum] = value;
  2525. if (is_loaded) {
  2526. /*
  2527. * write thread state
  2528. */
  2529. if (is_system == 0) ctx->th_pmcs[cnum] = value;
  2530. /*
  2531. * write hardware register if we can
  2532. */
  2533. if (can_access_pmu) {
  2534. ia64_set_pmc(cnum, value);
  2535. }
  2536. #ifdef CONFIG_SMP
  2537. else {
  2538. /*
  2539. * per-task SMP only here
  2540. *
  2541. * we are guaranteed that the task is not running on the other CPU,
  2542. * we indicate that this PMD will need to be reloaded if the task
  2543. * is rescheduled on the CPU it ran last on.
  2544. */
  2545. ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
  2546. }
  2547. #endif
  2548. }
  2549. DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
  2550. cnum,
  2551. value,
  2552. is_loaded,
  2553. can_access_pmu,
  2554. flags,
  2555. ctx->ctx_all_pmcs[0],
  2556. ctx->ctx_used_pmds[0],
  2557. ctx->ctx_pmds[cnum].eventid,
  2558. smpl_pmds,
  2559. reset_pmds,
  2560. ctx->ctx_reload_pmcs[0],
  2561. ctx->ctx_used_monitors[0],
  2562. ctx->ctx_ovfl_regs[0]));
  2563. }
  2564. /*
  2565. * make sure the changes are visible
  2566. */
  2567. if (can_access_pmu) ia64_srlz_d();
  2568. return 0;
  2569. error:
  2570. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  2571. return ret;
  2572. }
  2573. static int
  2574. pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2575. {
  2576. struct task_struct *task;
  2577. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  2578. unsigned long value, hw_value, ovfl_mask;
  2579. unsigned int cnum;
  2580. int i, can_access_pmu = 0, state;
  2581. int is_counting, is_loaded, is_system, expert_mode;
  2582. int ret = -EINVAL;
  2583. pfm_reg_check_t wr_func;
  2584. state = ctx->ctx_state;
  2585. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  2586. is_system = ctx->ctx_fl_system;
  2587. ovfl_mask = pmu_conf->ovfl_val;
  2588. task = ctx->ctx_task;
  2589. if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
  2590. /*
  2591. * on both UP and SMP, we can only write to the PMC when the task is
  2592. * the owner of the local PMU.
  2593. */
  2594. if (likely(is_loaded)) {
  2595. /*
  2596. * In system wide and when the context is loaded, access can only happen
  2597. * when the caller is running on the CPU being monitored by the session.
  2598. * It does not have to be the owner (ctx_task) of the context per se.
  2599. */
  2600. if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
  2601. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  2602. return -EBUSY;
  2603. }
  2604. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  2605. }
  2606. expert_mode = pfm_sysctl.expert_mode;
  2607. for (i = 0; i < count; i++, req++) {
  2608. cnum = req->reg_num;
  2609. value = req->reg_value;
  2610. if (!PMD_IS_IMPL(cnum)) {
  2611. DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
  2612. goto abort_mission;
  2613. }
  2614. is_counting = PMD_IS_COUNTING(cnum);
  2615. wr_func = pmu_conf->pmd_desc[cnum].write_check;
  2616. /*
  2617. * execute write checker, if any
  2618. */
  2619. if (unlikely(expert_mode == 0 && wr_func)) {
  2620. unsigned long v = value;
  2621. ret = (*wr_func)(task, ctx, cnum, &v, regs);
  2622. if (ret) goto abort_mission;
  2623. value = v;
  2624. ret = -EINVAL;
  2625. }
  2626. /*
  2627. * no error on this register
  2628. */
  2629. PFM_REG_RETFLAG_SET(req->reg_flags, 0);
  2630. /*
  2631. * now commit changes to software state
  2632. */
  2633. hw_value = value;
  2634. /*
  2635. * update virtualized (64bits) counter
  2636. */
  2637. if (is_counting) {
  2638. /*
  2639. * write context state
  2640. */
  2641. ctx->ctx_pmds[cnum].lval = value;
  2642. /*
  2643. * when context is load we use the split value
  2644. */
  2645. if (is_loaded) {
  2646. hw_value = value & ovfl_mask;
  2647. value = value & ~ovfl_mask;
  2648. }
  2649. }
  2650. /*
  2651. * update reset values (not just for counters)
  2652. */
  2653. ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
  2654. ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
  2655. /*
  2656. * update randomization parameters (not just for counters)
  2657. */
  2658. ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
  2659. ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
  2660. /*
  2661. * update context value
  2662. */
  2663. ctx->ctx_pmds[cnum].val = value;
  2664. /*
  2665. * Keep track of what we use
  2666. *
  2667. * We do not keep track of PMC because we have to
  2668. * systematically restore ALL of them.
  2669. */
  2670. CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
  2671. /*
  2672. * mark this PMD register used as well
  2673. */
  2674. CTX_USED_PMD(ctx, RDEP(cnum));
  2675. /*
  2676. * make sure we do not try to reset on
  2677. * restart because we have established new values
  2678. */
  2679. if (is_counting && state == PFM_CTX_MASKED) {
  2680. ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
  2681. }
  2682. if (is_loaded) {
  2683. /*
  2684. * write thread state
  2685. */
  2686. if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
  2687. /*
  2688. * write hardware register if we can
  2689. */
  2690. if (can_access_pmu) {
  2691. ia64_set_pmd(cnum, hw_value);
  2692. } else {
  2693. #ifdef CONFIG_SMP
  2694. /*
  2695. * we are guaranteed that the task is not running on the other CPU,
  2696. * we indicate that this PMD will need to be reloaded if the task
  2697. * is rescheduled on the CPU it ran last on.
  2698. */
  2699. ctx->ctx_reload_pmds[0] |= 1UL << cnum;
  2700. #endif
  2701. }
  2702. }
  2703. DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
  2704. "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
  2705. cnum,
  2706. value,
  2707. is_loaded,
  2708. can_access_pmu,
  2709. hw_value,
  2710. ctx->ctx_pmds[cnum].val,
  2711. ctx->ctx_pmds[cnum].short_reset,
  2712. ctx->ctx_pmds[cnum].long_reset,
  2713. PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
  2714. ctx->ctx_pmds[cnum].seed,
  2715. ctx->ctx_pmds[cnum].mask,
  2716. ctx->ctx_used_pmds[0],
  2717. ctx->ctx_pmds[cnum].reset_pmds[0],
  2718. ctx->ctx_reload_pmds[0],
  2719. ctx->ctx_all_pmds[0],
  2720. ctx->ctx_ovfl_regs[0]));
  2721. }
  2722. /*
  2723. * make changes visible
  2724. */
  2725. if (can_access_pmu) ia64_srlz_d();
  2726. return 0;
  2727. abort_mission:
  2728. /*
  2729. * for now, we have only one possibility for error
  2730. */
  2731. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  2732. return ret;
  2733. }
  2734. /*
  2735. * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
  2736. * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
  2737. * interrupt is delivered during the call, it will be kept pending until we leave, making
  2738. * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
  2739. * guaranteed to return consistent data to the user, it may simply be old. It is not
  2740. * trivial to treat the overflow while inside the call because you may end up in
  2741. * some module sampling buffer code causing deadlocks.
  2742. */
  2743. static int
  2744. pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2745. {
  2746. struct task_struct *task;
  2747. unsigned long val = 0UL, lval, ovfl_mask, sval;
  2748. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  2749. unsigned int cnum, reg_flags = 0;
  2750. int i, can_access_pmu = 0, state;
  2751. int is_loaded, is_system, is_counting, expert_mode;
  2752. int ret = -EINVAL;
  2753. pfm_reg_check_t rd_func;
  2754. /*
  2755. * access is possible when loaded only for
  2756. * self-monitoring tasks or in UP mode
  2757. */
  2758. state = ctx->ctx_state;
  2759. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  2760. is_system = ctx->ctx_fl_system;
  2761. ovfl_mask = pmu_conf->ovfl_val;
  2762. task = ctx->ctx_task;
  2763. if (state == PFM_CTX_ZOMBIE) return -EINVAL;
  2764. if (likely(is_loaded)) {
  2765. /*
  2766. * In system wide and when the context is loaded, access can only happen
  2767. * when the caller is running on the CPU being monitored by the session.
  2768. * It does not have to be the owner (ctx_task) of the context per se.
  2769. */
  2770. if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
  2771. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  2772. return -EBUSY;
  2773. }
  2774. /*
  2775. * this can be true when not self-monitoring only in UP
  2776. */
  2777. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  2778. if (can_access_pmu) ia64_srlz_d();
  2779. }
  2780. expert_mode = pfm_sysctl.expert_mode;
  2781. DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
  2782. is_loaded,
  2783. can_access_pmu,
  2784. state));
  2785. /*
  2786. * on both UP and SMP, we can only read the PMD from the hardware register when
  2787. * the task is the owner of the local PMU.
  2788. */
  2789. for (i = 0; i < count; i++, req++) {
  2790. cnum = req->reg_num;
  2791. reg_flags = req->reg_flags;
  2792. if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
  2793. /*
  2794. * we can only read the register that we use. That includes
  2795. * the one we explicitly initialize AND the one we want included
  2796. * in the sampling buffer (smpl_regs).
  2797. *
  2798. * Having this restriction allows optimization in the ctxsw routine
  2799. * without compromising security (leaks)
  2800. */
  2801. if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
  2802. sval = ctx->ctx_pmds[cnum].val;
  2803. lval = ctx->ctx_pmds[cnum].lval;
  2804. is_counting = PMD_IS_COUNTING(cnum);
  2805. /*
  2806. * If the task is not the current one, then we check if the
  2807. * PMU state is still in the local live register due to lazy ctxsw.
  2808. * If true, then we read directly from the registers.
  2809. */
  2810. if (can_access_pmu){
  2811. val = ia64_get_pmd(cnum);
  2812. } else {
  2813. /*
  2814. * context has been saved
  2815. * if context is zombie, then task does not exist anymore.
  2816. * In this case, we use the full value saved in the context (pfm_flush_regs()).
  2817. */
  2818. val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
  2819. }
  2820. rd_func = pmu_conf->pmd_desc[cnum].read_check;
  2821. if (is_counting) {
  2822. /*
  2823. * XXX: need to check for overflow when loaded
  2824. */
  2825. val &= ovfl_mask;
  2826. val += sval;
  2827. }
  2828. /*
  2829. * execute read checker, if any
  2830. */
  2831. if (unlikely(expert_mode == 0 && rd_func)) {
  2832. unsigned long v = val;
  2833. ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
  2834. if (ret) goto error;
  2835. val = v;
  2836. ret = -EINVAL;
  2837. }
  2838. PFM_REG_RETFLAG_SET(reg_flags, 0);
  2839. DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
  2840. /*
  2841. * update register return value, abort all if problem during copy.
  2842. * we only modify the reg_flags field. no check mode is fine because
  2843. * access has been verified upfront in sys_perfmonctl().
  2844. */
  2845. req->reg_value = val;
  2846. req->reg_flags = reg_flags;
  2847. req->reg_last_reset_val = lval;
  2848. }
  2849. return 0;
  2850. error:
  2851. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  2852. return ret;
  2853. }
  2854. int
  2855. pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  2856. {
  2857. pfm_context_t *ctx;
  2858. if (req == NULL) return -EINVAL;
  2859. ctx = GET_PMU_CTX();
  2860. if (ctx == NULL) return -EINVAL;
  2861. /*
  2862. * for now limit to current task, which is enough when calling
  2863. * from overflow handler
  2864. */
  2865. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  2866. return pfm_write_pmcs(ctx, req, nreq, regs);
  2867. }
  2868. EXPORT_SYMBOL(pfm_mod_write_pmcs);
  2869. int
  2870. pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  2871. {
  2872. pfm_context_t *ctx;
  2873. if (req == NULL) return -EINVAL;
  2874. ctx = GET_PMU_CTX();
  2875. if (ctx == NULL) return -EINVAL;
  2876. /*
  2877. * for now limit to current task, which is enough when calling
  2878. * from overflow handler
  2879. */
  2880. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  2881. return pfm_read_pmds(ctx, req, nreq, regs);
  2882. }
  2883. EXPORT_SYMBOL(pfm_mod_read_pmds);
  2884. /*
  2885. * Only call this function when a process it trying to
  2886. * write the debug registers (reading is always allowed)
  2887. */
  2888. int
  2889. pfm_use_debug_registers(struct task_struct *task)
  2890. {
  2891. pfm_context_t *ctx = task->thread.pfm_context;
  2892. unsigned long flags;
  2893. int ret = 0;
  2894. if (pmu_conf->use_rr_dbregs == 0) return 0;
  2895. DPRINT(("called for [%d]\n", task_pid_nr(task)));
  2896. /*
  2897. * do it only once
  2898. */
  2899. if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
  2900. /*
  2901. * Even on SMP, we do not need to use an atomic here because
  2902. * the only way in is via ptrace() and this is possible only when the
  2903. * process is stopped. Even in the case where the ctxsw out is not totally
  2904. * completed by the time we come here, there is no way the 'stopped' process
  2905. * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
  2906. * So this is always safe.
  2907. */
  2908. if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
  2909. LOCK_PFS(flags);
  2910. /*
  2911. * We cannot allow setting breakpoints when system wide monitoring
  2912. * sessions are using the debug registers.
  2913. */
  2914. if (pfm_sessions.pfs_sys_use_dbregs> 0)
  2915. ret = -1;
  2916. else
  2917. pfm_sessions.pfs_ptrace_use_dbregs++;
  2918. DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
  2919. pfm_sessions.pfs_ptrace_use_dbregs,
  2920. pfm_sessions.pfs_sys_use_dbregs,
  2921. task_pid_nr(task), ret));
  2922. UNLOCK_PFS(flags);
  2923. return ret;
  2924. }
  2925. /*
  2926. * This function is called for every task that exits with the
  2927. * IA64_THREAD_DBG_VALID set. This indicates a task which was
  2928. * able to use the debug registers for debugging purposes via
  2929. * ptrace(). Therefore we know it was not using them for
  2930. * performance monitoring, so we only decrement the number
  2931. * of "ptraced" debug register users to keep the count up to date
  2932. */
  2933. int
  2934. pfm_release_debug_registers(struct task_struct *task)
  2935. {
  2936. unsigned long flags;
  2937. int ret;
  2938. if (pmu_conf->use_rr_dbregs == 0) return 0;
  2939. LOCK_PFS(flags);
  2940. if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
  2941. printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
  2942. ret = -1;
  2943. } else {
  2944. pfm_sessions.pfs_ptrace_use_dbregs--;
  2945. ret = 0;
  2946. }
  2947. UNLOCK_PFS(flags);
  2948. return ret;
  2949. }
  2950. static int
  2951. pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2952. {
  2953. struct task_struct *task;
  2954. pfm_buffer_fmt_t *fmt;
  2955. pfm_ovfl_ctrl_t rst_ctrl;
  2956. int state, is_system;
  2957. int ret = 0;
  2958. state = ctx->ctx_state;
  2959. fmt = ctx->ctx_buf_fmt;
  2960. is_system = ctx->ctx_fl_system;
  2961. task = PFM_CTX_TASK(ctx);
  2962. switch(state) {
  2963. case PFM_CTX_MASKED:
  2964. break;
  2965. case PFM_CTX_LOADED:
  2966. if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
  2967. /* fall through */
  2968. case PFM_CTX_UNLOADED:
  2969. case PFM_CTX_ZOMBIE:
  2970. DPRINT(("invalid state=%d\n", state));
  2971. return -EBUSY;
  2972. default:
  2973. DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
  2974. return -EINVAL;
  2975. }
  2976. /*
  2977. * In system wide and when the context is loaded, access can only happen
  2978. * when the caller is running on the CPU being monitored by the session.
  2979. * It does not have to be the owner (ctx_task) of the context per se.
  2980. */
  2981. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  2982. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  2983. return -EBUSY;
  2984. }
  2985. /* sanity check */
  2986. if (unlikely(task == NULL)) {
  2987. printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
  2988. return -EINVAL;
  2989. }
  2990. if (task == current || is_system) {
  2991. fmt = ctx->ctx_buf_fmt;
  2992. DPRINT(("restarting self %d ovfl=0x%lx\n",
  2993. task_pid_nr(task),
  2994. ctx->ctx_ovfl_regs[0]));
  2995. if (CTX_HAS_SMPL(ctx)) {
  2996. prefetch(ctx->ctx_smpl_hdr);
  2997. rst_ctrl.bits.mask_monitoring = 0;
  2998. rst_ctrl.bits.reset_ovfl_pmds = 0;
  2999. if (state == PFM_CTX_LOADED)
  3000. ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  3001. else
  3002. ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  3003. } else {
  3004. rst_ctrl.bits.mask_monitoring = 0;
  3005. rst_ctrl.bits.reset_ovfl_pmds = 1;
  3006. }
  3007. if (ret == 0) {
  3008. if (rst_ctrl.bits.reset_ovfl_pmds)
  3009. pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
  3010. if (rst_ctrl.bits.mask_monitoring == 0) {
  3011. DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
  3012. if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
  3013. } else {
  3014. DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
  3015. // cannot use pfm_stop_monitoring(task, regs);
  3016. }
  3017. }
  3018. /*
  3019. * clear overflowed PMD mask to remove any stale information
  3020. */
  3021. ctx->ctx_ovfl_regs[0] = 0UL;
  3022. /*
  3023. * back to LOADED state
  3024. */
  3025. ctx->ctx_state = PFM_CTX_LOADED;
  3026. /*
  3027. * XXX: not really useful for self monitoring
  3028. */
  3029. ctx->ctx_fl_can_restart = 0;
  3030. return 0;
  3031. }
  3032. /*
  3033. * restart another task
  3034. */
  3035. /*
  3036. * When PFM_CTX_MASKED, we cannot issue a restart before the previous
  3037. * one is seen by the task.
  3038. */
  3039. if (state == PFM_CTX_MASKED) {
  3040. if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
  3041. /*
  3042. * will prevent subsequent restart before this one is
  3043. * seen by other task
  3044. */
  3045. ctx->ctx_fl_can_restart = 0;
  3046. }
  3047. /*
  3048. * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
  3049. * the task is blocked or on its way to block. That's the normal
  3050. * restart path. If the monitoring is not masked, then the task
  3051. * can be actively monitoring and we cannot directly intervene.
  3052. * Therefore we use the trap mechanism to catch the task and
  3053. * force it to reset the buffer/reset PMDs.
  3054. *
  3055. * if non-blocking, then we ensure that the task will go into
  3056. * pfm_handle_work() before returning to user mode.
  3057. *
  3058. * We cannot explicitly reset another task, it MUST always
  3059. * be done by the task itself. This works for system wide because
  3060. * the tool that is controlling the session is logically doing
  3061. * "self-monitoring".
  3062. */
  3063. if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
  3064. DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
  3065. complete(&ctx->ctx_restart_done);
  3066. } else {
  3067. DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
  3068. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
  3069. PFM_SET_WORK_PENDING(task, 1);
  3070. set_notify_resume(task);
  3071. /*
  3072. * XXX: send reschedule if task runs on another CPU
  3073. */
  3074. }
  3075. return 0;
  3076. }
  3077. static int
  3078. pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3079. {
  3080. unsigned int m = *(unsigned int *)arg;
  3081. pfm_sysctl.debug = m == 0 ? 0 : 1;
  3082. printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
  3083. if (m == 0) {
  3084. memset(pfm_stats, 0, sizeof(pfm_stats));
  3085. for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
  3086. }
  3087. return 0;
  3088. }
  3089. /*
  3090. * arg can be NULL and count can be zero for this function
  3091. */
  3092. static int
  3093. pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3094. {
  3095. struct thread_struct *thread = NULL;
  3096. struct task_struct *task;
  3097. pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
  3098. unsigned long flags;
  3099. dbreg_t dbreg;
  3100. unsigned int rnum;
  3101. int first_time;
  3102. int ret = 0, state;
  3103. int i, can_access_pmu = 0;
  3104. int is_system, is_loaded;
  3105. if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
  3106. state = ctx->ctx_state;
  3107. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  3108. is_system = ctx->ctx_fl_system;
  3109. task = ctx->ctx_task;
  3110. if (state == PFM_CTX_ZOMBIE) return -EINVAL;
  3111. /*
  3112. * on both UP and SMP, we can only write to the PMC when the task is
  3113. * the owner of the local PMU.
  3114. */
  3115. if (is_loaded) {
  3116. thread = &task->thread;
  3117. /*
  3118. * In system wide and when the context is loaded, access can only happen
  3119. * when the caller is running on the CPU being monitored by the session.
  3120. * It does not have to be the owner (ctx_task) of the context per se.
  3121. */
  3122. if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
  3123. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  3124. return -EBUSY;
  3125. }
  3126. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  3127. }
  3128. /*
  3129. * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
  3130. * ensuring that no real breakpoint can be installed via this call.
  3131. *
  3132. * IMPORTANT: regs can be NULL in this function
  3133. */
  3134. first_time = ctx->ctx_fl_using_dbreg == 0;
  3135. /*
  3136. * don't bother if we are loaded and task is being debugged
  3137. */
  3138. if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
  3139. DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
  3140. return -EBUSY;
  3141. }
  3142. /*
  3143. * check for debug registers in system wide mode
  3144. *
  3145. * If though a check is done in pfm_context_load(),
  3146. * we must repeat it here, in case the registers are
  3147. * written after the context is loaded
  3148. */
  3149. if (is_loaded) {
  3150. LOCK_PFS(flags);
  3151. if (first_time && is_system) {
  3152. if (pfm_sessions.pfs_ptrace_use_dbregs)
  3153. ret = -EBUSY;
  3154. else
  3155. pfm_sessions.pfs_sys_use_dbregs++;
  3156. }
  3157. UNLOCK_PFS(flags);
  3158. }
  3159. if (ret != 0) return ret;
  3160. /*
  3161. * mark ourself as user of the debug registers for
  3162. * perfmon purposes.
  3163. */
  3164. ctx->ctx_fl_using_dbreg = 1;
  3165. /*
  3166. * clear hardware registers to make sure we don't
  3167. * pick up stale state.
  3168. *
  3169. * for a system wide session, we do not use
  3170. * thread.dbr, thread.ibr because this process
  3171. * never leaves the current CPU and the state
  3172. * is shared by all processes running on it
  3173. */
  3174. if (first_time && can_access_pmu) {
  3175. DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
  3176. for (i=0; i < pmu_conf->num_ibrs; i++) {
  3177. ia64_set_ibr(i, 0UL);
  3178. ia64_dv_serialize_instruction();
  3179. }
  3180. ia64_srlz_i();
  3181. for (i=0; i < pmu_conf->num_dbrs; i++) {
  3182. ia64_set_dbr(i, 0UL);
  3183. ia64_dv_serialize_data();
  3184. }
  3185. ia64_srlz_d();
  3186. }
  3187. /*
  3188. * Now install the values into the registers
  3189. */
  3190. for (i = 0; i < count; i++, req++) {
  3191. rnum = req->dbreg_num;
  3192. dbreg.val = req->dbreg_value;
  3193. ret = -EINVAL;
  3194. if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
  3195. DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
  3196. rnum, dbreg.val, mode, i, count));
  3197. goto abort_mission;
  3198. }
  3199. /*
  3200. * make sure we do not install enabled breakpoint
  3201. */
  3202. if (rnum & 0x1) {
  3203. if (mode == PFM_CODE_RR)
  3204. dbreg.ibr.ibr_x = 0;
  3205. else
  3206. dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
  3207. }
  3208. PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
  3209. /*
  3210. * Debug registers, just like PMC, can only be modified
  3211. * by a kernel call. Moreover, perfmon() access to those
  3212. * registers are centralized in this routine. The hardware
  3213. * does not modify the value of these registers, therefore,
  3214. * if we save them as they are written, we can avoid having
  3215. * to save them on context switch out. This is made possible
  3216. * by the fact that when perfmon uses debug registers, ptrace()
  3217. * won't be able to modify them concurrently.
  3218. */
  3219. if (mode == PFM_CODE_RR) {
  3220. CTX_USED_IBR(ctx, rnum);
  3221. if (can_access_pmu) {
  3222. ia64_set_ibr(rnum, dbreg.val);
  3223. ia64_dv_serialize_instruction();
  3224. }
  3225. ctx->ctx_ibrs[rnum] = dbreg.val;
  3226. DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
  3227. rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
  3228. } else {
  3229. CTX_USED_DBR(ctx, rnum);
  3230. if (can_access_pmu) {
  3231. ia64_set_dbr(rnum, dbreg.val);
  3232. ia64_dv_serialize_data();
  3233. }
  3234. ctx->ctx_dbrs[rnum] = dbreg.val;
  3235. DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
  3236. rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
  3237. }
  3238. }
  3239. return 0;
  3240. abort_mission:
  3241. /*
  3242. * in case it was our first attempt, we undo the global modifications
  3243. */
  3244. if (first_time) {
  3245. LOCK_PFS(flags);
  3246. if (ctx->ctx_fl_system) {
  3247. pfm_sessions.pfs_sys_use_dbregs--;
  3248. }
  3249. UNLOCK_PFS(flags);
  3250. ctx->ctx_fl_using_dbreg = 0;
  3251. }
  3252. /*
  3253. * install error return flag
  3254. */
  3255. PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
  3256. return ret;
  3257. }
  3258. static int
  3259. pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3260. {
  3261. return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
  3262. }
  3263. static int
  3264. pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3265. {
  3266. return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
  3267. }
  3268. int
  3269. pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  3270. {
  3271. pfm_context_t *ctx;
  3272. if (req == NULL) return -EINVAL;
  3273. ctx = GET_PMU_CTX();
  3274. if (ctx == NULL) return -EINVAL;
  3275. /*
  3276. * for now limit to current task, which is enough when calling
  3277. * from overflow handler
  3278. */
  3279. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  3280. return pfm_write_ibrs(ctx, req, nreq, regs);
  3281. }
  3282. EXPORT_SYMBOL(pfm_mod_write_ibrs);
  3283. int
  3284. pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  3285. {
  3286. pfm_context_t *ctx;
  3287. if (req == NULL) return -EINVAL;
  3288. ctx = GET_PMU_CTX();
  3289. if (ctx == NULL) return -EINVAL;
  3290. /*
  3291. * for now limit to current task, which is enough when calling
  3292. * from overflow handler
  3293. */
  3294. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  3295. return pfm_write_dbrs(ctx, req, nreq, regs);
  3296. }
  3297. EXPORT_SYMBOL(pfm_mod_write_dbrs);
  3298. static int
  3299. pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3300. {
  3301. pfarg_features_t *req = (pfarg_features_t *)arg;
  3302. req->ft_version = PFM_VERSION;
  3303. return 0;
  3304. }
  3305. static int
  3306. pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3307. {
  3308. struct pt_regs *tregs;
  3309. struct task_struct *task = PFM_CTX_TASK(ctx);
  3310. int state, is_system;
  3311. state = ctx->ctx_state;
  3312. is_system = ctx->ctx_fl_system;
  3313. /*
  3314. * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
  3315. */
  3316. if (state == PFM_CTX_UNLOADED) return -EINVAL;
  3317. /*
  3318. * In system wide and when the context is loaded, access can only happen
  3319. * when the caller is running on the CPU being monitored by the session.
  3320. * It does not have to be the owner (ctx_task) of the context per se.
  3321. */
  3322. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  3323. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  3324. return -EBUSY;
  3325. }
  3326. DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
  3327. task_pid_nr(PFM_CTX_TASK(ctx)),
  3328. state,
  3329. is_system));
  3330. /*
  3331. * in system mode, we need to update the PMU directly
  3332. * and the user level state of the caller, which may not
  3333. * necessarily be the creator of the context.
  3334. */
  3335. if (is_system) {
  3336. /*
  3337. * Update local PMU first
  3338. *
  3339. * disable dcr pp
  3340. */
  3341. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
  3342. ia64_srlz_i();
  3343. /*
  3344. * update local cpuinfo
  3345. */
  3346. PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
  3347. /*
  3348. * stop monitoring, does srlz.i
  3349. */
  3350. pfm_clear_psr_pp();
  3351. /*
  3352. * stop monitoring in the caller
  3353. */
  3354. ia64_psr(regs)->pp = 0;
  3355. return 0;
  3356. }
  3357. /*
  3358. * per-task mode
  3359. */
  3360. if (task == current) {
  3361. /* stop monitoring at kernel level */
  3362. pfm_clear_psr_up();
  3363. /*
  3364. * stop monitoring at the user level
  3365. */
  3366. ia64_psr(regs)->up = 0;
  3367. } else {
  3368. tregs = task_pt_regs(task);
  3369. /*
  3370. * stop monitoring at the user level
  3371. */
  3372. ia64_psr(tregs)->up = 0;
  3373. /*
  3374. * monitoring disabled in kernel at next reschedule
  3375. */
  3376. ctx->ctx_saved_psr_up = 0;
  3377. DPRINT(("task=[%d]\n", task_pid_nr(task)));
  3378. }
  3379. return 0;
  3380. }
  3381. static int
  3382. pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3383. {
  3384. struct pt_regs *tregs;
  3385. int state, is_system;
  3386. state = ctx->ctx_state;
  3387. is_system = ctx->ctx_fl_system;
  3388. if (state != PFM_CTX_LOADED) return -EINVAL;
  3389. /*
  3390. * In system wide and when the context is loaded, access can only happen
  3391. * when the caller is running on the CPU being monitored by the session.
  3392. * It does not have to be the owner (ctx_task) of the context per se.
  3393. */
  3394. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  3395. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  3396. return -EBUSY;
  3397. }
  3398. /*
  3399. * in system mode, we need to update the PMU directly
  3400. * and the user level state of the caller, which may not
  3401. * necessarily be the creator of the context.
  3402. */
  3403. if (is_system) {
  3404. /*
  3405. * set user level psr.pp for the caller
  3406. */
  3407. ia64_psr(regs)->pp = 1;
  3408. /*
  3409. * now update the local PMU and cpuinfo
  3410. */
  3411. PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
  3412. /*
  3413. * start monitoring at kernel level
  3414. */
  3415. pfm_set_psr_pp();
  3416. /* enable dcr pp */
  3417. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
  3418. ia64_srlz_i();
  3419. return 0;
  3420. }
  3421. /*
  3422. * per-process mode
  3423. */
  3424. if (ctx->ctx_task == current) {
  3425. /* start monitoring at kernel level */
  3426. pfm_set_psr_up();
  3427. /*
  3428. * activate monitoring at user level
  3429. */
  3430. ia64_psr(regs)->up = 1;
  3431. } else {
  3432. tregs = task_pt_regs(ctx->ctx_task);
  3433. /*
  3434. * start monitoring at the kernel level the next
  3435. * time the task is scheduled
  3436. */
  3437. ctx->ctx_saved_psr_up = IA64_PSR_UP;
  3438. /*
  3439. * activate monitoring at user level
  3440. */
  3441. ia64_psr(tregs)->up = 1;
  3442. }
  3443. return 0;
  3444. }
  3445. static int
  3446. pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3447. {
  3448. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  3449. unsigned int cnum;
  3450. int i;
  3451. int ret = -EINVAL;
  3452. for (i = 0; i < count; i++, req++) {
  3453. cnum = req->reg_num;
  3454. if (!PMC_IS_IMPL(cnum)) goto abort_mission;
  3455. req->reg_value = PMC_DFL_VAL(cnum);
  3456. PFM_REG_RETFLAG_SET(req->reg_flags, 0);
  3457. DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
  3458. }
  3459. return 0;
  3460. abort_mission:
  3461. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  3462. return ret;
  3463. }
  3464. static int
  3465. pfm_check_task_exist(pfm_context_t *ctx)
  3466. {
  3467. struct task_struct *g, *t;
  3468. int ret = -ESRCH;
  3469. read_lock(&tasklist_lock);
  3470. do_each_thread (g, t) {
  3471. if (t->thread.pfm_context == ctx) {
  3472. ret = 0;
  3473. goto out;
  3474. }
  3475. } while_each_thread (g, t);
  3476. out:
  3477. read_unlock(&tasklist_lock);
  3478. DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
  3479. return ret;
  3480. }
  3481. static int
  3482. pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3483. {
  3484. struct task_struct *task;
  3485. struct thread_struct *thread;
  3486. struct pfm_context_t *old;
  3487. unsigned long flags;
  3488. #ifndef CONFIG_SMP
  3489. struct task_struct *owner_task = NULL;
  3490. #endif
  3491. pfarg_load_t *req = (pfarg_load_t *)arg;
  3492. unsigned long *pmcs_source, *pmds_source;
  3493. int the_cpu;
  3494. int ret = 0;
  3495. int state, is_system, set_dbregs = 0;
  3496. state = ctx->ctx_state;
  3497. is_system = ctx->ctx_fl_system;
  3498. /*
  3499. * can only load from unloaded or terminated state
  3500. */
  3501. if (state != PFM_CTX_UNLOADED) {
  3502. DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
  3503. req->load_pid,
  3504. ctx->ctx_state));
  3505. return -EBUSY;
  3506. }
  3507. DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
  3508. if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
  3509. DPRINT(("cannot use blocking mode on self\n"));
  3510. return -EINVAL;
  3511. }
  3512. ret = pfm_get_task(ctx, req->load_pid, &task);
  3513. if (ret) {
  3514. DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
  3515. return ret;
  3516. }
  3517. ret = -EINVAL;
  3518. /*
  3519. * system wide is self monitoring only
  3520. */
  3521. if (is_system && task != current) {
  3522. DPRINT(("system wide is self monitoring only load_pid=%d\n",
  3523. req->load_pid));
  3524. goto error;
  3525. }
  3526. thread = &task->thread;
  3527. ret = 0;
  3528. /*
  3529. * cannot load a context which is using range restrictions,
  3530. * into a task that is being debugged.
  3531. */
  3532. if (ctx->ctx_fl_using_dbreg) {
  3533. if (thread->flags & IA64_THREAD_DBG_VALID) {
  3534. ret = -EBUSY;
  3535. DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
  3536. goto error;
  3537. }
  3538. LOCK_PFS(flags);
  3539. if (is_system) {
  3540. if (pfm_sessions.pfs_ptrace_use_dbregs) {
  3541. DPRINT(("cannot load [%d] dbregs in use\n",
  3542. task_pid_nr(task)));
  3543. ret = -EBUSY;
  3544. } else {
  3545. pfm_sessions.pfs_sys_use_dbregs++;
  3546. DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
  3547. set_dbregs = 1;
  3548. }
  3549. }
  3550. UNLOCK_PFS(flags);
  3551. if (ret) goto error;
  3552. }
  3553. /*
  3554. * SMP system-wide monitoring implies self-monitoring.
  3555. *
  3556. * The programming model expects the task to
  3557. * be pinned on a CPU throughout the session.
  3558. * Here we take note of the current CPU at the
  3559. * time the context is loaded. No call from
  3560. * another CPU will be allowed.
  3561. *
  3562. * The pinning via shed_setaffinity()
  3563. * must be done by the calling task prior
  3564. * to this call.
  3565. *
  3566. * systemwide: keep track of CPU this session is supposed to run on
  3567. */
  3568. the_cpu = ctx->ctx_cpu = smp_processor_id();
  3569. ret = -EBUSY;
  3570. /*
  3571. * now reserve the session
  3572. */
  3573. ret = pfm_reserve_session(current, is_system, the_cpu);
  3574. if (ret) goto error;
  3575. /*
  3576. * task is necessarily stopped at this point.
  3577. *
  3578. * If the previous context was zombie, then it got removed in
  3579. * pfm_save_regs(). Therefore we should not see it here.
  3580. * If we see a context, then this is an active context
  3581. *
  3582. * XXX: needs to be atomic
  3583. */
  3584. DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
  3585. thread->pfm_context, ctx));
  3586. ret = -EBUSY;
  3587. old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
  3588. if (old != NULL) {
  3589. DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
  3590. goto error_unres;
  3591. }
  3592. pfm_reset_msgq(ctx);
  3593. ctx->ctx_state = PFM_CTX_LOADED;
  3594. /*
  3595. * link context to task
  3596. */
  3597. ctx->ctx_task = task;
  3598. if (is_system) {
  3599. /*
  3600. * we load as stopped
  3601. */
  3602. PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
  3603. PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
  3604. if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
  3605. } else {
  3606. thread->flags |= IA64_THREAD_PM_VALID;
  3607. }
  3608. /*
  3609. * propagate into thread-state
  3610. */
  3611. pfm_copy_pmds(task, ctx);
  3612. pfm_copy_pmcs(task, ctx);
  3613. pmcs_source = ctx->th_pmcs;
  3614. pmds_source = ctx->th_pmds;
  3615. /*
  3616. * always the case for system-wide
  3617. */
  3618. if (task == current) {
  3619. if (is_system == 0) {
  3620. /* allow user level control */
  3621. ia64_psr(regs)->sp = 0;
  3622. DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
  3623. SET_LAST_CPU(ctx, smp_processor_id());
  3624. INC_ACTIVATION();
  3625. SET_ACTIVATION(ctx);
  3626. #ifndef CONFIG_SMP
  3627. /*
  3628. * push the other task out, if any
  3629. */
  3630. owner_task = GET_PMU_OWNER();
  3631. if (owner_task) pfm_lazy_save_regs(owner_task);
  3632. #endif
  3633. }
  3634. /*
  3635. * load all PMD from ctx to PMU (as opposed to thread state)
  3636. * restore all PMC from ctx to PMU
  3637. */
  3638. pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
  3639. pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
  3640. ctx->ctx_reload_pmcs[0] = 0UL;
  3641. ctx->ctx_reload_pmds[0] = 0UL;
  3642. /*
  3643. * guaranteed safe by earlier check against DBG_VALID
  3644. */
  3645. if (ctx->ctx_fl_using_dbreg) {
  3646. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  3647. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  3648. }
  3649. /*
  3650. * set new ownership
  3651. */
  3652. SET_PMU_OWNER(task, ctx);
  3653. DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
  3654. } else {
  3655. /*
  3656. * when not current, task MUST be stopped, so this is safe
  3657. */
  3658. regs = task_pt_regs(task);
  3659. /* force a full reload */
  3660. ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
  3661. SET_LAST_CPU(ctx, -1);
  3662. /* initial saved psr (stopped) */
  3663. ctx->ctx_saved_psr_up = 0UL;
  3664. ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
  3665. }
  3666. ret = 0;
  3667. error_unres:
  3668. if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
  3669. error:
  3670. /*
  3671. * we must undo the dbregs setting (for system-wide)
  3672. */
  3673. if (ret && set_dbregs) {
  3674. LOCK_PFS(flags);
  3675. pfm_sessions.pfs_sys_use_dbregs--;
  3676. UNLOCK_PFS(flags);
  3677. }
  3678. /*
  3679. * release task, there is now a link with the context
  3680. */
  3681. if (is_system == 0 && task != current) {
  3682. pfm_put_task(task);
  3683. if (ret == 0) {
  3684. ret = pfm_check_task_exist(ctx);
  3685. if (ret) {
  3686. ctx->ctx_state = PFM_CTX_UNLOADED;
  3687. ctx->ctx_task = NULL;
  3688. }
  3689. }
  3690. }
  3691. return ret;
  3692. }
  3693. /*
  3694. * in this function, we do not need to increase the use count
  3695. * for the task via get_task_struct(), because we hold the
  3696. * context lock. If the task were to disappear while having
  3697. * a context attached, it would go through pfm_exit_thread()
  3698. * which also grabs the context lock and would therefore be blocked
  3699. * until we are here.
  3700. */
  3701. static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
  3702. static int
  3703. pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3704. {
  3705. struct task_struct *task = PFM_CTX_TASK(ctx);
  3706. struct pt_regs *tregs;
  3707. int prev_state, is_system;
  3708. int ret;
  3709. DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
  3710. prev_state = ctx->ctx_state;
  3711. is_system = ctx->ctx_fl_system;
  3712. /*
  3713. * unload only when necessary
  3714. */
  3715. if (prev_state == PFM_CTX_UNLOADED) {
  3716. DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
  3717. return 0;
  3718. }
  3719. /*
  3720. * clear psr and dcr bits
  3721. */
  3722. ret = pfm_stop(ctx, NULL, 0, regs);
  3723. if (ret) return ret;
  3724. ctx->ctx_state = PFM_CTX_UNLOADED;
  3725. /*
  3726. * in system mode, we need to update the PMU directly
  3727. * and the user level state of the caller, which may not
  3728. * necessarily be the creator of the context.
  3729. */
  3730. if (is_system) {
  3731. /*
  3732. * Update cpuinfo
  3733. *
  3734. * local PMU is taken care of in pfm_stop()
  3735. */
  3736. PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
  3737. PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
  3738. /*
  3739. * save PMDs in context
  3740. * release ownership
  3741. */
  3742. pfm_flush_pmds(current, ctx);
  3743. /*
  3744. * at this point we are done with the PMU
  3745. * so we can unreserve the resource.
  3746. */
  3747. if (prev_state != PFM_CTX_ZOMBIE)
  3748. pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
  3749. /*
  3750. * disconnect context from task
  3751. */
  3752. task->thread.pfm_context = NULL;
  3753. /*
  3754. * disconnect task from context
  3755. */
  3756. ctx->ctx_task = NULL;
  3757. /*
  3758. * There is nothing more to cleanup here.
  3759. */
  3760. return 0;
  3761. }
  3762. /*
  3763. * per-task mode
  3764. */
  3765. tregs = task == current ? regs : task_pt_regs(task);
  3766. if (task == current) {
  3767. /*
  3768. * cancel user level control
  3769. */
  3770. ia64_psr(regs)->sp = 1;
  3771. DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
  3772. }
  3773. /*
  3774. * save PMDs to context
  3775. * release ownership
  3776. */
  3777. pfm_flush_pmds(task, ctx);
  3778. /*
  3779. * at this point we are done with the PMU
  3780. * so we can unreserve the resource.
  3781. *
  3782. * when state was ZOMBIE, we have already unreserved.
  3783. */
  3784. if (prev_state != PFM_CTX_ZOMBIE)
  3785. pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
  3786. /*
  3787. * reset activation counter and psr
  3788. */
  3789. ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
  3790. SET_LAST_CPU(ctx, -1);
  3791. /*
  3792. * PMU state will not be restored
  3793. */
  3794. task->thread.flags &= ~IA64_THREAD_PM_VALID;
  3795. /*
  3796. * break links between context and task
  3797. */
  3798. task->thread.pfm_context = NULL;
  3799. ctx->ctx_task = NULL;
  3800. PFM_SET_WORK_PENDING(task, 0);
  3801. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
  3802. ctx->ctx_fl_can_restart = 0;
  3803. ctx->ctx_fl_going_zombie = 0;
  3804. DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
  3805. return 0;
  3806. }
  3807. /*
  3808. * called only from exit_thread(): task == current
  3809. * we come here only if current has a context attached (loaded or masked)
  3810. */
  3811. void
  3812. pfm_exit_thread(struct task_struct *task)
  3813. {
  3814. pfm_context_t *ctx;
  3815. unsigned long flags;
  3816. struct pt_regs *regs = task_pt_regs(task);
  3817. int ret, state;
  3818. int free_ok = 0;
  3819. ctx = PFM_GET_CTX(task);
  3820. PROTECT_CTX(ctx, flags);
  3821. DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
  3822. state = ctx->ctx_state;
  3823. switch(state) {
  3824. case PFM_CTX_UNLOADED:
  3825. /*
  3826. * only comes to this function if pfm_context is not NULL, i.e., cannot
  3827. * be in unloaded state
  3828. */
  3829. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
  3830. break;
  3831. case PFM_CTX_LOADED:
  3832. case PFM_CTX_MASKED:
  3833. ret = pfm_context_unload(ctx, NULL, 0, regs);
  3834. if (ret) {
  3835. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
  3836. }
  3837. DPRINT(("ctx unloaded for current state was %d\n", state));
  3838. pfm_end_notify_user(ctx);
  3839. break;
  3840. case PFM_CTX_ZOMBIE:
  3841. ret = pfm_context_unload(ctx, NULL, 0, regs);
  3842. if (ret) {
  3843. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
  3844. }
  3845. free_ok = 1;
  3846. break;
  3847. default:
  3848. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
  3849. break;
  3850. }
  3851. UNPROTECT_CTX(ctx, flags);
  3852. { u64 psr = pfm_get_psr();
  3853. BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
  3854. BUG_ON(GET_PMU_OWNER());
  3855. BUG_ON(ia64_psr(regs)->up);
  3856. BUG_ON(ia64_psr(regs)->pp);
  3857. }
  3858. /*
  3859. * All memory free operations (especially for vmalloc'ed memory)
  3860. * MUST be done with interrupts ENABLED.
  3861. */
  3862. if (free_ok) pfm_context_free(ctx);
  3863. }
  3864. /*
  3865. * functions MUST be listed in the increasing order of their index (see permfon.h)
  3866. */
  3867. #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
  3868. #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
  3869. #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
  3870. #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
  3871. #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
  3872. static pfm_cmd_desc_t pfm_cmd_tab[]={
  3873. /* 0 */PFM_CMD_NONE,
  3874. /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3875. /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3876. /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3877. /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
  3878. /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
  3879. /* 6 */PFM_CMD_NONE,
  3880. /* 7 */PFM_CMD_NONE,
  3881. /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
  3882. /* 9 */PFM_CMD_NONE,
  3883. /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
  3884. /* 11 */PFM_CMD_NONE,
  3885. /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
  3886. /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
  3887. /* 14 */PFM_CMD_NONE,
  3888. /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3889. /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
  3890. /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
  3891. /* 18 */PFM_CMD_NONE,
  3892. /* 19 */PFM_CMD_NONE,
  3893. /* 20 */PFM_CMD_NONE,
  3894. /* 21 */PFM_CMD_NONE,
  3895. /* 22 */PFM_CMD_NONE,
  3896. /* 23 */PFM_CMD_NONE,
  3897. /* 24 */PFM_CMD_NONE,
  3898. /* 25 */PFM_CMD_NONE,
  3899. /* 26 */PFM_CMD_NONE,
  3900. /* 27 */PFM_CMD_NONE,
  3901. /* 28 */PFM_CMD_NONE,
  3902. /* 29 */PFM_CMD_NONE,
  3903. /* 30 */PFM_CMD_NONE,
  3904. /* 31 */PFM_CMD_NONE,
  3905. /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
  3906. /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
  3907. };
  3908. #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
  3909. static int
  3910. pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
  3911. {
  3912. struct task_struct *task;
  3913. int state, old_state;
  3914. recheck:
  3915. state = ctx->ctx_state;
  3916. task = ctx->ctx_task;
  3917. if (task == NULL) {
  3918. DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
  3919. return 0;
  3920. }
  3921. DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
  3922. ctx->ctx_fd,
  3923. state,
  3924. task_pid_nr(task),
  3925. task->state, PFM_CMD_STOPPED(cmd)));
  3926. /*
  3927. * self-monitoring always ok.
  3928. *
  3929. * for system-wide the caller can either be the creator of the
  3930. * context (to one to which the context is attached to) OR
  3931. * a task running on the same CPU as the session.
  3932. */
  3933. if (task == current || ctx->ctx_fl_system) return 0;
  3934. /*
  3935. * we are monitoring another thread
  3936. */
  3937. switch(state) {
  3938. case PFM_CTX_UNLOADED:
  3939. /*
  3940. * if context is UNLOADED we are safe to go
  3941. */
  3942. return 0;
  3943. case PFM_CTX_ZOMBIE:
  3944. /*
  3945. * no command can operate on a zombie context
  3946. */
  3947. DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
  3948. return -EINVAL;
  3949. case PFM_CTX_MASKED:
  3950. /*
  3951. * PMU state has been saved to software even though
  3952. * the thread may still be running.
  3953. */
  3954. if (cmd != PFM_UNLOAD_CONTEXT) return 0;
  3955. }
  3956. /*
  3957. * context is LOADED or MASKED. Some commands may need to have
  3958. * the task stopped.
  3959. *
  3960. * We could lift this restriction for UP but it would mean that
  3961. * the user has no guarantee the task would not run between
  3962. * two successive calls to perfmonctl(). That's probably OK.
  3963. * If this user wants to ensure the task does not run, then
  3964. * the task must be stopped.
  3965. */
  3966. if (PFM_CMD_STOPPED(cmd)) {
  3967. if (!task_is_stopped_or_traced(task)) {
  3968. DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
  3969. return -EBUSY;
  3970. }
  3971. /*
  3972. * task is now stopped, wait for ctxsw out
  3973. *
  3974. * This is an interesting point in the code.
  3975. * We need to unprotect the context because
  3976. * the pfm_save_regs() routines needs to grab
  3977. * the same lock. There are danger in doing
  3978. * this because it leaves a window open for
  3979. * another task to get access to the context
  3980. * and possibly change its state. The one thing
  3981. * that is not possible is for the context to disappear
  3982. * because we are protected by the VFS layer, i.e.,
  3983. * get_fd()/put_fd().
  3984. */
  3985. old_state = state;
  3986. UNPROTECT_CTX(ctx, flags);
  3987. wait_task_inactive(task, 0);
  3988. PROTECT_CTX(ctx, flags);
  3989. /*
  3990. * we must recheck to verify if state has changed
  3991. */
  3992. if (ctx->ctx_state != old_state) {
  3993. DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
  3994. goto recheck;
  3995. }
  3996. }
  3997. return 0;
  3998. }
  3999. /*
  4000. * system-call entry point (must return long)
  4001. */
  4002. asmlinkage long
  4003. sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
  4004. {
  4005. struct file *file = NULL;
  4006. pfm_context_t *ctx = NULL;
  4007. unsigned long flags = 0UL;
  4008. void *args_k = NULL;
  4009. long ret; /* will expand int return types */
  4010. size_t base_sz, sz, xtra_sz = 0;
  4011. int narg, completed_args = 0, call_made = 0, cmd_flags;
  4012. int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  4013. int (*getsize)(void *arg, size_t *sz);
  4014. #define PFM_MAX_ARGSIZE 4096
  4015. /*
  4016. * reject any call if perfmon was disabled at initialization
  4017. */
  4018. if (unlikely(pmu_conf == NULL)) return -ENOSYS;
  4019. if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
  4020. DPRINT(("invalid cmd=%d\n", cmd));
  4021. return -EINVAL;
  4022. }
  4023. func = pfm_cmd_tab[cmd].cmd_func;
  4024. narg = pfm_cmd_tab[cmd].cmd_narg;
  4025. base_sz = pfm_cmd_tab[cmd].cmd_argsize;
  4026. getsize = pfm_cmd_tab[cmd].cmd_getsize;
  4027. cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
  4028. if (unlikely(func == NULL)) {
  4029. DPRINT(("invalid cmd=%d\n", cmd));
  4030. return -EINVAL;
  4031. }
  4032. DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
  4033. PFM_CMD_NAME(cmd),
  4034. cmd,
  4035. narg,
  4036. base_sz,
  4037. count));
  4038. /*
  4039. * check if number of arguments matches what the command expects
  4040. */
  4041. if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
  4042. return -EINVAL;
  4043. restart_args:
  4044. sz = xtra_sz + base_sz*count;
  4045. /*
  4046. * limit abuse to min page size
  4047. */
  4048. if (unlikely(sz > PFM_MAX_ARGSIZE)) {
  4049. printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
  4050. return -E2BIG;
  4051. }
  4052. /*
  4053. * allocate default-sized argument buffer
  4054. */
  4055. if (likely(count && args_k == NULL)) {
  4056. args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
  4057. if (args_k == NULL) return -ENOMEM;
  4058. }
  4059. ret = -EFAULT;
  4060. /*
  4061. * copy arguments
  4062. *
  4063. * assume sz = 0 for command without parameters
  4064. */
  4065. if (sz && copy_from_user(args_k, arg, sz)) {
  4066. DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
  4067. goto error_args;
  4068. }
  4069. /*
  4070. * check if command supports extra parameters
  4071. */
  4072. if (completed_args == 0 && getsize) {
  4073. /*
  4074. * get extra parameters size (based on main argument)
  4075. */
  4076. ret = (*getsize)(args_k, &xtra_sz);
  4077. if (ret) goto error_args;
  4078. completed_args = 1;
  4079. DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
  4080. /* retry if necessary */
  4081. if (likely(xtra_sz)) goto restart_args;
  4082. }
  4083. if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
  4084. ret = -EBADF;
  4085. file = fget(fd);
  4086. if (unlikely(file == NULL)) {
  4087. DPRINT(("invalid fd %d\n", fd));
  4088. goto error_args;
  4089. }
  4090. if (unlikely(PFM_IS_FILE(file) == 0)) {
  4091. DPRINT(("fd %d not related to perfmon\n", fd));
  4092. goto error_args;
  4093. }
  4094. ctx = file->private_data;
  4095. if (unlikely(ctx == NULL)) {
  4096. DPRINT(("no context for fd %d\n", fd));
  4097. goto error_args;
  4098. }
  4099. prefetch(&ctx->ctx_state);
  4100. PROTECT_CTX(ctx, flags);
  4101. /*
  4102. * check task is stopped
  4103. */
  4104. ret = pfm_check_task_state(ctx, cmd, flags);
  4105. if (unlikely(ret)) goto abort_locked;
  4106. skip_fd:
  4107. ret = (*func)(ctx, args_k, count, task_pt_regs(current));
  4108. call_made = 1;
  4109. abort_locked:
  4110. if (likely(ctx)) {
  4111. DPRINT(("context unlocked\n"));
  4112. UNPROTECT_CTX(ctx, flags);
  4113. }
  4114. /* copy argument back to user, if needed */
  4115. if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
  4116. error_args:
  4117. if (file)
  4118. fput(file);
  4119. kfree(args_k);
  4120. DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
  4121. return ret;
  4122. }
  4123. static void
  4124. pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
  4125. {
  4126. pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
  4127. pfm_ovfl_ctrl_t rst_ctrl;
  4128. int state;
  4129. int ret = 0;
  4130. state = ctx->ctx_state;
  4131. /*
  4132. * Unlock sampling buffer and reset index atomically
  4133. * XXX: not really needed when blocking
  4134. */
  4135. if (CTX_HAS_SMPL(ctx)) {
  4136. rst_ctrl.bits.mask_monitoring = 0;
  4137. rst_ctrl.bits.reset_ovfl_pmds = 0;
  4138. if (state == PFM_CTX_LOADED)
  4139. ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  4140. else
  4141. ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  4142. } else {
  4143. rst_ctrl.bits.mask_monitoring = 0;
  4144. rst_ctrl.bits.reset_ovfl_pmds = 1;
  4145. }
  4146. if (ret == 0) {
  4147. if (rst_ctrl.bits.reset_ovfl_pmds) {
  4148. pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
  4149. }
  4150. if (rst_ctrl.bits.mask_monitoring == 0) {
  4151. DPRINT(("resuming monitoring\n"));
  4152. if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
  4153. } else {
  4154. DPRINT(("stopping monitoring\n"));
  4155. //pfm_stop_monitoring(current, regs);
  4156. }
  4157. ctx->ctx_state = PFM_CTX_LOADED;
  4158. }
  4159. }
  4160. /*
  4161. * context MUST BE LOCKED when calling
  4162. * can only be called for current
  4163. */
  4164. static void
  4165. pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
  4166. {
  4167. int ret;
  4168. DPRINT(("entering for [%d]\n", task_pid_nr(current)));
  4169. ret = pfm_context_unload(ctx, NULL, 0, regs);
  4170. if (ret) {
  4171. printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
  4172. }
  4173. /*
  4174. * and wakeup controlling task, indicating we are now disconnected
  4175. */
  4176. wake_up_interruptible(&ctx->ctx_zombieq);
  4177. /*
  4178. * given that context is still locked, the controlling
  4179. * task will only get access when we return from
  4180. * pfm_handle_work().
  4181. */
  4182. }
  4183. static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
  4184. /*
  4185. * pfm_handle_work() can be called with interrupts enabled
  4186. * (TIF_NEED_RESCHED) or disabled. The down_interruptible
  4187. * call may sleep, therefore we must re-enable interrupts
  4188. * to avoid deadlocks. It is safe to do so because this function
  4189. * is called ONLY when returning to user level (pUStk=1), in which case
  4190. * there is no risk of kernel stack overflow due to deep
  4191. * interrupt nesting.
  4192. */
  4193. void
  4194. pfm_handle_work(void)
  4195. {
  4196. pfm_context_t *ctx;
  4197. struct pt_regs *regs;
  4198. unsigned long flags, dummy_flags;
  4199. unsigned long ovfl_regs;
  4200. unsigned int reason;
  4201. int ret;
  4202. ctx = PFM_GET_CTX(current);
  4203. if (ctx == NULL) {
  4204. printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
  4205. task_pid_nr(current));
  4206. return;
  4207. }
  4208. PROTECT_CTX(ctx, flags);
  4209. PFM_SET_WORK_PENDING(current, 0);
  4210. regs = task_pt_regs(current);
  4211. /*
  4212. * extract reason for being here and clear
  4213. */
  4214. reason = ctx->ctx_fl_trap_reason;
  4215. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
  4216. ovfl_regs = ctx->ctx_ovfl_regs[0];
  4217. DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
  4218. /*
  4219. * must be done before we check for simple-reset mode
  4220. */
  4221. if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
  4222. goto do_zombie;
  4223. //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
  4224. if (reason == PFM_TRAP_REASON_RESET)
  4225. goto skip_blocking;
  4226. /*
  4227. * restore interrupt mask to what it was on entry.
  4228. * Could be enabled/diasbled.
  4229. */
  4230. UNPROTECT_CTX(ctx, flags);
  4231. /*
  4232. * force interrupt enable because of down_interruptible()
  4233. */
  4234. local_irq_enable();
  4235. DPRINT(("before block sleeping\n"));
  4236. /*
  4237. * may go through without blocking on SMP systems
  4238. * if restart has been received already by the time we call down()
  4239. */
  4240. ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
  4241. DPRINT(("after block sleeping ret=%d\n", ret));
  4242. /*
  4243. * lock context and mask interrupts again
  4244. * We save flags into a dummy because we may have
  4245. * altered interrupts mask compared to entry in this
  4246. * function.
  4247. */
  4248. PROTECT_CTX(ctx, dummy_flags);
  4249. /*
  4250. * we need to read the ovfl_regs only after wake-up
  4251. * because we may have had pfm_write_pmds() in between
  4252. * and that can changed PMD values and therefore
  4253. * ovfl_regs is reset for these new PMD values.
  4254. */
  4255. ovfl_regs = ctx->ctx_ovfl_regs[0];
  4256. if (ctx->ctx_fl_going_zombie) {
  4257. do_zombie:
  4258. DPRINT(("context is zombie, bailing out\n"));
  4259. pfm_context_force_terminate(ctx, regs);
  4260. goto nothing_to_do;
  4261. }
  4262. /*
  4263. * in case of interruption of down() we don't restart anything
  4264. */
  4265. if (ret < 0)
  4266. goto nothing_to_do;
  4267. skip_blocking:
  4268. pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
  4269. ctx->ctx_ovfl_regs[0] = 0UL;
  4270. nothing_to_do:
  4271. /*
  4272. * restore flags as they were upon entry
  4273. */
  4274. UNPROTECT_CTX(ctx, flags);
  4275. }
  4276. static int
  4277. pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
  4278. {
  4279. if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
  4280. DPRINT(("ignoring overflow notification, owner is zombie\n"));
  4281. return 0;
  4282. }
  4283. DPRINT(("waking up somebody\n"));
  4284. if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
  4285. /*
  4286. * safe, we are not in intr handler, nor in ctxsw when
  4287. * we come here
  4288. */
  4289. kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
  4290. return 0;
  4291. }
  4292. static int
  4293. pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
  4294. {
  4295. pfm_msg_t *msg = NULL;
  4296. if (ctx->ctx_fl_no_msg == 0) {
  4297. msg = pfm_get_new_msg(ctx);
  4298. if (msg == NULL) {
  4299. printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
  4300. return -1;
  4301. }
  4302. msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
  4303. msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
  4304. msg->pfm_ovfl_msg.msg_active_set = 0;
  4305. msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
  4306. msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
  4307. msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
  4308. msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
  4309. msg->pfm_ovfl_msg.msg_tstamp = 0UL;
  4310. }
  4311. DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
  4312. msg,
  4313. ctx->ctx_fl_no_msg,
  4314. ctx->ctx_fd,
  4315. ovfl_pmds));
  4316. return pfm_notify_user(ctx, msg);
  4317. }
  4318. static int
  4319. pfm_end_notify_user(pfm_context_t *ctx)
  4320. {
  4321. pfm_msg_t *msg;
  4322. msg = pfm_get_new_msg(ctx);
  4323. if (msg == NULL) {
  4324. printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
  4325. return -1;
  4326. }
  4327. /* no leak */
  4328. memset(msg, 0, sizeof(*msg));
  4329. msg->pfm_end_msg.msg_type = PFM_MSG_END;
  4330. msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
  4331. msg->pfm_ovfl_msg.msg_tstamp = 0UL;
  4332. DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
  4333. msg,
  4334. ctx->ctx_fl_no_msg,
  4335. ctx->ctx_fd));
  4336. return pfm_notify_user(ctx, msg);
  4337. }
  4338. /*
  4339. * main overflow processing routine.
  4340. * it can be called from the interrupt path or explicitly during the context switch code
  4341. */
  4342. static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
  4343. unsigned long pmc0, struct pt_regs *regs)
  4344. {
  4345. pfm_ovfl_arg_t *ovfl_arg;
  4346. unsigned long mask;
  4347. unsigned long old_val, ovfl_val, new_val;
  4348. unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
  4349. unsigned long tstamp;
  4350. pfm_ovfl_ctrl_t ovfl_ctrl;
  4351. unsigned int i, has_smpl;
  4352. int must_notify = 0;
  4353. if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
  4354. /*
  4355. * sanity test. Should never happen
  4356. */
  4357. if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
  4358. tstamp = ia64_get_itc();
  4359. mask = pmc0 >> PMU_FIRST_COUNTER;
  4360. ovfl_val = pmu_conf->ovfl_val;
  4361. has_smpl = CTX_HAS_SMPL(ctx);
  4362. DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
  4363. "used_pmds=0x%lx\n",
  4364. pmc0,
  4365. task ? task_pid_nr(task): -1,
  4366. (regs ? regs->cr_iip : 0),
  4367. CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
  4368. ctx->ctx_used_pmds[0]));
  4369. /*
  4370. * first we update the virtual counters
  4371. * assume there was a prior ia64_srlz_d() issued
  4372. */
  4373. for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
  4374. /* skip pmd which did not overflow */
  4375. if ((mask & 0x1) == 0) continue;
  4376. /*
  4377. * Note that the pmd is not necessarily 0 at this point as qualified events
  4378. * may have happened before the PMU was frozen. The residual count is not
  4379. * taken into consideration here but will be with any read of the pmd via
  4380. * pfm_read_pmds().
  4381. */
  4382. old_val = new_val = ctx->ctx_pmds[i].val;
  4383. new_val += 1 + ovfl_val;
  4384. ctx->ctx_pmds[i].val = new_val;
  4385. /*
  4386. * check for overflow condition
  4387. */
  4388. if (likely(old_val > new_val)) {
  4389. ovfl_pmds |= 1UL << i;
  4390. if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
  4391. }
  4392. DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
  4393. i,
  4394. new_val,
  4395. old_val,
  4396. ia64_get_pmd(i) & ovfl_val,
  4397. ovfl_pmds,
  4398. ovfl_notify));
  4399. }
  4400. /*
  4401. * there was no 64-bit overflow, nothing else to do
  4402. */
  4403. if (ovfl_pmds == 0UL) return;
  4404. /*
  4405. * reset all control bits
  4406. */
  4407. ovfl_ctrl.val = 0;
  4408. reset_pmds = 0UL;
  4409. /*
  4410. * if a sampling format module exists, then we "cache" the overflow by
  4411. * calling the module's handler() routine.
  4412. */
  4413. if (has_smpl) {
  4414. unsigned long start_cycles, end_cycles;
  4415. unsigned long pmd_mask;
  4416. int j, k, ret = 0;
  4417. int this_cpu = smp_processor_id();
  4418. pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
  4419. ovfl_arg = &ctx->ctx_ovfl_arg;
  4420. prefetch(ctx->ctx_smpl_hdr);
  4421. for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
  4422. mask = 1UL << i;
  4423. if ((pmd_mask & 0x1) == 0) continue;
  4424. ovfl_arg->ovfl_pmd = (unsigned char )i;
  4425. ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
  4426. ovfl_arg->active_set = 0;
  4427. ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
  4428. ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
  4429. ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
  4430. ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
  4431. ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
  4432. /*
  4433. * copy values of pmds of interest. Sampling format may copy them
  4434. * into sampling buffer.
  4435. */
  4436. if (smpl_pmds) {
  4437. for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
  4438. if ((smpl_pmds & 0x1) == 0) continue;
  4439. ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
  4440. DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
  4441. }
  4442. }
  4443. pfm_stats[this_cpu].pfm_smpl_handler_calls++;
  4444. start_cycles = ia64_get_itc();
  4445. /*
  4446. * call custom buffer format record (handler) routine
  4447. */
  4448. ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
  4449. end_cycles = ia64_get_itc();
  4450. /*
  4451. * For those controls, we take the union because they have
  4452. * an all or nothing behavior.
  4453. */
  4454. ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
  4455. ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
  4456. ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
  4457. /*
  4458. * build the bitmask of pmds to reset now
  4459. */
  4460. if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
  4461. pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
  4462. }
  4463. /*
  4464. * when the module cannot handle the rest of the overflows, we abort right here
  4465. */
  4466. if (ret && pmd_mask) {
  4467. DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
  4468. pmd_mask<<PMU_FIRST_COUNTER));
  4469. }
  4470. /*
  4471. * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
  4472. */
  4473. ovfl_pmds &= ~reset_pmds;
  4474. } else {
  4475. /*
  4476. * when no sampling module is used, then the default
  4477. * is to notify on overflow if requested by user
  4478. */
  4479. ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
  4480. ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
  4481. ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
  4482. ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
  4483. /*
  4484. * if needed, we reset all overflowed pmds
  4485. */
  4486. if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
  4487. }
  4488. DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
  4489. /*
  4490. * reset the requested PMD registers using the short reset values
  4491. */
  4492. if (reset_pmds) {
  4493. unsigned long bm = reset_pmds;
  4494. pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
  4495. }
  4496. if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
  4497. /*
  4498. * keep track of what to reset when unblocking
  4499. */
  4500. ctx->ctx_ovfl_regs[0] = ovfl_pmds;
  4501. /*
  4502. * check for blocking context
  4503. */
  4504. if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
  4505. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
  4506. /*
  4507. * set the perfmon specific checking pending work for the task
  4508. */
  4509. PFM_SET_WORK_PENDING(task, 1);
  4510. /*
  4511. * when coming from ctxsw, current still points to the
  4512. * previous task, therefore we must work with task and not current.
  4513. */
  4514. set_notify_resume(task);
  4515. }
  4516. /*
  4517. * defer until state is changed (shorten spin window). the context is locked
  4518. * anyway, so the signal receiver would come spin for nothing.
  4519. */
  4520. must_notify = 1;
  4521. }
  4522. DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
  4523. GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
  4524. PFM_GET_WORK_PENDING(task),
  4525. ctx->ctx_fl_trap_reason,
  4526. ovfl_pmds,
  4527. ovfl_notify,
  4528. ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
  4529. /*
  4530. * in case monitoring must be stopped, we toggle the psr bits
  4531. */
  4532. if (ovfl_ctrl.bits.mask_monitoring) {
  4533. pfm_mask_monitoring(task);
  4534. ctx->ctx_state = PFM_CTX_MASKED;
  4535. ctx->ctx_fl_can_restart = 1;
  4536. }
  4537. /*
  4538. * send notification now
  4539. */
  4540. if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
  4541. return;
  4542. sanity_check:
  4543. printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
  4544. smp_processor_id(),
  4545. task ? task_pid_nr(task) : -1,
  4546. pmc0);
  4547. return;
  4548. stop_monitoring:
  4549. /*
  4550. * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
  4551. * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
  4552. * come here as zombie only if the task is the current task. In which case, we
  4553. * can access the PMU hardware directly.
  4554. *
  4555. * Note that zombies do have PM_VALID set. So here we do the minimal.
  4556. *
  4557. * In case the context was zombified it could not be reclaimed at the time
  4558. * the monitoring program exited. At this point, the PMU reservation has been
  4559. * returned, the sampiing buffer has been freed. We must convert this call
  4560. * into a spurious interrupt. However, we must also avoid infinite overflows
  4561. * by stopping monitoring for this task. We can only come here for a per-task
  4562. * context. All we need to do is to stop monitoring using the psr bits which
  4563. * are always task private. By re-enabling secure montioring, we ensure that
  4564. * the monitored task will not be able to re-activate monitoring.
  4565. * The task will eventually be context switched out, at which point the context
  4566. * will be reclaimed (that includes releasing ownership of the PMU).
  4567. *
  4568. * So there might be a window of time where the number of per-task session is zero
  4569. * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
  4570. * context. This is safe because if a per-task session comes in, it will push this one
  4571. * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
  4572. * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
  4573. * also push our zombie context out.
  4574. *
  4575. * Overall pretty hairy stuff....
  4576. */
  4577. DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
  4578. pfm_clear_psr_up();
  4579. ia64_psr(regs)->up = 0;
  4580. ia64_psr(regs)->sp = 1;
  4581. return;
  4582. }
  4583. static int
  4584. pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
  4585. {
  4586. struct task_struct *task;
  4587. pfm_context_t *ctx;
  4588. unsigned long flags;
  4589. u64 pmc0;
  4590. int this_cpu = smp_processor_id();
  4591. int retval = 0;
  4592. pfm_stats[this_cpu].pfm_ovfl_intr_count++;
  4593. /*
  4594. * srlz.d done before arriving here
  4595. */
  4596. pmc0 = ia64_get_pmc(0);
  4597. task = GET_PMU_OWNER();
  4598. ctx = GET_PMU_CTX();
  4599. /*
  4600. * if we have some pending bits set
  4601. * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
  4602. */
  4603. if (PMC0_HAS_OVFL(pmc0) && task) {
  4604. /*
  4605. * we assume that pmc0.fr is always set here
  4606. */
  4607. /* sanity check */
  4608. if (!ctx) goto report_spurious1;
  4609. if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
  4610. goto report_spurious2;
  4611. PROTECT_CTX_NOPRINT(ctx, flags);
  4612. pfm_overflow_handler(task, ctx, pmc0, regs);
  4613. UNPROTECT_CTX_NOPRINT(ctx, flags);
  4614. } else {
  4615. pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
  4616. retval = -1;
  4617. }
  4618. /*
  4619. * keep it unfrozen at all times
  4620. */
  4621. pfm_unfreeze_pmu();
  4622. return retval;
  4623. report_spurious1:
  4624. printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
  4625. this_cpu, task_pid_nr(task));
  4626. pfm_unfreeze_pmu();
  4627. return -1;
  4628. report_spurious2:
  4629. printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
  4630. this_cpu,
  4631. task_pid_nr(task));
  4632. pfm_unfreeze_pmu();
  4633. return -1;
  4634. }
  4635. static irqreturn_t
  4636. pfm_interrupt_handler(int irq, void *arg)
  4637. {
  4638. unsigned long start_cycles, total_cycles;
  4639. unsigned long min, max;
  4640. int this_cpu;
  4641. int ret;
  4642. struct pt_regs *regs = get_irq_regs();
  4643. this_cpu = get_cpu();
  4644. if (likely(!pfm_alt_intr_handler)) {
  4645. min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
  4646. max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
  4647. start_cycles = ia64_get_itc();
  4648. ret = pfm_do_interrupt_handler(arg, regs);
  4649. total_cycles = ia64_get_itc();
  4650. /*
  4651. * don't measure spurious interrupts
  4652. */
  4653. if (likely(ret == 0)) {
  4654. total_cycles -= start_cycles;
  4655. if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
  4656. if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
  4657. pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
  4658. }
  4659. }
  4660. else {
  4661. (*pfm_alt_intr_handler->handler)(irq, arg, regs);
  4662. }
  4663. put_cpu();
  4664. return IRQ_HANDLED;
  4665. }
  4666. /*
  4667. * /proc/perfmon interface, for debug only
  4668. */
  4669. #define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
  4670. static void *
  4671. pfm_proc_start(struct seq_file *m, loff_t *pos)
  4672. {
  4673. if (*pos == 0) {
  4674. return PFM_PROC_SHOW_HEADER;
  4675. }
  4676. while (*pos <= nr_cpu_ids) {
  4677. if (cpu_online(*pos - 1)) {
  4678. return (void *)*pos;
  4679. }
  4680. ++*pos;
  4681. }
  4682. return NULL;
  4683. }
  4684. static void *
  4685. pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
  4686. {
  4687. ++*pos;
  4688. return pfm_proc_start(m, pos);
  4689. }
  4690. static void
  4691. pfm_proc_stop(struct seq_file *m, void *v)
  4692. {
  4693. }
  4694. static void
  4695. pfm_proc_show_header(struct seq_file *m)
  4696. {
  4697. struct list_head * pos;
  4698. pfm_buffer_fmt_t * entry;
  4699. unsigned long flags;
  4700. seq_printf(m,
  4701. "perfmon version : %u.%u\n"
  4702. "model : %s\n"
  4703. "fastctxsw : %s\n"
  4704. "expert mode : %s\n"
  4705. "ovfl_mask : 0x%lx\n"
  4706. "PMU flags : 0x%x\n",
  4707. PFM_VERSION_MAJ, PFM_VERSION_MIN,
  4708. pmu_conf->pmu_name,
  4709. pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
  4710. pfm_sysctl.expert_mode > 0 ? "Yes": "No",
  4711. pmu_conf->ovfl_val,
  4712. pmu_conf->flags);
  4713. LOCK_PFS(flags);
  4714. seq_printf(m,
  4715. "proc_sessions : %u\n"
  4716. "sys_sessions : %u\n"
  4717. "sys_use_dbregs : %u\n"
  4718. "ptrace_use_dbregs : %u\n",
  4719. pfm_sessions.pfs_task_sessions,
  4720. pfm_sessions.pfs_sys_sessions,
  4721. pfm_sessions.pfs_sys_use_dbregs,
  4722. pfm_sessions.pfs_ptrace_use_dbregs);
  4723. UNLOCK_PFS(flags);
  4724. spin_lock(&pfm_buffer_fmt_lock);
  4725. list_for_each(pos, &pfm_buffer_fmt_list) {
  4726. entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
  4727. seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
  4728. entry->fmt_uuid[0],
  4729. entry->fmt_uuid[1],
  4730. entry->fmt_uuid[2],
  4731. entry->fmt_uuid[3],
  4732. entry->fmt_uuid[4],
  4733. entry->fmt_uuid[5],
  4734. entry->fmt_uuid[6],
  4735. entry->fmt_uuid[7],
  4736. entry->fmt_uuid[8],
  4737. entry->fmt_uuid[9],
  4738. entry->fmt_uuid[10],
  4739. entry->fmt_uuid[11],
  4740. entry->fmt_uuid[12],
  4741. entry->fmt_uuid[13],
  4742. entry->fmt_uuid[14],
  4743. entry->fmt_uuid[15],
  4744. entry->fmt_name);
  4745. }
  4746. spin_unlock(&pfm_buffer_fmt_lock);
  4747. }
  4748. static int
  4749. pfm_proc_show(struct seq_file *m, void *v)
  4750. {
  4751. unsigned long psr;
  4752. unsigned int i;
  4753. int cpu;
  4754. if (v == PFM_PROC_SHOW_HEADER) {
  4755. pfm_proc_show_header(m);
  4756. return 0;
  4757. }
  4758. /* show info for CPU (v - 1) */
  4759. cpu = (long)v - 1;
  4760. seq_printf(m,
  4761. "CPU%-2d overflow intrs : %lu\n"
  4762. "CPU%-2d overflow cycles : %lu\n"
  4763. "CPU%-2d overflow min : %lu\n"
  4764. "CPU%-2d overflow max : %lu\n"
  4765. "CPU%-2d smpl handler calls : %lu\n"
  4766. "CPU%-2d smpl handler cycles : %lu\n"
  4767. "CPU%-2d spurious intrs : %lu\n"
  4768. "CPU%-2d replay intrs : %lu\n"
  4769. "CPU%-2d syst_wide : %d\n"
  4770. "CPU%-2d dcr_pp : %d\n"
  4771. "CPU%-2d exclude idle : %d\n"
  4772. "CPU%-2d owner : %d\n"
  4773. "CPU%-2d context : %p\n"
  4774. "CPU%-2d activations : %lu\n",
  4775. cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
  4776. cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
  4777. cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
  4778. cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
  4779. cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
  4780. cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
  4781. cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
  4782. cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
  4783. cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
  4784. cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
  4785. cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
  4786. cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
  4787. cpu, pfm_get_cpu_data(pmu_ctx, cpu),
  4788. cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
  4789. if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
  4790. psr = pfm_get_psr();
  4791. ia64_srlz_d();
  4792. seq_printf(m,
  4793. "CPU%-2d psr : 0x%lx\n"
  4794. "CPU%-2d pmc0 : 0x%lx\n",
  4795. cpu, psr,
  4796. cpu, ia64_get_pmc(0));
  4797. for (i=0; PMC_IS_LAST(i) == 0; i++) {
  4798. if (PMC_IS_COUNTING(i) == 0) continue;
  4799. seq_printf(m,
  4800. "CPU%-2d pmc%u : 0x%lx\n"
  4801. "CPU%-2d pmd%u : 0x%lx\n",
  4802. cpu, i, ia64_get_pmc(i),
  4803. cpu, i, ia64_get_pmd(i));
  4804. }
  4805. }
  4806. return 0;
  4807. }
  4808. const struct seq_operations pfm_seq_ops = {
  4809. .start = pfm_proc_start,
  4810. .next = pfm_proc_next,
  4811. .stop = pfm_proc_stop,
  4812. .show = pfm_proc_show
  4813. };
  4814. static int
  4815. pfm_proc_open(struct inode *inode, struct file *file)
  4816. {
  4817. return seq_open(file, &pfm_seq_ops);
  4818. }
  4819. /*
  4820. * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
  4821. * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
  4822. * is active or inactive based on mode. We must rely on the value in
  4823. * local_cpu_data->pfm_syst_info
  4824. */
  4825. void
  4826. pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
  4827. {
  4828. struct pt_regs *regs;
  4829. unsigned long dcr;
  4830. unsigned long dcr_pp;
  4831. dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
  4832. /*
  4833. * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
  4834. * on every CPU, so we can rely on the pid to identify the idle task.
  4835. */
  4836. if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
  4837. regs = task_pt_regs(task);
  4838. ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
  4839. return;
  4840. }
  4841. /*
  4842. * if monitoring has started
  4843. */
  4844. if (dcr_pp) {
  4845. dcr = ia64_getreg(_IA64_REG_CR_DCR);
  4846. /*
  4847. * context switching in?
  4848. */
  4849. if (is_ctxswin) {
  4850. /* mask monitoring for the idle task */
  4851. ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
  4852. pfm_clear_psr_pp();
  4853. ia64_srlz_i();
  4854. return;
  4855. }
  4856. /*
  4857. * context switching out
  4858. * restore monitoring for next task
  4859. *
  4860. * Due to inlining this odd if-then-else construction generates
  4861. * better code.
  4862. */
  4863. ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
  4864. pfm_set_psr_pp();
  4865. ia64_srlz_i();
  4866. }
  4867. }
  4868. #ifdef CONFIG_SMP
  4869. static void
  4870. pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
  4871. {
  4872. struct task_struct *task = ctx->ctx_task;
  4873. ia64_psr(regs)->up = 0;
  4874. ia64_psr(regs)->sp = 1;
  4875. if (GET_PMU_OWNER() == task) {
  4876. DPRINT(("cleared ownership for [%d]\n",
  4877. task_pid_nr(ctx->ctx_task)));
  4878. SET_PMU_OWNER(NULL, NULL);
  4879. }
  4880. /*
  4881. * disconnect the task from the context and vice-versa
  4882. */
  4883. PFM_SET_WORK_PENDING(task, 0);
  4884. task->thread.pfm_context = NULL;
  4885. task->thread.flags &= ~IA64_THREAD_PM_VALID;
  4886. DPRINT(("force cleanup for [%d]\n", task_pid_nr(task)));
  4887. }
  4888. /*
  4889. * in 2.6, interrupts are masked when we come here and the runqueue lock is held
  4890. */
  4891. void
  4892. pfm_save_regs(struct task_struct *task)
  4893. {
  4894. pfm_context_t *ctx;
  4895. unsigned long flags;
  4896. u64 psr;
  4897. ctx = PFM_GET_CTX(task);
  4898. if (ctx == NULL) return;
  4899. /*
  4900. * we always come here with interrupts ALREADY disabled by
  4901. * the scheduler. So we simply need to protect against concurrent
  4902. * access, not CPU concurrency.
  4903. */
  4904. flags = pfm_protect_ctx_ctxsw(ctx);
  4905. if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
  4906. struct pt_regs *regs = task_pt_regs(task);
  4907. pfm_clear_psr_up();
  4908. pfm_force_cleanup(ctx, regs);
  4909. BUG_ON(ctx->ctx_smpl_hdr);
  4910. pfm_unprotect_ctx_ctxsw(ctx, flags);
  4911. pfm_context_free(ctx);
  4912. return;
  4913. }
  4914. /*
  4915. * save current PSR: needed because we modify it
  4916. */
  4917. ia64_srlz_d();
  4918. psr = pfm_get_psr();
  4919. BUG_ON(psr & (IA64_PSR_I));
  4920. /*
  4921. * stop monitoring:
  4922. * This is the last instruction which may generate an overflow
  4923. *
  4924. * We do not need to set psr.sp because, it is irrelevant in kernel.
  4925. * It will be restored from ipsr when going back to user level
  4926. */
  4927. pfm_clear_psr_up();
  4928. /*
  4929. * keep a copy of psr.up (for reload)
  4930. */
  4931. ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
  4932. /*
  4933. * release ownership of this PMU.
  4934. * PM interrupts are masked, so nothing
  4935. * can happen.
  4936. */
  4937. SET_PMU_OWNER(NULL, NULL);
  4938. /*
  4939. * we systematically save the PMD as we have no
  4940. * guarantee we will be schedule at that same
  4941. * CPU again.
  4942. */
  4943. pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
  4944. /*
  4945. * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
  4946. * we will need it on the restore path to check
  4947. * for pending overflow.
  4948. */
  4949. ctx->th_pmcs[0] = ia64_get_pmc(0);
  4950. /*
  4951. * unfreeze PMU if had pending overflows
  4952. */
  4953. if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
  4954. /*
  4955. * finally, allow context access.
  4956. * interrupts will still be masked after this call.
  4957. */
  4958. pfm_unprotect_ctx_ctxsw(ctx, flags);
  4959. }
  4960. #else /* !CONFIG_SMP */
  4961. void
  4962. pfm_save_regs(struct task_struct *task)
  4963. {
  4964. pfm_context_t *ctx;
  4965. u64 psr;
  4966. ctx = PFM_GET_CTX(task);
  4967. if (ctx == NULL) return;
  4968. /*
  4969. * save current PSR: needed because we modify it
  4970. */
  4971. psr = pfm_get_psr();
  4972. BUG_ON(psr & (IA64_PSR_I));
  4973. /*
  4974. * stop monitoring:
  4975. * This is the last instruction which may generate an overflow
  4976. *
  4977. * We do not need to set psr.sp because, it is irrelevant in kernel.
  4978. * It will be restored from ipsr when going back to user level
  4979. */
  4980. pfm_clear_psr_up();
  4981. /*
  4982. * keep a copy of psr.up (for reload)
  4983. */
  4984. ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
  4985. }
  4986. static void
  4987. pfm_lazy_save_regs (struct task_struct *task)
  4988. {
  4989. pfm_context_t *ctx;
  4990. unsigned long flags;
  4991. { u64 psr = pfm_get_psr();
  4992. BUG_ON(psr & IA64_PSR_UP);
  4993. }
  4994. ctx = PFM_GET_CTX(task);
  4995. /*
  4996. * we need to mask PMU overflow here to
  4997. * make sure that we maintain pmc0 until
  4998. * we save it. overflow interrupts are
  4999. * treated as spurious if there is no
  5000. * owner.
  5001. *
  5002. * XXX: I don't think this is necessary
  5003. */
  5004. PROTECT_CTX(ctx,flags);
  5005. /*
  5006. * release ownership of this PMU.
  5007. * must be done before we save the registers.
  5008. *
  5009. * after this call any PMU interrupt is treated
  5010. * as spurious.
  5011. */
  5012. SET_PMU_OWNER(NULL, NULL);
  5013. /*
  5014. * save all the pmds we use
  5015. */
  5016. pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
  5017. /*
  5018. * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
  5019. * it is needed to check for pended overflow
  5020. * on the restore path
  5021. */
  5022. ctx->th_pmcs[0] = ia64_get_pmc(0);
  5023. /*
  5024. * unfreeze PMU if had pending overflows
  5025. */
  5026. if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
  5027. /*
  5028. * now get can unmask PMU interrupts, they will
  5029. * be treated as purely spurious and we will not
  5030. * lose any information
  5031. */
  5032. UNPROTECT_CTX(ctx,flags);
  5033. }
  5034. #endif /* CONFIG_SMP */
  5035. #ifdef CONFIG_SMP
  5036. /*
  5037. * in 2.6, interrupts are masked when we come here and the runqueue lock is held
  5038. */
  5039. void
  5040. pfm_load_regs (struct task_struct *task)
  5041. {
  5042. pfm_context_t *ctx;
  5043. unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
  5044. unsigned long flags;
  5045. u64 psr, psr_up;
  5046. int need_irq_resend;
  5047. ctx = PFM_GET_CTX(task);
  5048. if (unlikely(ctx == NULL)) return;
  5049. BUG_ON(GET_PMU_OWNER());
  5050. /*
  5051. * possible on unload
  5052. */
  5053. if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
  5054. /*
  5055. * we always come here with interrupts ALREADY disabled by
  5056. * the scheduler. So we simply need to protect against concurrent
  5057. * access, not CPU concurrency.
  5058. */
  5059. flags = pfm_protect_ctx_ctxsw(ctx);
  5060. psr = pfm_get_psr();
  5061. need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
  5062. BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
  5063. BUG_ON(psr & IA64_PSR_I);
  5064. if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
  5065. struct pt_regs *regs = task_pt_regs(task);
  5066. BUG_ON(ctx->ctx_smpl_hdr);
  5067. pfm_force_cleanup(ctx, regs);
  5068. pfm_unprotect_ctx_ctxsw(ctx, flags);
  5069. /*
  5070. * this one (kmalloc'ed) is fine with interrupts disabled
  5071. */
  5072. pfm_context_free(ctx);
  5073. return;
  5074. }
  5075. /*
  5076. * we restore ALL the debug registers to avoid picking up
  5077. * stale state.
  5078. */
  5079. if (ctx->ctx_fl_using_dbreg) {
  5080. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  5081. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  5082. }
  5083. /*
  5084. * retrieve saved psr.up
  5085. */
  5086. psr_up = ctx->ctx_saved_psr_up;
  5087. /*
  5088. * if we were the last user of the PMU on that CPU,
  5089. * then nothing to do except restore psr
  5090. */
  5091. if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
  5092. /*
  5093. * retrieve partial reload masks (due to user modifications)
  5094. */
  5095. pmc_mask = ctx->ctx_reload_pmcs[0];
  5096. pmd_mask = ctx->ctx_reload_pmds[0];
  5097. } else {
  5098. /*
  5099. * To avoid leaking information to the user level when psr.sp=0,
  5100. * we must reload ALL implemented pmds (even the ones we don't use).
  5101. * In the kernel we only allow PFM_READ_PMDS on registers which
  5102. * we initialized or requested (sampling) so there is no risk there.
  5103. */
  5104. pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
  5105. /*
  5106. * ALL accessible PMCs are systematically reloaded, unused registers
  5107. * get their default (from pfm_reset_pmu_state()) values to avoid picking
  5108. * up stale configuration.
  5109. *
  5110. * PMC0 is never in the mask. It is always restored separately.
  5111. */
  5112. pmc_mask = ctx->ctx_all_pmcs[0];
  5113. }
  5114. /*
  5115. * when context is MASKED, we will restore PMC with plm=0
  5116. * and PMD with stale information, but that's ok, nothing
  5117. * will be captured.
  5118. *
  5119. * XXX: optimize here
  5120. */
  5121. if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
  5122. if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
  5123. /*
  5124. * check for pending overflow at the time the state
  5125. * was saved.
  5126. */
  5127. if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
  5128. /*
  5129. * reload pmc0 with the overflow information
  5130. * On McKinley PMU, this will trigger a PMU interrupt
  5131. */
  5132. ia64_set_pmc(0, ctx->th_pmcs[0]);
  5133. ia64_srlz_d();
  5134. ctx->th_pmcs[0] = 0UL;
  5135. /*
  5136. * will replay the PMU interrupt
  5137. */
  5138. if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
  5139. pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
  5140. }
  5141. /*
  5142. * we just did a reload, so we reset the partial reload fields
  5143. */
  5144. ctx->ctx_reload_pmcs[0] = 0UL;
  5145. ctx->ctx_reload_pmds[0] = 0UL;
  5146. SET_LAST_CPU(ctx, smp_processor_id());
  5147. /*
  5148. * dump activation value for this PMU
  5149. */
  5150. INC_ACTIVATION();
  5151. /*
  5152. * record current activation for this context
  5153. */
  5154. SET_ACTIVATION(ctx);
  5155. /*
  5156. * establish new ownership.
  5157. */
  5158. SET_PMU_OWNER(task, ctx);
  5159. /*
  5160. * restore the psr.up bit. measurement
  5161. * is active again.
  5162. * no PMU interrupt can happen at this point
  5163. * because we still have interrupts disabled.
  5164. */
  5165. if (likely(psr_up)) pfm_set_psr_up();
  5166. /*
  5167. * allow concurrent access to context
  5168. */
  5169. pfm_unprotect_ctx_ctxsw(ctx, flags);
  5170. }
  5171. #else /* !CONFIG_SMP */
  5172. /*
  5173. * reload PMU state for UP kernels
  5174. * in 2.5 we come here with interrupts disabled
  5175. */
  5176. void
  5177. pfm_load_regs (struct task_struct *task)
  5178. {
  5179. pfm_context_t *ctx;
  5180. struct task_struct *owner;
  5181. unsigned long pmd_mask, pmc_mask;
  5182. u64 psr, psr_up;
  5183. int need_irq_resend;
  5184. owner = GET_PMU_OWNER();
  5185. ctx = PFM_GET_CTX(task);
  5186. psr = pfm_get_psr();
  5187. BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
  5188. BUG_ON(psr & IA64_PSR_I);
  5189. /*
  5190. * we restore ALL the debug registers to avoid picking up
  5191. * stale state.
  5192. *
  5193. * This must be done even when the task is still the owner
  5194. * as the registers may have been modified via ptrace()
  5195. * (not perfmon) by the previous task.
  5196. */
  5197. if (ctx->ctx_fl_using_dbreg) {
  5198. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  5199. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  5200. }
  5201. /*
  5202. * retrieved saved psr.up
  5203. */
  5204. psr_up = ctx->ctx_saved_psr_up;
  5205. need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
  5206. /*
  5207. * short path, our state is still there, just
  5208. * need to restore psr and we go
  5209. *
  5210. * we do not touch either PMC nor PMD. the psr is not touched
  5211. * by the overflow_handler. So we are safe w.r.t. to interrupt
  5212. * concurrency even without interrupt masking.
  5213. */
  5214. if (likely(owner == task)) {
  5215. if (likely(psr_up)) pfm_set_psr_up();
  5216. return;
  5217. }
  5218. /*
  5219. * someone else is still using the PMU, first push it out and
  5220. * then we'll be able to install our stuff !
  5221. *
  5222. * Upon return, there will be no owner for the current PMU
  5223. */
  5224. if (owner) pfm_lazy_save_regs(owner);
  5225. /*
  5226. * To avoid leaking information to the user level when psr.sp=0,
  5227. * we must reload ALL implemented pmds (even the ones we don't use).
  5228. * In the kernel we only allow PFM_READ_PMDS on registers which
  5229. * we initialized or requested (sampling) so there is no risk there.
  5230. */
  5231. pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
  5232. /*
  5233. * ALL accessible PMCs are systematically reloaded, unused registers
  5234. * get their default (from pfm_reset_pmu_state()) values to avoid picking
  5235. * up stale configuration.
  5236. *
  5237. * PMC0 is never in the mask. It is always restored separately
  5238. */
  5239. pmc_mask = ctx->ctx_all_pmcs[0];
  5240. pfm_restore_pmds(ctx->th_pmds, pmd_mask);
  5241. pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
  5242. /*
  5243. * check for pending overflow at the time the state
  5244. * was saved.
  5245. */
  5246. if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
  5247. /*
  5248. * reload pmc0 with the overflow information
  5249. * On McKinley PMU, this will trigger a PMU interrupt
  5250. */
  5251. ia64_set_pmc(0, ctx->th_pmcs[0]);
  5252. ia64_srlz_d();
  5253. ctx->th_pmcs[0] = 0UL;
  5254. /*
  5255. * will replay the PMU interrupt
  5256. */
  5257. if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
  5258. pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
  5259. }
  5260. /*
  5261. * establish new ownership.
  5262. */
  5263. SET_PMU_OWNER(task, ctx);
  5264. /*
  5265. * restore the psr.up bit. measurement
  5266. * is active again.
  5267. * no PMU interrupt can happen at this point
  5268. * because we still have interrupts disabled.
  5269. */
  5270. if (likely(psr_up)) pfm_set_psr_up();
  5271. }
  5272. #endif /* CONFIG_SMP */
  5273. /*
  5274. * this function assumes monitoring is stopped
  5275. */
  5276. static void
  5277. pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
  5278. {
  5279. u64 pmc0;
  5280. unsigned long mask2, val, pmd_val, ovfl_val;
  5281. int i, can_access_pmu = 0;
  5282. int is_self;
  5283. /*
  5284. * is the caller the task being monitored (or which initiated the
  5285. * session for system wide measurements)
  5286. */
  5287. is_self = ctx->ctx_task == task ? 1 : 0;
  5288. /*
  5289. * can access PMU is task is the owner of the PMU state on the current CPU
  5290. * or if we are running on the CPU bound to the context in system-wide mode
  5291. * (that is not necessarily the task the context is attached to in this mode).
  5292. * In system-wide we always have can_access_pmu true because a task running on an
  5293. * invalid processor is flagged earlier in the call stack (see pfm_stop).
  5294. */
  5295. can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
  5296. if (can_access_pmu) {
  5297. /*
  5298. * Mark the PMU as not owned
  5299. * This will cause the interrupt handler to do nothing in case an overflow
  5300. * interrupt was in-flight
  5301. * This also guarantees that pmc0 will contain the final state
  5302. * It virtually gives us full control on overflow processing from that point
  5303. * on.
  5304. */
  5305. SET_PMU_OWNER(NULL, NULL);
  5306. DPRINT(("releasing ownership\n"));
  5307. /*
  5308. * read current overflow status:
  5309. *
  5310. * we are guaranteed to read the final stable state
  5311. */
  5312. ia64_srlz_d();
  5313. pmc0 = ia64_get_pmc(0); /* slow */
  5314. /*
  5315. * reset freeze bit, overflow status information destroyed
  5316. */
  5317. pfm_unfreeze_pmu();
  5318. } else {
  5319. pmc0 = ctx->th_pmcs[0];
  5320. /*
  5321. * clear whatever overflow status bits there were
  5322. */
  5323. ctx->th_pmcs[0] = 0;
  5324. }
  5325. ovfl_val = pmu_conf->ovfl_val;
  5326. /*
  5327. * we save all the used pmds
  5328. * we take care of overflows for counting PMDs
  5329. *
  5330. * XXX: sampling situation is not taken into account here
  5331. */
  5332. mask2 = ctx->ctx_used_pmds[0];
  5333. DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
  5334. for (i = 0; mask2; i++, mask2>>=1) {
  5335. /* skip non used pmds */
  5336. if ((mask2 & 0x1) == 0) continue;
  5337. /*
  5338. * can access PMU always true in system wide mode
  5339. */
  5340. val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
  5341. if (PMD_IS_COUNTING(i)) {
  5342. DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
  5343. task_pid_nr(task),
  5344. i,
  5345. ctx->ctx_pmds[i].val,
  5346. val & ovfl_val));
  5347. /*
  5348. * we rebuild the full 64 bit value of the counter
  5349. */
  5350. val = ctx->ctx_pmds[i].val + (val & ovfl_val);
  5351. /*
  5352. * now everything is in ctx_pmds[] and we need
  5353. * to clear the saved context from save_regs() such that
  5354. * pfm_read_pmds() gets the correct value
  5355. */
  5356. pmd_val = 0UL;
  5357. /*
  5358. * take care of overflow inline
  5359. */
  5360. if (pmc0 & (1UL << i)) {
  5361. val += 1 + ovfl_val;
  5362. DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
  5363. }
  5364. }
  5365. DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
  5366. if (is_self) ctx->th_pmds[i] = pmd_val;
  5367. ctx->ctx_pmds[i].val = val;
  5368. }
  5369. }
  5370. static struct irqaction perfmon_irqaction = {
  5371. .handler = pfm_interrupt_handler,
  5372. .flags = IRQF_DISABLED,
  5373. .name = "perfmon"
  5374. };
  5375. static void
  5376. pfm_alt_save_pmu_state(void *data)
  5377. {
  5378. struct pt_regs *regs;
  5379. regs = task_pt_regs(current);
  5380. DPRINT(("called\n"));
  5381. /*
  5382. * should not be necessary but
  5383. * let's take not risk
  5384. */
  5385. pfm_clear_psr_up();
  5386. pfm_clear_psr_pp();
  5387. ia64_psr(regs)->pp = 0;
  5388. /*
  5389. * This call is required
  5390. * May cause a spurious interrupt on some processors
  5391. */
  5392. pfm_freeze_pmu();
  5393. ia64_srlz_d();
  5394. }
  5395. void
  5396. pfm_alt_restore_pmu_state(void *data)
  5397. {
  5398. struct pt_regs *regs;
  5399. regs = task_pt_regs(current);
  5400. DPRINT(("called\n"));
  5401. /*
  5402. * put PMU back in state expected
  5403. * by perfmon
  5404. */
  5405. pfm_clear_psr_up();
  5406. pfm_clear_psr_pp();
  5407. ia64_psr(regs)->pp = 0;
  5408. /*
  5409. * perfmon runs with PMU unfrozen at all times
  5410. */
  5411. pfm_unfreeze_pmu();
  5412. ia64_srlz_d();
  5413. }
  5414. int
  5415. pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
  5416. {
  5417. int ret, i;
  5418. int reserve_cpu;
  5419. /* some sanity checks */
  5420. if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
  5421. /* do the easy test first */
  5422. if (pfm_alt_intr_handler) return -EBUSY;
  5423. /* one at a time in the install or remove, just fail the others */
  5424. if (!spin_trylock(&pfm_alt_install_check)) {
  5425. return -EBUSY;
  5426. }
  5427. /* reserve our session */
  5428. for_each_online_cpu(reserve_cpu) {
  5429. ret = pfm_reserve_session(NULL, 1, reserve_cpu);
  5430. if (ret) goto cleanup_reserve;
  5431. }
  5432. /* save the current system wide pmu states */
  5433. ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
  5434. if (ret) {
  5435. DPRINT(("on_each_cpu() failed: %d\n", ret));
  5436. goto cleanup_reserve;
  5437. }
  5438. /* officially change to the alternate interrupt handler */
  5439. pfm_alt_intr_handler = hdl;
  5440. spin_unlock(&pfm_alt_install_check);
  5441. return 0;
  5442. cleanup_reserve:
  5443. for_each_online_cpu(i) {
  5444. /* don't unreserve more than we reserved */
  5445. if (i >= reserve_cpu) break;
  5446. pfm_unreserve_session(NULL, 1, i);
  5447. }
  5448. spin_unlock(&pfm_alt_install_check);
  5449. return ret;
  5450. }
  5451. EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
  5452. int
  5453. pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
  5454. {
  5455. int i;
  5456. int ret;
  5457. if (hdl == NULL) return -EINVAL;
  5458. /* cannot remove someone else's handler! */
  5459. if (pfm_alt_intr_handler != hdl) return -EINVAL;
  5460. /* one at a time in the install or remove, just fail the others */
  5461. if (!spin_trylock(&pfm_alt_install_check)) {
  5462. return -EBUSY;
  5463. }
  5464. pfm_alt_intr_handler = NULL;
  5465. ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
  5466. if (ret) {
  5467. DPRINT(("on_each_cpu() failed: %d\n", ret));
  5468. }
  5469. for_each_online_cpu(i) {
  5470. pfm_unreserve_session(NULL, 1, i);
  5471. }
  5472. spin_unlock(&pfm_alt_install_check);
  5473. return 0;
  5474. }
  5475. EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
  5476. /*
  5477. * perfmon initialization routine, called from the initcall() table
  5478. */
  5479. static int init_pfm_fs(void);
  5480. static int __init
  5481. pfm_probe_pmu(void)
  5482. {
  5483. pmu_config_t **p;
  5484. int family;
  5485. family = local_cpu_data->family;
  5486. p = pmu_confs;
  5487. while(*p) {
  5488. if ((*p)->probe) {
  5489. if ((*p)->probe() == 0) goto found;
  5490. } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
  5491. goto found;
  5492. }
  5493. p++;
  5494. }
  5495. return -1;
  5496. found:
  5497. pmu_conf = *p;
  5498. return 0;
  5499. }
  5500. static const struct file_operations pfm_proc_fops = {
  5501. .open = pfm_proc_open,
  5502. .read = seq_read,
  5503. .llseek = seq_lseek,
  5504. .release = seq_release,
  5505. };
  5506. int __init
  5507. pfm_init(void)
  5508. {
  5509. unsigned int n, n_counters, i;
  5510. printk("perfmon: version %u.%u IRQ %u\n",
  5511. PFM_VERSION_MAJ,
  5512. PFM_VERSION_MIN,
  5513. IA64_PERFMON_VECTOR);
  5514. if (pfm_probe_pmu()) {
  5515. printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
  5516. local_cpu_data->family);
  5517. return -ENODEV;
  5518. }
  5519. /*
  5520. * compute the number of implemented PMD/PMC from the
  5521. * description tables
  5522. */
  5523. n = 0;
  5524. for (i=0; PMC_IS_LAST(i) == 0; i++) {
  5525. if (PMC_IS_IMPL(i) == 0) continue;
  5526. pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
  5527. n++;
  5528. }
  5529. pmu_conf->num_pmcs = n;
  5530. n = 0; n_counters = 0;
  5531. for (i=0; PMD_IS_LAST(i) == 0; i++) {
  5532. if (PMD_IS_IMPL(i) == 0) continue;
  5533. pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
  5534. n++;
  5535. if (PMD_IS_COUNTING(i)) n_counters++;
  5536. }
  5537. pmu_conf->num_pmds = n;
  5538. pmu_conf->num_counters = n_counters;
  5539. /*
  5540. * sanity checks on the number of debug registers
  5541. */
  5542. if (pmu_conf->use_rr_dbregs) {
  5543. if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
  5544. printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
  5545. pmu_conf = NULL;
  5546. return -1;
  5547. }
  5548. if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
  5549. printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
  5550. pmu_conf = NULL;
  5551. return -1;
  5552. }
  5553. }
  5554. printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
  5555. pmu_conf->pmu_name,
  5556. pmu_conf->num_pmcs,
  5557. pmu_conf->num_pmds,
  5558. pmu_conf->num_counters,
  5559. ffz(pmu_conf->ovfl_val));
  5560. /* sanity check */
  5561. if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
  5562. printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
  5563. pmu_conf = NULL;
  5564. return -1;
  5565. }
  5566. /*
  5567. * create /proc/perfmon (mostly for debugging purposes)
  5568. */
  5569. perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
  5570. if (perfmon_dir == NULL) {
  5571. printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
  5572. pmu_conf = NULL;
  5573. return -1;
  5574. }
  5575. /*
  5576. * create /proc/sys/kernel/perfmon (for debugging purposes)
  5577. */
  5578. pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
  5579. /*
  5580. * initialize all our spinlocks
  5581. */
  5582. spin_lock_init(&pfm_sessions.pfs_lock);
  5583. spin_lock_init(&pfm_buffer_fmt_lock);
  5584. init_pfm_fs();
  5585. for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
  5586. return 0;
  5587. }
  5588. __initcall(pfm_init);
  5589. /*
  5590. * this function is called before pfm_init()
  5591. */
  5592. void
  5593. pfm_init_percpu (void)
  5594. {
  5595. static int first_time=1;
  5596. /*
  5597. * make sure no measurement is active
  5598. * (may inherit programmed PMCs from EFI).
  5599. */
  5600. pfm_clear_psr_pp();
  5601. pfm_clear_psr_up();
  5602. /*
  5603. * we run with the PMU not frozen at all times
  5604. */
  5605. pfm_unfreeze_pmu();
  5606. if (first_time) {
  5607. register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
  5608. first_time=0;
  5609. }
  5610. ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
  5611. ia64_srlz_d();
  5612. }
  5613. /*
  5614. * used for debug purposes only
  5615. */
  5616. void
  5617. dump_pmu_state(const char *from)
  5618. {
  5619. struct task_struct *task;
  5620. struct pt_regs *regs;
  5621. pfm_context_t *ctx;
  5622. unsigned long psr, dcr, info, flags;
  5623. int i, this_cpu;
  5624. local_irq_save(flags);
  5625. this_cpu = smp_processor_id();
  5626. regs = task_pt_regs(current);
  5627. info = PFM_CPUINFO_GET();
  5628. dcr = ia64_getreg(_IA64_REG_CR_DCR);
  5629. if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
  5630. local_irq_restore(flags);
  5631. return;
  5632. }
  5633. printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
  5634. this_cpu,
  5635. from,
  5636. task_pid_nr(current),
  5637. regs->cr_iip,
  5638. current->comm);
  5639. task = GET_PMU_OWNER();
  5640. ctx = GET_PMU_CTX();
  5641. printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
  5642. psr = pfm_get_psr();
  5643. printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
  5644. this_cpu,
  5645. ia64_get_pmc(0),
  5646. psr & IA64_PSR_PP ? 1 : 0,
  5647. psr & IA64_PSR_UP ? 1 : 0,
  5648. dcr & IA64_DCR_PP ? 1 : 0,
  5649. info,
  5650. ia64_psr(regs)->up,
  5651. ia64_psr(regs)->pp);
  5652. ia64_psr(regs)->up = 0;
  5653. ia64_psr(regs)->pp = 0;
  5654. for (i=1; PMC_IS_LAST(i) == 0; i++) {
  5655. if (PMC_IS_IMPL(i) == 0) continue;
  5656. printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
  5657. }
  5658. for (i=1; PMD_IS_LAST(i) == 0; i++) {
  5659. if (PMD_IS_IMPL(i) == 0) continue;
  5660. printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
  5661. }
  5662. if (ctx) {
  5663. printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
  5664. this_cpu,
  5665. ctx->ctx_state,
  5666. ctx->ctx_smpl_vaddr,
  5667. ctx->ctx_smpl_hdr,
  5668. ctx->ctx_msgq_head,
  5669. ctx->ctx_msgq_tail,
  5670. ctx->ctx_saved_psr_up);
  5671. }
  5672. local_irq_restore(flags);
  5673. }
  5674. /*
  5675. * called from process.c:copy_thread(). task is new child.
  5676. */
  5677. void
  5678. pfm_inherit(struct task_struct *task, struct pt_regs *regs)
  5679. {
  5680. struct thread_struct *thread;
  5681. DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
  5682. thread = &task->thread;
  5683. /*
  5684. * cut links inherited from parent (current)
  5685. */
  5686. thread->pfm_context = NULL;
  5687. PFM_SET_WORK_PENDING(task, 0);
  5688. /*
  5689. * the psr bits are already set properly in copy_threads()
  5690. */
  5691. }
  5692. #else /* !CONFIG_PERFMON */
  5693. asmlinkage long
  5694. sys_perfmonctl (int fd, int cmd, void *arg, int count)
  5695. {
  5696. return -ENOSYS;
  5697. }
  5698. #endif /* CONFIG_PERFMON */