ib_send.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021
  1. /*
  2. * Copyright (c) 2006 Oracle. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/kernel.h>
  34. #include <linux/in.h>
  35. #include <linux/device.h>
  36. #include <linux/dmapool.h>
  37. #include <linux/ratelimit.h>
  38. #include "rds.h"
  39. #include "ib.h"
  40. static char *rds_ib_wc_status_strings[] = {
  41. #define RDS_IB_WC_STATUS_STR(foo) \
  42. [IB_WC_##foo] = __stringify(IB_WC_##foo)
  43. RDS_IB_WC_STATUS_STR(SUCCESS),
  44. RDS_IB_WC_STATUS_STR(LOC_LEN_ERR),
  45. RDS_IB_WC_STATUS_STR(LOC_QP_OP_ERR),
  46. RDS_IB_WC_STATUS_STR(LOC_EEC_OP_ERR),
  47. RDS_IB_WC_STATUS_STR(LOC_PROT_ERR),
  48. RDS_IB_WC_STATUS_STR(WR_FLUSH_ERR),
  49. RDS_IB_WC_STATUS_STR(MW_BIND_ERR),
  50. RDS_IB_WC_STATUS_STR(BAD_RESP_ERR),
  51. RDS_IB_WC_STATUS_STR(LOC_ACCESS_ERR),
  52. RDS_IB_WC_STATUS_STR(REM_INV_REQ_ERR),
  53. RDS_IB_WC_STATUS_STR(REM_ACCESS_ERR),
  54. RDS_IB_WC_STATUS_STR(REM_OP_ERR),
  55. RDS_IB_WC_STATUS_STR(RETRY_EXC_ERR),
  56. RDS_IB_WC_STATUS_STR(RNR_RETRY_EXC_ERR),
  57. RDS_IB_WC_STATUS_STR(LOC_RDD_VIOL_ERR),
  58. RDS_IB_WC_STATUS_STR(REM_INV_RD_REQ_ERR),
  59. RDS_IB_WC_STATUS_STR(REM_ABORT_ERR),
  60. RDS_IB_WC_STATUS_STR(INV_EECN_ERR),
  61. RDS_IB_WC_STATUS_STR(INV_EEC_STATE_ERR),
  62. RDS_IB_WC_STATUS_STR(FATAL_ERR),
  63. RDS_IB_WC_STATUS_STR(RESP_TIMEOUT_ERR),
  64. RDS_IB_WC_STATUS_STR(GENERAL_ERR),
  65. #undef RDS_IB_WC_STATUS_STR
  66. };
  67. char *rds_ib_wc_status_str(enum ib_wc_status status)
  68. {
  69. return rds_str_array(rds_ib_wc_status_strings,
  70. ARRAY_SIZE(rds_ib_wc_status_strings), status);
  71. }
  72. /*
  73. * Convert IB-specific error message to RDS error message and call core
  74. * completion handler.
  75. */
  76. static void rds_ib_send_complete(struct rds_message *rm,
  77. int wc_status,
  78. void (*complete)(struct rds_message *rm, int status))
  79. {
  80. int notify_status;
  81. switch (wc_status) {
  82. case IB_WC_WR_FLUSH_ERR:
  83. return;
  84. case IB_WC_SUCCESS:
  85. notify_status = RDS_RDMA_SUCCESS;
  86. break;
  87. case IB_WC_REM_ACCESS_ERR:
  88. notify_status = RDS_RDMA_REMOTE_ERROR;
  89. break;
  90. default:
  91. notify_status = RDS_RDMA_OTHER_ERROR;
  92. break;
  93. }
  94. complete(rm, notify_status);
  95. }
  96. static void rds_ib_send_unmap_data(struct rds_ib_connection *ic,
  97. struct rm_data_op *op,
  98. int wc_status)
  99. {
  100. if (op->op_nents)
  101. ib_dma_unmap_sg(ic->i_cm_id->device,
  102. op->op_sg, op->op_nents,
  103. DMA_TO_DEVICE);
  104. }
  105. static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic,
  106. struct rm_rdma_op *op,
  107. int wc_status)
  108. {
  109. if (op->op_mapped) {
  110. ib_dma_unmap_sg(ic->i_cm_id->device,
  111. op->op_sg, op->op_nents,
  112. op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  113. op->op_mapped = 0;
  114. }
  115. /* If the user asked for a completion notification on this
  116. * message, we can implement three different semantics:
  117. * 1. Notify when we received the ACK on the RDS message
  118. * that was queued with the RDMA. This provides reliable
  119. * notification of RDMA status at the expense of a one-way
  120. * packet delay.
  121. * 2. Notify when the IB stack gives us the completion event for
  122. * the RDMA operation.
  123. * 3. Notify when the IB stack gives us the completion event for
  124. * the accompanying RDS messages.
  125. * Here, we implement approach #3. To implement approach #2,
  126. * we would need to take an event for the rdma WR. To implement #1,
  127. * don't call rds_rdma_send_complete at all, and fall back to the notify
  128. * handling in the ACK processing code.
  129. *
  130. * Note: There's no need to explicitly sync any RDMA buffers using
  131. * ib_dma_sync_sg_for_cpu - the completion for the RDMA
  132. * operation itself unmapped the RDMA buffers, which takes care
  133. * of synching.
  134. */
  135. rds_ib_send_complete(container_of(op, struct rds_message, rdma),
  136. wc_status, rds_rdma_send_complete);
  137. if (op->op_write)
  138. rds_stats_add(s_send_rdma_bytes, op->op_bytes);
  139. else
  140. rds_stats_add(s_recv_rdma_bytes, op->op_bytes);
  141. }
  142. static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic,
  143. struct rm_atomic_op *op,
  144. int wc_status)
  145. {
  146. /* unmap atomic recvbuf */
  147. if (op->op_mapped) {
  148. ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1,
  149. DMA_FROM_DEVICE);
  150. op->op_mapped = 0;
  151. }
  152. rds_ib_send_complete(container_of(op, struct rds_message, atomic),
  153. wc_status, rds_atomic_send_complete);
  154. if (op->op_type == RDS_ATOMIC_TYPE_CSWP)
  155. rds_ib_stats_inc(s_ib_atomic_cswp);
  156. else
  157. rds_ib_stats_inc(s_ib_atomic_fadd);
  158. }
  159. /*
  160. * Unmap the resources associated with a struct send_work.
  161. *
  162. * Returns the rm for no good reason other than it is unobtainable
  163. * other than by switching on wr.opcode, currently, and the caller,
  164. * the event handler, needs it.
  165. */
  166. static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic,
  167. struct rds_ib_send_work *send,
  168. int wc_status)
  169. {
  170. struct rds_message *rm = NULL;
  171. /* In the error case, wc.opcode sometimes contains garbage */
  172. switch (send->s_wr.opcode) {
  173. case IB_WR_SEND:
  174. if (send->s_op) {
  175. rm = container_of(send->s_op, struct rds_message, data);
  176. rds_ib_send_unmap_data(ic, send->s_op, wc_status);
  177. }
  178. break;
  179. case IB_WR_RDMA_WRITE:
  180. case IB_WR_RDMA_READ:
  181. if (send->s_op) {
  182. rm = container_of(send->s_op, struct rds_message, rdma);
  183. rds_ib_send_unmap_rdma(ic, send->s_op, wc_status);
  184. }
  185. break;
  186. case IB_WR_ATOMIC_FETCH_AND_ADD:
  187. case IB_WR_ATOMIC_CMP_AND_SWP:
  188. if (send->s_op) {
  189. rm = container_of(send->s_op, struct rds_message, atomic);
  190. rds_ib_send_unmap_atomic(ic, send->s_op, wc_status);
  191. }
  192. break;
  193. default:
  194. printk_ratelimited(KERN_NOTICE
  195. "RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
  196. __func__, send->s_wr.opcode);
  197. break;
  198. }
  199. send->s_wr.opcode = 0xdead;
  200. return rm;
  201. }
  202. void rds_ib_send_init_ring(struct rds_ib_connection *ic)
  203. {
  204. struct rds_ib_send_work *send;
  205. u32 i;
  206. for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
  207. struct ib_sge *sge;
  208. send->s_op = NULL;
  209. send->s_wr.wr_id = i;
  210. send->s_wr.sg_list = send->s_sge;
  211. send->s_wr.ex.imm_data = 0;
  212. sge = &send->s_sge[0];
  213. sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header));
  214. sge->length = sizeof(struct rds_header);
  215. sge->lkey = ic->i_mr->lkey;
  216. send->s_sge[1].lkey = ic->i_mr->lkey;
  217. }
  218. }
  219. void rds_ib_send_clear_ring(struct rds_ib_connection *ic)
  220. {
  221. struct rds_ib_send_work *send;
  222. u32 i;
  223. for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
  224. if (send->s_op && send->s_wr.opcode != 0xdead)
  225. rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR);
  226. }
  227. }
  228. /*
  229. * The only fast path caller always has a non-zero nr, so we don't
  230. * bother testing nr before performing the atomic sub.
  231. */
  232. static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr)
  233. {
  234. if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) &&
  235. waitqueue_active(&rds_ib_ring_empty_wait))
  236. wake_up(&rds_ib_ring_empty_wait);
  237. BUG_ON(atomic_read(&ic->i_signaled_sends) < 0);
  238. }
  239. /*
  240. * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
  241. * operations performed in the send path. As the sender allocs and potentially
  242. * unallocs the next free entry in the ring it doesn't alter which is
  243. * the next to be freed, which is what this is concerned with.
  244. */
  245. void rds_ib_send_cq_comp_handler(struct ib_cq *cq, void *context)
  246. {
  247. struct rds_connection *conn = context;
  248. struct rds_ib_connection *ic = conn->c_transport_data;
  249. struct rds_message *rm = NULL;
  250. struct ib_wc wc;
  251. struct rds_ib_send_work *send;
  252. u32 completed;
  253. u32 oldest;
  254. u32 i = 0;
  255. int ret;
  256. int nr_sig = 0;
  257. rdsdebug("cq %p conn %p\n", cq, conn);
  258. rds_ib_stats_inc(s_ib_tx_cq_call);
  259. ret = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
  260. if (ret)
  261. rdsdebug("ib_req_notify_cq send failed: %d\n", ret);
  262. while (ib_poll_cq(cq, 1, &wc) > 0) {
  263. rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
  264. (unsigned long long)wc.wr_id, wc.status,
  265. rds_ib_wc_status_str(wc.status), wc.byte_len,
  266. be32_to_cpu(wc.ex.imm_data));
  267. rds_ib_stats_inc(s_ib_tx_cq_event);
  268. if (wc.wr_id == RDS_IB_ACK_WR_ID) {
  269. if (ic->i_ack_queued + HZ/2 < jiffies)
  270. rds_ib_stats_inc(s_ib_tx_stalled);
  271. rds_ib_ack_send_complete(ic);
  272. continue;
  273. }
  274. oldest = rds_ib_ring_oldest(&ic->i_send_ring);
  275. completed = rds_ib_ring_completed(&ic->i_send_ring, wc.wr_id, oldest);
  276. for (i = 0; i < completed; i++) {
  277. send = &ic->i_sends[oldest];
  278. if (send->s_wr.send_flags & IB_SEND_SIGNALED)
  279. nr_sig++;
  280. rm = rds_ib_send_unmap_op(ic, send, wc.status);
  281. if (send->s_queued + HZ/2 < jiffies)
  282. rds_ib_stats_inc(s_ib_tx_stalled);
  283. if (send->s_op) {
  284. if (send->s_op == rm->m_final_op) {
  285. /* If anyone waited for this message to get flushed out, wake
  286. * them up now */
  287. rds_message_unmapped(rm);
  288. }
  289. rds_message_put(rm);
  290. send->s_op = NULL;
  291. }
  292. oldest = (oldest + 1) % ic->i_send_ring.w_nr;
  293. }
  294. rds_ib_ring_free(&ic->i_send_ring, completed);
  295. rds_ib_sub_signaled(ic, nr_sig);
  296. nr_sig = 0;
  297. if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
  298. test_bit(0, &conn->c_map_queued))
  299. queue_delayed_work(rds_wq, &conn->c_send_w, 0);
  300. /* We expect errors as the qp is drained during shutdown */
  301. if (wc.status != IB_WC_SUCCESS && rds_conn_up(conn)) {
  302. rds_ib_conn_error(conn, "send completion on %pI4 had status "
  303. "%u (%s), disconnecting and reconnecting\n",
  304. &conn->c_faddr, wc.status,
  305. rds_ib_wc_status_str(wc.status));
  306. }
  307. }
  308. }
  309. /*
  310. * This is the main function for allocating credits when sending
  311. * messages.
  312. *
  313. * Conceptually, we have two counters:
  314. * - send credits: this tells us how many WRs we're allowed
  315. * to submit without overruning the receiver's queue. For
  316. * each SEND WR we post, we decrement this by one.
  317. *
  318. * - posted credits: this tells us how many WRs we recently
  319. * posted to the receive queue. This value is transferred
  320. * to the peer as a "credit update" in a RDS header field.
  321. * Every time we transmit credits to the peer, we subtract
  322. * the amount of transferred credits from this counter.
  323. *
  324. * It is essential that we avoid situations where both sides have
  325. * exhausted their send credits, and are unable to send new credits
  326. * to the peer. We achieve this by requiring that we send at least
  327. * one credit update to the peer before exhausting our credits.
  328. * When new credits arrive, we subtract one credit that is withheld
  329. * until we've posted new buffers and are ready to transmit these
  330. * credits (see rds_ib_send_add_credits below).
  331. *
  332. * The RDS send code is essentially single-threaded; rds_send_xmit
  333. * sets RDS_IN_XMIT to ensure exclusive access to the send ring.
  334. * However, the ACK sending code is independent and can race with
  335. * message SENDs.
  336. *
  337. * In the send path, we need to update the counters for send credits
  338. * and the counter of posted buffers atomically - when we use the
  339. * last available credit, we cannot allow another thread to race us
  340. * and grab the posted credits counter. Hence, we have to use a
  341. * spinlock to protect the credit counter, or use atomics.
  342. *
  343. * Spinlocks shared between the send and the receive path are bad,
  344. * because they create unnecessary delays. An early implementation
  345. * using a spinlock showed a 5% degradation in throughput at some
  346. * loads.
  347. *
  348. * This implementation avoids spinlocks completely, putting both
  349. * counters into a single atomic, and updating that atomic using
  350. * atomic_add (in the receive path, when receiving fresh credits),
  351. * and using atomic_cmpxchg when updating the two counters.
  352. */
  353. int rds_ib_send_grab_credits(struct rds_ib_connection *ic,
  354. u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
  355. {
  356. unsigned int avail, posted, got = 0, advertise;
  357. long oldval, newval;
  358. *adv_credits = 0;
  359. if (!ic->i_flowctl)
  360. return wanted;
  361. try_again:
  362. advertise = 0;
  363. oldval = newval = atomic_read(&ic->i_credits);
  364. posted = IB_GET_POST_CREDITS(oldval);
  365. avail = IB_GET_SEND_CREDITS(oldval);
  366. rdsdebug("rds_ib_send_grab_credits(%u): credits=%u posted=%u\n",
  367. wanted, avail, posted);
  368. /* The last credit must be used to send a credit update. */
  369. if (avail && !posted)
  370. avail--;
  371. if (avail < wanted) {
  372. struct rds_connection *conn = ic->i_cm_id->context;
  373. /* Oops, there aren't that many credits left! */
  374. set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
  375. got = avail;
  376. } else {
  377. /* Sometimes you get what you want, lalala. */
  378. got = wanted;
  379. }
  380. newval -= IB_SET_SEND_CREDITS(got);
  381. /*
  382. * If need_posted is non-zero, then the caller wants
  383. * the posted regardless of whether any send credits are
  384. * available.
  385. */
  386. if (posted && (got || need_posted)) {
  387. advertise = min_t(unsigned int, posted, max_posted);
  388. newval -= IB_SET_POST_CREDITS(advertise);
  389. }
  390. /* Finally bill everything */
  391. if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
  392. goto try_again;
  393. *adv_credits = advertise;
  394. return got;
  395. }
  396. void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits)
  397. {
  398. struct rds_ib_connection *ic = conn->c_transport_data;
  399. if (credits == 0)
  400. return;
  401. rdsdebug("rds_ib_send_add_credits(%u): current=%u%s\n",
  402. credits,
  403. IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
  404. test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
  405. atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
  406. if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
  407. queue_delayed_work(rds_wq, &conn->c_send_w, 0);
  408. WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
  409. rds_ib_stats_inc(s_ib_rx_credit_updates);
  410. }
  411. void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted)
  412. {
  413. struct rds_ib_connection *ic = conn->c_transport_data;
  414. if (posted == 0)
  415. return;
  416. atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
  417. /* Decide whether to send an update to the peer now.
  418. * If we would send a credit update for every single buffer we
  419. * post, we would end up with an ACK storm (ACK arrives,
  420. * consumes buffer, we refill the ring, send ACK to remote
  421. * advertising the newly posted buffer... ad inf)
  422. *
  423. * Performance pretty much depends on how often we send
  424. * credit updates - too frequent updates mean lots of ACKs.
  425. * Too infrequent updates, and the peer will run out of
  426. * credits and has to throttle.
  427. * For the time being, 16 seems to be a good compromise.
  428. */
  429. if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
  430. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  431. }
  432. static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic,
  433. struct rds_ib_send_work *send,
  434. bool notify)
  435. {
  436. /*
  437. * We want to delay signaling completions just enough to get
  438. * the batching benefits but not so much that we create dead time
  439. * on the wire.
  440. */
  441. if (ic->i_unsignaled_wrs-- == 0 || notify) {
  442. ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
  443. send->s_wr.send_flags |= IB_SEND_SIGNALED;
  444. return 1;
  445. }
  446. return 0;
  447. }
  448. /*
  449. * This can be called multiple times for a given message. The first time
  450. * we see a message we map its scatterlist into the IB device so that
  451. * we can provide that mapped address to the IB scatter gather entries
  452. * in the IB work requests. We translate the scatterlist into a series
  453. * of work requests that fragment the message. These work requests complete
  454. * in order so we pass ownership of the message to the completion handler
  455. * once we send the final fragment.
  456. *
  457. * The RDS core uses the c_send_lock to only enter this function once
  458. * per connection. This makes sure that the tx ring alloc/unalloc pairs
  459. * don't get out of sync and confuse the ring.
  460. */
  461. int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm,
  462. unsigned int hdr_off, unsigned int sg, unsigned int off)
  463. {
  464. struct rds_ib_connection *ic = conn->c_transport_data;
  465. struct ib_device *dev = ic->i_cm_id->device;
  466. struct rds_ib_send_work *send = NULL;
  467. struct rds_ib_send_work *first;
  468. struct rds_ib_send_work *prev;
  469. struct ib_send_wr *failed_wr;
  470. struct scatterlist *scat;
  471. u32 pos;
  472. u32 i;
  473. u32 work_alloc;
  474. u32 credit_alloc = 0;
  475. u32 posted;
  476. u32 adv_credits = 0;
  477. int send_flags = 0;
  478. int bytes_sent = 0;
  479. int ret;
  480. int flow_controlled = 0;
  481. int nr_sig = 0;
  482. BUG_ON(off % RDS_FRAG_SIZE);
  483. BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
  484. /* Do not send cong updates to IB loopback */
  485. if (conn->c_loopback
  486. && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) {
  487. rds_cong_map_updated(conn->c_fcong, ~(u64) 0);
  488. scat = &rm->data.op_sg[sg];
  489. ret = max_t(int, RDS_CONG_MAP_BYTES, scat->length);
  490. return sizeof(struct rds_header) + ret;
  491. }
  492. /* FIXME we may overallocate here */
  493. if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
  494. i = 1;
  495. else
  496. i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
  497. work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
  498. if (work_alloc == 0) {
  499. set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
  500. rds_ib_stats_inc(s_ib_tx_ring_full);
  501. ret = -ENOMEM;
  502. goto out;
  503. }
  504. if (ic->i_flowctl) {
  505. credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
  506. adv_credits += posted;
  507. if (credit_alloc < work_alloc) {
  508. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
  509. work_alloc = credit_alloc;
  510. flow_controlled = 1;
  511. }
  512. if (work_alloc == 0) {
  513. set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
  514. rds_ib_stats_inc(s_ib_tx_throttle);
  515. ret = -ENOMEM;
  516. goto out;
  517. }
  518. }
  519. /* map the message the first time we see it */
  520. if (!ic->i_data_op) {
  521. if (rm->data.op_nents) {
  522. rm->data.op_count = ib_dma_map_sg(dev,
  523. rm->data.op_sg,
  524. rm->data.op_nents,
  525. DMA_TO_DEVICE);
  526. rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
  527. if (rm->data.op_count == 0) {
  528. rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
  529. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
  530. ret = -ENOMEM; /* XXX ? */
  531. goto out;
  532. }
  533. } else {
  534. rm->data.op_count = 0;
  535. }
  536. rds_message_addref(rm);
  537. ic->i_data_op = &rm->data;
  538. /* Finalize the header */
  539. if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
  540. rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
  541. if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
  542. rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
  543. /* If it has a RDMA op, tell the peer we did it. This is
  544. * used by the peer to release use-once RDMA MRs. */
  545. if (rm->rdma.op_active) {
  546. struct rds_ext_header_rdma ext_hdr;
  547. ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
  548. rds_message_add_extension(&rm->m_inc.i_hdr,
  549. RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
  550. }
  551. if (rm->m_rdma_cookie) {
  552. rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
  553. rds_rdma_cookie_key(rm->m_rdma_cookie),
  554. rds_rdma_cookie_offset(rm->m_rdma_cookie));
  555. }
  556. /* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
  557. * we should not do this unless we have a chance of at least
  558. * sticking the header into the send ring. Which is why we
  559. * should call rds_ib_ring_alloc first. */
  560. rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic));
  561. rds_message_make_checksum(&rm->m_inc.i_hdr);
  562. /*
  563. * Update adv_credits since we reset the ACK_REQUIRED bit.
  564. */
  565. if (ic->i_flowctl) {
  566. rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
  567. adv_credits += posted;
  568. BUG_ON(adv_credits > 255);
  569. }
  570. }
  571. /* Sometimes you want to put a fence between an RDMA
  572. * READ and the following SEND.
  573. * We could either do this all the time
  574. * or when requested by the user. Right now, we let
  575. * the application choose.
  576. */
  577. if (rm->rdma.op_active && rm->rdma.op_fence)
  578. send_flags = IB_SEND_FENCE;
  579. /* Each frag gets a header. Msgs may be 0 bytes */
  580. send = &ic->i_sends[pos];
  581. first = send;
  582. prev = NULL;
  583. scat = &ic->i_data_op->op_sg[sg];
  584. i = 0;
  585. do {
  586. unsigned int len = 0;
  587. /* Set up the header */
  588. send->s_wr.send_flags = send_flags;
  589. send->s_wr.opcode = IB_WR_SEND;
  590. send->s_wr.num_sge = 1;
  591. send->s_wr.next = NULL;
  592. send->s_queued = jiffies;
  593. send->s_op = NULL;
  594. send->s_sge[0].addr = ic->i_send_hdrs_dma
  595. + (pos * sizeof(struct rds_header));
  596. send->s_sge[0].length = sizeof(struct rds_header);
  597. memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header));
  598. /* Set up the data, if present */
  599. if (i < work_alloc
  600. && scat != &rm->data.op_sg[rm->data.op_count]) {
  601. len = min(RDS_FRAG_SIZE, ib_sg_dma_len(dev, scat) - off);
  602. send->s_wr.num_sge = 2;
  603. send->s_sge[1].addr = ib_sg_dma_address(dev, scat) + off;
  604. send->s_sge[1].length = len;
  605. bytes_sent += len;
  606. off += len;
  607. if (off == ib_sg_dma_len(dev, scat)) {
  608. scat++;
  609. off = 0;
  610. }
  611. }
  612. rds_ib_set_wr_signal_state(ic, send, 0);
  613. /*
  614. * Always signal the last one if we're stopping due to flow control.
  615. */
  616. if (ic->i_flowctl && flow_controlled && i == (work_alloc-1))
  617. send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
  618. if (send->s_wr.send_flags & IB_SEND_SIGNALED)
  619. nr_sig++;
  620. rdsdebug("send %p wr %p num_sge %u next %p\n", send,
  621. &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
  622. if (ic->i_flowctl && adv_credits) {
  623. struct rds_header *hdr = &ic->i_send_hdrs[pos];
  624. /* add credit and redo the header checksum */
  625. hdr->h_credit = adv_credits;
  626. rds_message_make_checksum(hdr);
  627. adv_credits = 0;
  628. rds_ib_stats_inc(s_ib_tx_credit_updates);
  629. }
  630. if (prev)
  631. prev->s_wr.next = &send->s_wr;
  632. prev = send;
  633. pos = (pos + 1) % ic->i_send_ring.w_nr;
  634. send = &ic->i_sends[pos];
  635. i++;
  636. } while (i < work_alloc
  637. && scat != &rm->data.op_sg[rm->data.op_count]);
  638. /* Account the RDS header in the number of bytes we sent, but just once.
  639. * The caller has no concept of fragmentation. */
  640. if (hdr_off == 0)
  641. bytes_sent += sizeof(struct rds_header);
  642. /* if we finished the message then send completion owns it */
  643. if (scat == &rm->data.op_sg[rm->data.op_count]) {
  644. prev->s_op = ic->i_data_op;
  645. prev->s_wr.send_flags |= IB_SEND_SOLICITED;
  646. ic->i_data_op = NULL;
  647. }
  648. /* Put back wrs & credits we didn't use */
  649. if (i < work_alloc) {
  650. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
  651. work_alloc = i;
  652. }
  653. if (ic->i_flowctl && i < credit_alloc)
  654. rds_ib_send_add_credits(conn, credit_alloc - i);
  655. if (nr_sig)
  656. atomic_add(nr_sig, &ic->i_signaled_sends);
  657. /* XXX need to worry about failed_wr and partial sends. */
  658. failed_wr = &first->s_wr;
  659. ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
  660. rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
  661. first, &first->s_wr, ret, failed_wr);
  662. BUG_ON(failed_wr != &first->s_wr);
  663. if (ret) {
  664. printk(KERN_WARNING "RDS/IB: ib_post_send to %pI4 "
  665. "returned %d\n", &conn->c_faddr, ret);
  666. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
  667. rds_ib_sub_signaled(ic, nr_sig);
  668. if (prev->s_op) {
  669. ic->i_data_op = prev->s_op;
  670. prev->s_op = NULL;
  671. }
  672. rds_ib_conn_error(ic->conn, "ib_post_send failed\n");
  673. goto out;
  674. }
  675. ret = bytes_sent;
  676. out:
  677. BUG_ON(adv_credits);
  678. return ret;
  679. }
  680. /*
  681. * Issue atomic operation.
  682. * A simplified version of the rdma case, we always map 1 SG, and
  683. * only 8 bytes, for the return value from the atomic operation.
  684. */
  685. int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op)
  686. {
  687. struct rds_ib_connection *ic = conn->c_transport_data;
  688. struct rds_ib_send_work *send = NULL;
  689. struct ib_send_wr *failed_wr;
  690. struct rds_ib_device *rds_ibdev;
  691. u32 pos;
  692. u32 work_alloc;
  693. int ret;
  694. int nr_sig = 0;
  695. rds_ibdev = ib_get_client_data(ic->i_cm_id->device, &rds_ib_client);
  696. work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos);
  697. if (work_alloc != 1) {
  698. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
  699. rds_ib_stats_inc(s_ib_tx_ring_full);
  700. ret = -ENOMEM;
  701. goto out;
  702. }
  703. /* address of send request in ring */
  704. send = &ic->i_sends[pos];
  705. send->s_queued = jiffies;
  706. if (op->op_type == RDS_ATOMIC_TYPE_CSWP) {
  707. send->s_wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP;
  708. send->s_wr.wr.atomic.compare_add = op->op_m_cswp.compare;
  709. send->s_wr.wr.atomic.swap = op->op_m_cswp.swap;
  710. send->s_wr.wr.atomic.compare_add_mask = op->op_m_cswp.compare_mask;
  711. send->s_wr.wr.atomic.swap_mask = op->op_m_cswp.swap_mask;
  712. } else { /* FADD */
  713. send->s_wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD;
  714. send->s_wr.wr.atomic.compare_add = op->op_m_fadd.add;
  715. send->s_wr.wr.atomic.swap = 0;
  716. send->s_wr.wr.atomic.compare_add_mask = op->op_m_fadd.nocarry_mask;
  717. send->s_wr.wr.atomic.swap_mask = 0;
  718. }
  719. nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify);
  720. send->s_wr.num_sge = 1;
  721. send->s_wr.next = NULL;
  722. send->s_wr.wr.atomic.remote_addr = op->op_remote_addr;
  723. send->s_wr.wr.atomic.rkey = op->op_rkey;
  724. send->s_op = op;
  725. rds_message_addref(container_of(send->s_op, struct rds_message, atomic));
  726. /* map 8 byte retval buffer to the device */
  727. ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE);
  728. rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret);
  729. if (ret != 1) {
  730. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
  731. rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
  732. ret = -ENOMEM; /* XXX ? */
  733. goto out;
  734. }
  735. /* Convert our struct scatterlist to struct ib_sge */
  736. send->s_sge[0].addr = ib_sg_dma_address(ic->i_cm_id->device, op->op_sg);
  737. send->s_sge[0].length = ib_sg_dma_len(ic->i_cm_id->device, op->op_sg);
  738. send->s_sge[0].lkey = ic->i_mr->lkey;
  739. rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr,
  740. send->s_sge[0].addr, send->s_sge[0].length);
  741. if (nr_sig)
  742. atomic_add(nr_sig, &ic->i_signaled_sends);
  743. failed_wr = &send->s_wr;
  744. ret = ib_post_send(ic->i_cm_id->qp, &send->s_wr, &failed_wr);
  745. rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic,
  746. send, &send->s_wr, ret, failed_wr);
  747. BUG_ON(failed_wr != &send->s_wr);
  748. if (ret) {
  749. printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI4 "
  750. "returned %d\n", &conn->c_faddr, ret);
  751. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
  752. rds_ib_sub_signaled(ic, nr_sig);
  753. goto out;
  754. }
  755. if (unlikely(failed_wr != &send->s_wr)) {
  756. printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
  757. BUG_ON(failed_wr != &send->s_wr);
  758. }
  759. out:
  760. return ret;
  761. }
  762. int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
  763. {
  764. struct rds_ib_connection *ic = conn->c_transport_data;
  765. struct rds_ib_send_work *send = NULL;
  766. struct rds_ib_send_work *first;
  767. struct rds_ib_send_work *prev;
  768. struct ib_send_wr *failed_wr;
  769. struct scatterlist *scat;
  770. unsigned long len;
  771. u64 remote_addr = op->op_remote_addr;
  772. u32 max_sge = ic->rds_ibdev->max_sge;
  773. u32 pos;
  774. u32 work_alloc;
  775. u32 i;
  776. u32 j;
  777. int sent;
  778. int ret;
  779. int num_sge;
  780. int nr_sig = 0;
  781. /* map the op the first time we see it */
  782. if (!op->op_mapped) {
  783. op->op_count = ib_dma_map_sg(ic->i_cm_id->device,
  784. op->op_sg, op->op_nents, (op->op_write) ?
  785. DMA_TO_DEVICE : DMA_FROM_DEVICE);
  786. rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count);
  787. if (op->op_count == 0) {
  788. rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
  789. ret = -ENOMEM; /* XXX ? */
  790. goto out;
  791. }
  792. op->op_mapped = 1;
  793. }
  794. /*
  795. * Instead of knowing how to return a partial rdma read/write we insist that there
  796. * be enough work requests to send the entire message.
  797. */
  798. i = ceil(op->op_count, max_sge);
  799. work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
  800. if (work_alloc != i) {
  801. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
  802. rds_ib_stats_inc(s_ib_tx_ring_full);
  803. ret = -ENOMEM;
  804. goto out;
  805. }
  806. send = &ic->i_sends[pos];
  807. first = send;
  808. prev = NULL;
  809. scat = &op->op_sg[0];
  810. sent = 0;
  811. num_sge = op->op_count;
  812. for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
  813. send->s_wr.send_flags = 0;
  814. send->s_queued = jiffies;
  815. send->s_op = NULL;
  816. nr_sig += rds_ib_set_wr_signal_state(ic, send, op->op_notify);
  817. send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
  818. send->s_wr.wr.rdma.remote_addr = remote_addr;
  819. send->s_wr.wr.rdma.rkey = op->op_rkey;
  820. if (num_sge > max_sge) {
  821. send->s_wr.num_sge = max_sge;
  822. num_sge -= max_sge;
  823. } else {
  824. send->s_wr.num_sge = num_sge;
  825. }
  826. send->s_wr.next = NULL;
  827. if (prev)
  828. prev->s_wr.next = &send->s_wr;
  829. for (j = 0; j < send->s_wr.num_sge && scat != &op->op_sg[op->op_count]; j++) {
  830. len = ib_sg_dma_len(ic->i_cm_id->device, scat);
  831. send->s_sge[j].addr =
  832. ib_sg_dma_address(ic->i_cm_id->device, scat);
  833. send->s_sge[j].length = len;
  834. send->s_sge[j].lkey = ic->i_mr->lkey;
  835. sent += len;
  836. rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
  837. remote_addr += len;
  838. scat++;
  839. }
  840. rdsdebug("send %p wr %p num_sge %u next %p\n", send,
  841. &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
  842. prev = send;
  843. if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
  844. send = ic->i_sends;
  845. }
  846. /* give a reference to the last op */
  847. if (scat == &op->op_sg[op->op_count]) {
  848. prev->s_op = op;
  849. rds_message_addref(container_of(op, struct rds_message, rdma));
  850. }
  851. if (i < work_alloc) {
  852. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
  853. work_alloc = i;
  854. }
  855. if (nr_sig)
  856. atomic_add(nr_sig, &ic->i_signaled_sends);
  857. failed_wr = &first->s_wr;
  858. ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
  859. rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
  860. first, &first->s_wr, ret, failed_wr);
  861. BUG_ON(failed_wr != &first->s_wr);
  862. if (ret) {
  863. printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI4 "
  864. "returned %d\n", &conn->c_faddr, ret);
  865. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
  866. rds_ib_sub_signaled(ic, nr_sig);
  867. goto out;
  868. }
  869. if (unlikely(failed_wr != &first->s_wr)) {
  870. printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
  871. BUG_ON(failed_wr != &first->s_wr);
  872. }
  873. out:
  874. return ret;
  875. }
  876. void rds_ib_xmit_complete(struct rds_connection *conn)
  877. {
  878. struct rds_ib_connection *ic = conn->c_transport_data;
  879. /* We may have a pending ACK or window update we were unable
  880. * to send previously (due to flow control). Try again. */
  881. rds_ib_attempt_ack(ic);
  882. }