journal.c 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210
  1. /* -*- mode: c; c-basic-offset: 8; -*-
  2. * vim: noexpandtab sw=8 ts=8 sts=0:
  3. *
  4. * journal.c
  5. *
  6. * Defines functions of journalling api
  7. *
  8. * Copyright (C) 2003, 2004 Oracle. All rights reserved.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2 of the License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public
  21. * License along with this program; if not, write to the
  22. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  23. * Boston, MA 021110-1307, USA.
  24. */
  25. #include <linux/fs.h>
  26. #include <linux/types.h>
  27. #include <linux/slab.h>
  28. #include <linux/highmem.h>
  29. #include <linux/kthread.h>
  30. #include <linux/time.h>
  31. #include <linux/random.h>
  32. #include <cluster/masklog.h>
  33. #include "ocfs2.h"
  34. #include "alloc.h"
  35. #include "blockcheck.h"
  36. #include "dir.h"
  37. #include "dlmglue.h"
  38. #include "extent_map.h"
  39. #include "heartbeat.h"
  40. #include "inode.h"
  41. #include "journal.h"
  42. #include "localalloc.h"
  43. #include "slot_map.h"
  44. #include "super.h"
  45. #include "sysfile.h"
  46. #include "uptodate.h"
  47. #include "quota.h"
  48. #include "buffer_head_io.h"
  49. #include "ocfs2_trace.h"
  50. DEFINE_SPINLOCK(trans_inc_lock);
  51. #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
  52. static int ocfs2_force_read_journal(struct inode *inode);
  53. static int ocfs2_recover_node(struct ocfs2_super *osb,
  54. int node_num, int slot_num);
  55. static int __ocfs2_recovery_thread(void *arg);
  56. static int ocfs2_commit_cache(struct ocfs2_super *osb);
  57. static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
  58. static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
  59. int dirty, int replayed);
  60. static int ocfs2_trylock_journal(struct ocfs2_super *osb,
  61. int slot_num);
  62. static int ocfs2_recover_orphans(struct ocfs2_super *osb,
  63. int slot);
  64. static int ocfs2_commit_thread(void *arg);
  65. static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
  66. int slot_num,
  67. struct ocfs2_dinode *la_dinode,
  68. struct ocfs2_dinode *tl_dinode,
  69. struct ocfs2_quota_recovery *qrec);
  70. static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
  71. {
  72. return __ocfs2_wait_on_mount(osb, 0);
  73. }
  74. static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
  75. {
  76. return __ocfs2_wait_on_mount(osb, 1);
  77. }
  78. /*
  79. * This replay_map is to track online/offline slots, so we could recover
  80. * offline slots during recovery and mount
  81. */
  82. enum ocfs2_replay_state {
  83. REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
  84. REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
  85. REPLAY_DONE /* Replay was already queued */
  86. };
  87. struct ocfs2_replay_map {
  88. unsigned int rm_slots;
  89. enum ocfs2_replay_state rm_state;
  90. unsigned char rm_replay_slots[0];
  91. };
  92. void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
  93. {
  94. if (!osb->replay_map)
  95. return;
  96. /* If we've already queued the replay, we don't have any more to do */
  97. if (osb->replay_map->rm_state == REPLAY_DONE)
  98. return;
  99. osb->replay_map->rm_state = state;
  100. }
  101. int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
  102. {
  103. struct ocfs2_replay_map *replay_map;
  104. int i, node_num;
  105. /* If replay map is already set, we don't do it again */
  106. if (osb->replay_map)
  107. return 0;
  108. replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
  109. (osb->max_slots * sizeof(char)), GFP_KERNEL);
  110. if (!replay_map) {
  111. mlog_errno(-ENOMEM);
  112. return -ENOMEM;
  113. }
  114. spin_lock(&osb->osb_lock);
  115. replay_map->rm_slots = osb->max_slots;
  116. replay_map->rm_state = REPLAY_UNNEEDED;
  117. /* set rm_replay_slots for offline slot(s) */
  118. for (i = 0; i < replay_map->rm_slots; i++) {
  119. if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
  120. replay_map->rm_replay_slots[i] = 1;
  121. }
  122. osb->replay_map = replay_map;
  123. spin_unlock(&osb->osb_lock);
  124. return 0;
  125. }
  126. void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
  127. {
  128. struct ocfs2_replay_map *replay_map = osb->replay_map;
  129. int i;
  130. if (!replay_map)
  131. return;
  132. if (replay_map->rm_state != REPLAY_NEEDED)
  133. return;
  134. for (i = 0; i < replay_map->rm_slots; i++)
  135. if (replay_map->rm_replay_slots[i])
  136. ocfs2_queue_recovery_completion(osb->journal, i, NULL,
  137. NULL, NULL);
  138. replay_map->rm_state = REPLAY_DONE;
  139. }
  140. void ocfs2_free_replay_slots(struct ocfs2_super *osb)
  141. {
  142. struct ocfs2_replay_map *replay_map = osb->replay_map;
  143. if (!osb->replay_map)
  144. return;
  145. kfree(replay_map);
  146. osb->replay_map = NULL;
  147. }
  148. int ocfs2_recovery_init(struct ocfs2_super *osb)
  149. {
  150. struct ocfs2_recovery_map *rm;
  151. mutex_init(&osb->recovery_lock);
  152. osb->disable_recovery = 0;
  153. osb->recovery_thread_task = NULL;
  154. init_waitqueue_head(&osb->recovery_event);
  155. rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
  156. osb->max_slots * sizeof(unsigned int),
  157. GFP_KERNEL);
  158. if (!rm) {
  159. mlog_errno(-ENOMEM);
  160. return -ENOMEM;
  161. }
  162. rm->rm_entries = (unsigned int *)((char *)rm +
  163. sizeof(struct ocfs2_recovery_map));
  164. osb->recovery_map = rm;
  165. return 0;
  166. }
  167. /* we can't grab the goofy sem lock from inside wait_event, so we use
  168. * memory barriers to make sure that we'll see the null task before
  169. * being woken up */
  170. static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
  171. {
  172. mb();
  173. return osb->recovery_thread_task != NULL;
  174. }
  175. void ocfs2_recovery_exit(struct ocfs2_super *osb)
  176. {
  177. struct ocfs2_recovery_map *rm;
  178. /* disable any new recovery threads and wait for any currently
  179. * running ones to exit. Do this before setting the vol_state. */
  180. mutex_lock(&osb->recovery_lock);
  181. osb->disable_recovery = 1;
  182. mutex_unlock(&osb->recovery_lock);
  183. wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
  184. /* At this point, we know that no more recovery threads can be
  185. * launched, so wait for any recovery completion work to
  186. * complete. */
  187. flush_workqueue(ocfs2_wq);
  188. /*
  189. * Now that recovery is shut down, and the osb is about to be
  190. * freed, the osb_lock is not taken here.
  191. */
  192. rm = osb->recovery_map;
  193. /* XXX: Should we bug if there are dirty entries? */
  194. kfree(rm);
  195. }
  196. static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
  197. unsigned int node_num)
  198. {
  199. int i;
  200. struct ocfs2_recovery_map *rm = osb->recovery_map;
  201. assert_spin_locked(&osb->osb_lock);
  202. for (i = 0; i < rm->rm_used; i++) {
  203. if (rm->rm_entries[i] == node_num)
  204. return 1;
  205. }
  206. return 0;
  207. }
  208. /* Behaves like test-and-set. Returns the previous value */
  209. static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
  210. unsigned int node_num)
  211. {
  212. struct ocfs2_recovery_map *rm = osb->recovery_map;
  213. spin_lock(&osb->osb_lock);
  214. if (__ocfs2_recovery_map_test(osb, node_num)) {
  215. spin_unlock(&osb->osb_lock);
  216. return 1;
  217. }
  218. /* XXX: Can this be exploited? Not from o2dlm... */
  219. BUG_ON(rm->rm_used >= osb->max_slots);
  220. rm->rm_entries[rm->rm_used] = node_num;
  221. rm->rm_used++;
  222. spin_unlock(&osb->osb_lock);
  223. return 0;
  224. }
  225. static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
  226. unsigned int node_num)
  227. {
  228. int i;
  229. struct ocfs2_recovery_map *rm = osb->recovery_map;
  230. spin_lock(&osb->osb_lock);
  231. for (i = 0; i < rm->rm_used; i++) {
  232. if (rm->rm_entries[i] == node_num)
  233. break;
  234. }
  235. if (i < rm->rm_used) {
  236. /* XXX: be careful with the pointer math */
  237. memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
  238. (rm->rm_used - i - 1) * sizeof(unsigned int));
  239. rm->rm_used--;
  240. }
  241. spin_unlock(&osb->osb_lock);
  242. }
  243. static int ocfs2_commit_cache(struct ocfs2_super *osb)
  244. {
  245. int status = 0;
  246. unsigned int flushed;
  247. struct ocfs2_journal *journal = NULL;
  248. journal = osb->journal;
  249. /* Flush all pending commits and checkpoint the journal. */
  250. down_write(&journal->j_trans_barrier);
  251. flushed = atomic_read(&journal->j_num_trans);
  252. trace_ocfs2_commit_cache_begin(flushed);
  253. if (flushed == 0) {
  254. up_write(&journal->j_trans_barrier);
  255. goto finally;
  256. }
  257. jbd2_journal_lock_updates(journal->j_journal);
  258. status = jbd2_journal_flush(journal->j_journal);
  259. jbd2_journal_unlock_updates(journal->j_journal);
  260. if (status < 0) {
  261. up_write(&journal->j_trans_barrier);
  262. mlog_errno(status);
  263. goto finally;
  264. }
  265. ocfs2_inc_trans_id(journal);
  266. flushed = atomic_read(&journal->j_num_trans);
  267. atomic_set(&journal->j_num_trans, 0);
  268. up_write(&journal->j_trans_barrier);
  269. trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
  270. ocfs2_wake_downconvert_thread(osb);
  271. wake_up(&journal->j_checkpointed);
  272. finally:
  273. return status;
  274. }
  275. handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
  276. {
  277. journal_t *journal = osb->journal->j_journal;
  278. handle_t *handle;
  279. BUG_ON(!osb || !osb->journal->j_journal);
  280. if (ocfs2_is_hard_readonly(osb))
  281. return ERR_PTR(-EROFS);
  282. BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
  283. BUG_ON(max_buffs <= 0);
  284. /* Nested transaction? Just return the handle... */
  285. if (journal_current_handle())
  286. return jbd2_journal_start(journal, max_buffs);
  287. down_read(&osb->journal->j_trans_barrier);
  288. handle = jbd2_journal_start(journal, max_buffs);
  289. if (IS_ERR(handle)) {
  290. up_read(&osb->journal->j_trans_barrier);
  291. mlog_errno(PTR_ERR(handle));
  292. if (is_journal_aborted(journal)) {
  293. ocfs2_abort(osb->sb, "Detected aborted journal");
  294. handle = ERR_PTR(-EROFS);
  295. }
  296. } else {
  297. if (!ocfs2_mount_local(osb))
  298. atomic_inc(&(osb->journal->j_num_trans));
  299. }
  300. return handle;
  301. }
  302. int ocfs2_commit_trans(struct ocfs2_super *osb,
  303. handle_t *handle)
  304. {
  305. int ret, nested;
  306. struct ocfs2_journal *journal = osb->journal;
  307. BUG_ON(!handle);
  308. nested = handle->h_ref > 1;
  309. ret = jbd2_journal_stop(handle);
  310. if (ret < 0)
  311. mlog_errno(ret);
  312. if (!nested)
  313. up_read(&journal->j_trans_barrier);
  314. return ret;
  315. }
  316. /*
  317. * 'nblocks' is what you want to add to the current transaction.
  318. *
  319. * This might call jbd2_journal_restart() which will commit dirty buffers
  320. * and then restart the transaction. Before calling
  321. * ocfs2_extend_trans(), any changed blocks should have been
  322. * dirtied. After calling it, all blocks which need to be changed must
  323. * go through another set of journal_access/journal_dirty calls.
  324. *
  325. * WARNING: This will not release any semaphores or disk locks taken
  326. * during the transaction, so make sure they were taken *before*
  327. * start_trans or we'll have ordering deadlocks.
  328. *
  329. * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
  330. * good because transaction ids haven't yet been recorded on the
  331. * cluster locks associated with this handle.
  332. */
  333. int ocfs2_extend_trans(handle_t *handle, int nblocks)
  334. {
  335. int status, old_nblocks;
  336. BUG_ON(!handle);
  337. BUG_ON(nblocks < 0);
  338. if (!nblocks)
  339. return 0;
  340. old_nblocks = handle->h_buffer_credits;
  341. trace_ocfs2_extend_trans(old_nblocks, nblocks);
  342. #ifdef CONFIG_OCFS2_DEBUG_FS
  343. status = 1;
  344. #else
  345. status = jbd2_journal_extend(handle, nblocks);
  346. if (status < 0) {
  347. mlog_errno(status);
  348. goto bail;
  349. }
  350. #endif
  351. if (status > 0) {
  352. trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
  353. status = jbd2_journal_restart(handle,
  354. old_nblocks + nblocks);
  355. if (status < 0) {
  356. mlog_errno(status);
  357. goto bail;
  358. }
  359. }
  360. status = 0;
  361. bail:
  362. return status;
  363. }
  364. struct ocfs2_triggers {
  365. struct jbd2_buffer_trigger_type ot_triggers;
  366. int ot_offset;
  367. };
  368. static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
  369. {
  370. return container_of(triggers, struct ocfs2_triggers, ot_triggers);
  371. }
  372. static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
  373. struct buffer_head *bh,
  374. void *data, size_t size)
  375. {
  376. struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
  377. /*
  378. * We aren't guaranteed to have the superblock here, so we
  379. * must unconditionally compute the ecc data.
  380. * __ocfs2_journal_access() will only set the triggers if
  381. * metaecc is enabled.
  382. */
  383. ocfs2_block_check_compute(data, size, data + ot->ot_offset);
  384. }
  385. /*
  386. * Quota blocks have their own trigger because the struct ocfs2_block_check
  387. * offset depends on the blocksize.
  388. */
  389. static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
  390. struct buffer_head *bh,
  391. void *data, size_t size)
  392. {
  393. struct ocfs2_disk_dqtrailer *dqt =
  394. ocfs2_block_dqtrailer(size, data);
  395. /*
  396. * We aren't guaranteed to have the superblock here, so we
  397. * must unconditionally compute the ecc data.
  398. * __ocfs2_journal_access() will only set the triggers if
  399. * metaecc is enabled.
  400. */
  401. ocfs2_block_check_compute(data, size, &dqt->dq_check);
  402. }
  403. /*
  404. * Directory blocks also have their own trigger because the
  405. * struct ocfs2_block_check offset depends on the blocksize.
  406. */
  407. static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
  408. struct buffer_head *bh,
  409. void *data, size_t size)
  410. {
  411. struct ocfs2_dir_block_trailer *trailer =
  412. ocfs2_dir_trailer_from_size(size, data);
  413. /*
  414. * We aren't guaranteed to have the superblock here, so we
  415. * must unconditionally compute the ecc data.
  416. * __ocfs2_journal_access() will only set the triggers if
  417. * metaecc is enabled.
  418. */
  419. ocfs2_block_check_compute(data, size, &trailer->db_check);
  420. }
  421. static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
  422. struct buffer_head *bh)
  423. {
  424. mlog(ML_ERROR,
  425. "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
  426. "bh->b_blocknr = %llu\n",
  427. (unsigned long)bh,
  428. (unsigned long long)bh->b_blocknr);
  429. /* We aren't guaranteed to have the superblock here - but if we
  430. * don't, it'll just crash. */
  431. ocfs2_error(bh->b_assoc_map->host->i_sb,
  432. "JBD2 has aborted our journal, ocfs2 cannot continue\n");
  433. }
  434. static struct ocfs2_triggers di_triggers = {
  435. .ot_triggers = {
  436. .t_frozen = ocfs2_frozen_trigger,
  437. .t_abort = ocfs2_abort_trigger,
  438. },
  439. .ot_offset = offsetof(struct ocfs2_dinode, i_check),
  440. };
  441. static struct ocfs2_triggers eb_triggers = {
  442. .ot_triggers = {
  443. .t_frozen = ocfs2_frozen_trigger,
  444. .t_abort = ocfs2_abort_trigger,
  445. },
  446. .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
  447. };
  448. static struct ocfs2_triggers rb_triggers = {
  449. .ot_triggers = {
  450. .t_frozen = ocfs2_frozen_trigger,
  451. .t_abort = ocfs2_abort_trigger,
  452. },
  453. .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
  454. };
  455. static struct ocfs2_triggers gd_triggers = {
  456. .ot_triggers = {
  457. .t_frozen = ocfs2_frozen_trigger,
  458. .t_abort = ocfs2_abort_trigger,
  459. },
  460. .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
  461. };
  462. static struct ocfs2_triggers db_triggers = {
  463. .ot_triggers = {
  464. .t_frozen = ocfs2_db_frozen_trigger,
  465. .t_abort = ocfs2_abort_trigger,
  466. },
  467. };
  468. static struct ocfs2_triggers xb_triggers = {
  469. .ot_triggers = {
  470. .t_frozen = ocfs2_frozen_trigger,
  471. .t_abort = ocfs2_abort_trigger,
  472. },
  473. .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
  474. };
  475. static struct ocfs2_triggers dq_triggers = {
  476. .ot_triggers = {
  477. .t_frozen = ocfs2_dq_frozen_trigger,
  478. .t_abort = ocfs2_abort_trigger,
  479. },
  480. };
  481. static struct ocfs2_triggers dr_triggers = {
  482. .ot_triggers = {
  483. .t_frozen = ocfs2_frozen_trigger,
  484. .t_abort = ocfs2_abort_trigger,
  485. },
  486. .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
  487. };
  488. static struct ocfs2_triggers dl_triggers = {
  489. .ot_triggers = {
  490. .t_frozen = ocfs2_frozen_trigger,
  491. .t_abort = ocfs2_abort_trigger,
  492. },
  493. .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
  494. };
  495. static int __ocfs2_journal_access(handle_t *handle,
  496. struct ocfs2_caching_info *ci,
  497. struct buffer_head *bh,
  498. struct ocfs2_triggers *triggers,
  499. int type)
  500. {
  501. int status;
  502. struct ocfs2_super *osb =
  503. OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
  504. BUG_ON(!ci || !ci->ci_ops);
  505. BUG_ON(!handle);
  506. BUG_ON(!bh);
  507. trace_ocfs2_journal_access(
  508. (unsigned long long)ocfs2_metadata_cache_owner(ci),
  509. (unsigned long long)bh->b_blocknr, type, bh->b_size);
  510. /* we can safely remove this assertion after testing. */
  511. if (!buffer_uptodate(bh)) {
  512. mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
  513. mlog(ML_ERROR, "b_blocknr=%llu\n",
  514. (unsigned long long)bh->b_blocknr);
  515. BUG();
  516. }
  517. /* Set the current transaction information on the ci so
  518. * that the locking code knows whether it can drop it's locks
  519. * on this ci or not. We're protected from the commit
  520. * thread updating the current transaction id until
  521. * ocfs2_commit_trans() because ocfs2_start_trans() took
  522. * j_trans_barrier for us. */
  523. ocfs2_set_ci_lock_trans(osb->journal, ci);
  524. ocfs2_metadata_cache_io_lock(ci);
  525. switch (type) {
  526. case OCFS2_JOURNAL_ACCESS_CREATE:
  527. case OCFS2_JOURNAL_ACCESS_WRITE:
  528. status = jbd2_journal_get_write_access(handle, bh);
  529. break;
  530. case OCFS2_JOURNAL_ACCESS_UNDO:
  531. status = jbd2_journal_get_undo_access(handle, bh);
  532. break;
  533. default:
  534. status = -EINVAL;
  535. mlog(ML_ERROR, "Unknown access type!\n");
  536. }
  537. if (!status && ocfs2_meta_ecc(osb) && triggers)
  538. jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
  539. ocfs2_metadata_cache_io_unlock(ci);
  540. if (status < 0)
  541. mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
  542. status, type);
  543. return status;
  544. }
  545. int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
  546. struct buffer_head *bh, int type)
  547. {
  548. return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
  549. }
  550. int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
  551. struct buffer_head *bh, int type)
  552. {
  553. return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
  554. }
  555. int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
  556. struct buffer_head *bh, int type)
  557. {
  558. return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
  559. type);
  560. }
  561. int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
  562. struct buffer_head *bh, int type)
  563. {
  564. return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
  565. }
  566. int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
  567. struct buffer_head *bh, int type)
  568. {
  569. return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
  570. }
  571. int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
  572. struct buffer_head *bh, int type)
  573. {
  574. return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
  575. }
  576. int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
  577. struct buffer_head *bh, int type)
  578. {
  579. return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
  580. }
  581. int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
  582. struct buffer_head *bh, int type)
  583. {
  584. return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
  585. }
  586. int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
  587. struct buffer_head *bh, int type)
  588. {
  589. return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
  590. }
  591. int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
  592. struct buffer_head *bh, int type)
  593. {
  594. return __ocfs2_journal_access(handle, ci, bh, NULL, type);
  595. }
  596. void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
  597. {
  598. int status;
  599. trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
  600. status = jbd2_journal_dirty_metadata(handle, bh);
  601. BUG_ON(status);
  602. }
  603. #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
  604. void ocfs2_set_journal_params(struct ocfs2_super *osb)
  605. {
  606. journal_t *journal = osb->journal->j_journal;
  607. unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
  608. if (osb->osb_commit_interval)
  609. commit_interval = osb->osb_commit_interval;
  610. write_lock(&journal->j_state_lock);
  611. journal->j_commit_interval = commit_interval;
  612. if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
  613. journal->j_flags |= JBD2_BARRIER;
  614. else
  615. journal->j_flags &= ~JBD2_BARRIER;
  616. write_unlock(&journal->j_state_lock);
  617. }
  618. int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
  619. {
  620. int status = -1;
  621. struct inode *inode = NULL; /* the journal inode */
  622. journal_t *j_journal = NULL;
  623. struct ocfs2_dinode *di = NULL;
  624. struct buffer_head *bh = NULL;
  625. struct ocfs2_super *osb;
  626. int inode_lock = 0;
  627. BUG_ON(!journal);
  628. osb = journal->j_osb;
  629. /* already have the inode for our journal */
  630. inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
  631. osb->slot_num);
  632. if (inode == NULL) {
  633. status = -EACCES;
  634. mlog_errno(status);
  635. goto done;
  636. }
  637. if (is_bad_inode(inode)) {
  638. mlog(ML_ERROR, "access error (bad inode)\n");
  639. iput(inode);
  640. inode = NULL;
  641. status = -EACCES;
  642. goto done;
  643. }
  644. SET_INODE_JOURNAL(inode);
  645. OCFS2_I(inode)->ip_open_count++;
  646. /* Skip recovery waits here - journal inode metadata never
  647. * changes in a live cluster so it can be considered an
  648. * exception to the rule. */
  649. status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
  650. if (status < 0) {
  651. if (status != -ERESTARTSYS)
  652. mlog(ML_ERROR, "Could not get lock on journal!\n");
  653. goto done;
  654. }
  655. inode_lock = 1;
  656. di = (struct ocfs2_dinode *)bh->b_data;
  657. if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
  658. mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
  659. inode->i_size);
  660. status = -EINVAL;
  661. goto done;
  662. }
  663. trace_ocfs2_journal_init(inode->i_size,
  664. (unsigned long long)inode->i_blocks,
  665. OCFS2_I(inode)->ip_clusters);
  666. /* call the kernels journal init function now */
  667. j_journal = jbd2_journal_init_inode(inode);
  668. if (j_journal == NULL) {
  669. mlog(ML_ERROR, "Linux journal layer error\n");
  670. status = -EINVAL;
  671. goto done;
  672. }
  673. trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
  674. *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
  675. OCFS2_JOURNAL_DIRTY_FL);
  676. journal->j_journal = j_journal;
  677. journal->j_inode = inode;
  678. journal->j_bh = bh;
  679. ocfs2_set_journal_params(osb);
  680. journal->j_state = OCFS2_JOURNAL_LOADED;
  681. status = 0;
  682. done:
  683. if (status < 0) {
  684. if (inode_lock)
  685. ocfs2_inode_unlock(inode, 1);
  686. brelse(bh);
  687. if (inode) {
  688. OCFS2_I(inode)->ip_open_count--;
  689. iput(inode);
  690. }
  691. }
  692. return status;
  693. }
  694. static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
  695. {
  696. le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
  697. }
  698. static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
  699. {
  700. return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
  701. }
  702. static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
  703. int dirty, int replayed)
  704. {
  705. int status;
  706. unsigned int flags;
  707. struct ocfs2_journal *journal = osb->journal;
  708. struct buffer_head *bh = journal->j_bh;
  709. struct ocfs2_dinode *fe;
  710. fe = (struct ocfs2_dinode *)bh->b_data;
  711. /* The journal bh on the osb always comes from ocfs2_journal_init()
  712. * and was validated there inside ocfs2_inode_lock_full(). It's a
  713. * code bug if we mess it up. */
  714. BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
  715. flags = le32_to_cpu(fe->id1.journal1.ij_flags);
  716. if (dirty)
  717. flags |= OCFS2_JOURNAL_DIRTY_FL;
  718. else
  719. flags &= ~OCFS2_JOURNAL_DIRTY_FL;
  720. fe->id1.journal1.ij_flags = cpu_to_le32(flags);
  721. if (replayed)
  722. ocfs2_bump_recovery_generation(fe);
  723. ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
  724. status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
  725. if (status < 0)
  726. mlog_errno(status);
  727. return status;
  728. }
  729. /*
  730. * If the journal has been kmalloc'd it needs to be freed after this
  731. * call.
  732. */
  733. void ocfs2_journal_shutdown(struct ocfs2_super *osb)
  734. {
  735. struct ocfs2_journal *journal = NULL;
  736. int status = 0;
  737. struct inode *inode = NULL;
  738. int num_running_trans = 0;
  739. BUG_ON(!osb);
  740. journal = osb->journal;
  741. if (!journal)
  742. goto done;
  743. inode = journal->j_inode;
  744. if (journal->j_state != OCFS2_JOURNAL_LOADED)
  745. goto done;
  746. /* need to inc inode use count - jbd2_journal_destroy will iput. */
  747. if (!igrab(inode))
  748. BUG();
  749. num_running_trans = atomic_read(&(osb->journal->j_num_trans));
  750. trace_ocfs2_journal_shutdown(num_running_trans);
  751. /* Do a commit_cache here. It will flush our journal, *and*
  752. * release any locks that are still held.
  753. * set the SHUTDOWN flag and release the trans lock.
  754. * the commit thread will take the trans lock for us below. */
  755. journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
  756. /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
  757. * drop the trans_lock (which we want to hold until we
  758. * completely destroy the journal. */
  759. if (osb->commit_task) {
  760. /* Wait for the commit thread */
  761. trace_ocfs2_journal_shutdown_wait(osb->commit_task);
  762. kthread_stop(osb->commit_task);
  763. osb->commit_task = NULL;
  764. }
  765. BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
  766. if (ocfs2_mount_local(osb)) {
  767. jbd2_journal_lock_updates(journal->j_journal);
  768. status = jbd2_journal_flush(journal->j_journal);
  769. jbd2_journal_unlock_updates(journal->j_journal);
  770. if (status < 0)
  771. mlog_errno(status);
  772. }
  773. if (status == 0) {
  774. /*
  775. * Do not toggle if flush was unsuccessful otherwise
  776. * will leave dirty metadata in a "clean" journal
  777. */
  778. status = ocfs2_journal_toggle_dirty(osb, 0, 0);
  779. if (status < 0)
  780. mlog_errno(status);
  781. }
  782. /* Shutdown the kernel journal system */
  783. jbd2_journal_destroy(journal->j_journal);
  784. journal->j_journal = NULL;
  785. OCFS2_I(inode)->ip_open_count--;
  786. /* unlock our journal */
  787. ocfs2_inode_unlock(inode, 1);
  788. brelse(journal->j_bh);
  789. journal->j_bh = NULL;
  790. journal->j_state = OCFS2_JOURNAL_FREE;
  791. // up_write(&journal->j_trans_barrier);
  792. done:
  793. if (inode)
  794. iput(inode);
  795. }
  796. static void ocfs2_clear_journal_error(struct super_block *sb,
  797. journal_t *journal,
  798. int slot)
  799. {
  800. int olderr;
  801. olderr = jbd2_journal_errno(journal);
  802. if (olderr) {
  803. mlog(ML_ERROR, "File system error %d recorded in "
  804. "journal %u.\n", olderr, slot);
  805. mlog(ML_ERROR, "File system on device %s needs checking.\n",
  806. sb->s_id);
  807. jbd2_journal_ack_err(journal);
  808. jbd2_journal_clear_err(journal);
  809. }
  810. }
  811. int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
  812. {
  813. int status = 0;
  814. struct ocfs2_super *osb;
  815. BUG_ON(!journal);
  816. osb = journal->j_osb;
  817. status = jbd2_journal_load(journal->j_journal);
  818. if (status < 0) {
  819. mlog(ML_ERROR, "Failed to load journal!\n");
  820. goto done;
  821. }
  822. ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
  823. status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
  824. if (status < 0) {
  825. mlog_errno(status);
  826. goto done;
  827. }
  828. /* Launch the commit thread */
  829. if (!local) {
  830. osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
  831. "ocfs2cmt");
  832. if (IS_ERR(osb->commit_task)) {
  833. status = PTR_ERR(osb->commit_task);
  834. osb->commit_task = NULL;
  835. mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
  836. "error=%d", status);
  837. goto done;
  838. }
  839. } else
  840. osb->commit_task = NULL;
  841. done:
  842. return status;
  843. }
  844. /* 'full' flag tells us whether we clear out all blocks or if we just
  845. * mark the journal clean */
  846. int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
  847. {
  848. int status;
  849. BUG_ON(!journal);
  850. status = jbd2_journal_wipe(journal->j_journal, full);
  851. if (status < 0) {
  852. mlog_errno(status);
  853. goto bail;
  854. }
  855. status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
  856. if (status < 0)
  857. mlog_errno(status);
  858. bail:
  859. return status;
  860. }
  861. static int ocfs2_recovery_completed(struct ocfs2_super *osb)
  862. {
  863. int empty;
  864. struct ocfs2_recovery_map *rm = osb->recovery_map;
  865. spin_lock(&osb->osb_lock);
  866. empty = (rm->rm_used == 0);
  867. spin_unlock(&osb->osb_lock);
  868. return empty;
  869. }
  870. void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
  871. {
  872. wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
  873. }
  874. /*
  875. * JBD Might read a cached version of another nodes journal file. We
  876. * don't want this as this file changes often and we get no
  877. * notification on those changes. The only way to be sure that we've
  878. * got the most up to date version of those blocks then is to force
  879. * read them off disk. Just searching through the buffer cache won't
  880. * work as there may be pages backing this file which are still marked
  881. * up to date. We know things can't change on this file underneath us
  882. * as we have the lock by now :)
  883. */
  884. static int ocfs2_force_read_journal(struct inode *inode)
  885. {
  886. int status = 0;
  887. int i;
  888. u64 v_blkno, p_blkno, p_blocks, num_blocks;
  889. #define CONCURRENT_JOURNAL_FILL 32ULL
  890. struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
  891. memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
  892. num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
  893. v_blkno = 0;
  894. while (v_blkno < num_blocks) {
  895. status = ocfs2_extent_map_get_blocks(inode, v_blkno,
  896. &p_blkno, &p_blocks, NULL);
  897. if (status < 0) {
  898. mlog_errno(status);
  899. goto bail;
  900. }
  901. if (p_blocks > CONCURRENT_JOURNAL_FILL)
  902. p_blocks = CONCURRENT_JOURNAL_FILL;
  903. /* We are reading journal data which should not
  904. * be put in the uptodate cache */
  905. status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
  906. p_blkno, p_blocks, bhs);
  907. if (status < 0) {
  908. mlog_errno(status);
  909. goto bail;
  910. }
  911. for(i = 0; i < p_blocks; i++) {
  912. brelse(bhs[i]);
  913. bhs[i] = NULL;
  914. }
  915. v_blkno += p_blocks;
  916. }
  917. bail:
  918. for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
  919. brelse(bhs[i]);
  920. return status;
  921. }
  922. struct ocfs2_la_recovery_item {
  923. struct list_head lri_list;
  924. int lri_slot;
  925. struct ocfs2_dinode *lri_la_dinode;
  926. struct ocfs2_dinode *lri_tl_dinode;
  927. struct ocfs2_quota_recovery *lri_qrec;
  928. };
  929. /* Does the second half of the recovery process. By this point, the
  930. * node is marked clean and can actually be considered recovered,
  931. * hence it's no longer in the recovery map, but there's still some
  932. * cleanup we can do which shouldn't happen within the recovery thread
  933. * as locking in that context becomes very difficult if we are to take
  934. * recovering nodes into account.
  935. *
  936. * NOTE: This function can and will sleep on recovery of other nodes
  937. * during cluster locking, just like any other ocfs2 process.
  938. */
  939. void ocfs2_complete_recovery(struct work_struct *work)
  940. {
  941. int ret = 0;
  942. struct ocfs2_journal *journal =
  943. container_of(work, struct ocfs2_journal, j_recovery_work);
  944. struct ocfs2_super *osb = journal->j_osb;
  945. struct ocfs2_dinode *la_dinode, *tl_dinode;
  946. struct ocfs2_la_recovery_item *item, *n;
  947. struct ocfs2_quota_recovery *qrec;
  948. LIST_HEAD(tmp_la_list);
  949. trace_ocfs2_complete_recovery(
  950. (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
  951. spin_lock(&journal->j_lock);
  952. list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
  953. spin_unlock(&journal->j_lock);
  954. list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
  955. list_del_init(&item->lri_list);
  956. ocfs2_wait_on_quotas(osb);
  957. la_dinode = item->lri_la_dinode;
  958. tl_dinode = item->lri_tl_dinode;
  959. qrec = item->lri_qrec;
  960. trace_ocfs2_complete_recovery_slot(item->lri_slot,
  961. la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
  962. tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
  963. qrec);
  964. if (la_dinode) {
  965. ret = ocfs2_complete_local_alloc_recovery(osb,
  966. la_dinode);
  967. if (ret < 0)
  968. mlog_errno(ret);
  969. kfree(la_dinode);
  970. }
  971. if (tl_dinode) {
  972. ret = ocfs2_complete_truncate_log_recovery(osb,
  973. tl_dinode);
  974. if (ret < 0)
  975. mlog_errno(ret);
  976. kfree(tl_dinode);
  977. }
  978. ret = ocfs2_recover_orphans(osb, item->lri_slot);
  979. if (ret < 0)
  980. mlog_errno(ret);
  981. if (qrec) {
  982. ret = ocfs2_finish_quota_recovery(osb, qrec,
  983. item->lri_slot);
  984. if (ret < 0)
  985. mlog_errno(ret);
  986. /* Recovery info is already freed now */
  987. }
  988. kfree(item);
  989. }
  990. trace_ocfs2_complete_recovery_end(ret);
  991. }
  992. /* NOTE: This function always eats your references to la_dinode and
  993. * tl_dinode, either manually on error, or by passing them to
  994. * ocfs2_complete_recovery */
  995. static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
  996. int slot_num,
  997. struct ocfs2_dinode *la_dinode,
  998. struct ocfs2_dinode *tl_dinode,
  999. struct ocfs2_quota_recovery *qrec)
  1000. {
  1001. struct ocfs2_la_recovery_item *item;
  1002. item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
  1003. if (!item) {
  1004. /* Though we wish to avoid it, we are in fact safe in
  1005. * skipping local alloc cleanup as fsck.ocfs2 is more
  1006. * than capable of reclaiming unused space. */
  1007. if (la_dinode)
  1008. kfree(la_dinode);
  1009. if (tl_dinode)
  1010. kfree(tl_dinode);
  1011. if (qrec)
  1012. ocfs2_free_quota_recovery(qrec);
  1013. mlog_errno(-ENOMEM);
  1014. return;
  1015. }
  1016. INIT_LIST_HEAD(&item->lri_list);
  1017. item->lri_la_dinode = la_dinode;
  1018. item->lri_slot = slot_num;
  1019. item->lri_tl_dinode = tl_dinode;
  1020. item->lri_qrec = qrec;
  1021. spin_lock(&journal->j_lock);
  1022. list_add_tail(&item->lri_list, &journal->j_la_cleanups);
  1023. queue_work(ocfs2_wq, &journal->j_recovery_work);
  1024. spin_unlock(&journal->j_lock);
  1025. }
  1026. /* Called by the mount code to queue recovery the last part of
  1027. * recovery for it's own and offline slot(s). */
  1028. void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
  1029. {
  1030. struct ocfs2_journal *journal = osb->journal;
  1031. if (ocfs2_is_hard_readonly(osb))
  1032. return;
  1033. /* No need to queue up our truncate_log as regular cleanup will catch
  1034. * that */
  1035. ocfs2_queue_recovery_completion(journal, osb->slot_num,
  1036. osb->local_alloc_copy, NULL, NULL);
  1037. ocfs2_schedule_truncate_log_flush(osb, 0);
  1038. osb->local_alloc_copy = NULL;
  1039. osb->dirty = 0;
  1040. /* queue to recover orphan slots for all offline slots */
  1041. ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
  1042. ocfs2_queue_replay_slots(osb);
  1043. ocfs2_free_replay_slots(osb);
  1044. }
  1045. void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
  1046. {
  1047. if (osb->quota_rec) {
  1048. ocfs2_queue_recovery_completion(osb->journal,
  1049. osb->slot_num,
  1050. NULL,
  1051. NULL,
  1052. osb->quota_rec);
  1053. osb->quota_rec = NULL;
  1054. }
  1055. }
  1056. static int __ocfs2_recovery_thread(void *arg)
  1057. {
  1058. int status, node_num, slot_num;
  1059. struct ocfs2_super *osb = arg;
  1060. struct ocfs2_recovery_map *rm = osb->recovery_map;
  1061. int *rm_quota = NULL;
  1062. int rm_quota_used = 0, i;
  1063. struct ocfs2_quota_recovery *qrec;
  1064. status = ocfs2_wait_on_mount(osb);
  1065. if (status < 0) {
  1066. goto bail;
  1067. }
  1068. rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
  1069. if (!rm_quota) {
  1070. status = -ENOMEM;
  1071. goto bail;
  1072. }
  1073. restart:
  1074. status = ocfs2_super_lock(osb, 1);
  1075. if (status < 0) {
  1076. mlog_errno(status);
  1077. goto bail;
  1078. }
  1079. status = ocfs2_compute_replay_slots(osb);
  1080. if (status < 0)
  1081. mlog_errno(status);
  1082. /* queue recovery for our own slot */
  1083. ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
  1084. NULL, NULL);
  1085. spin_lock(&osb->osb_lock);
  1086. while (rm->rm_used) {
  1087. /* It's always safe to remove entry zero, as we won't
  1088. * clear it until ocfs2_recover_node() has succeeded. */
  1089. node_num = rm->rm_entries[0];
  1090. spin_unlock(&osb->osb_lock);
  1091. slot_num = ocfs2_node_num_to_slot(osb, node_num);
  1092. trace_ocfs2_recovery_thread_node(node_num, slot_num);
  1093. if (slot_num == -ENOENT) {
  1094. status = 0;
  1095. goto skip_recovery;
  1096. }
  1097. /* It is a bit subtle with quota recovery. We cannot do it
  1098. * immediately because we have to obtain cluster locks from
  1099. * quota files and we also don't want to just skip it because
  1100. * then quota usage would be out of sync until some node takes
  1101. * the slot. So we remember which nodes need quota recovery
  1102. * and when everything else is done, we recover quotas. */
  1103. for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
  1104. if (i == rm_quota_used)
  1105. rm_quota[rm_quota_used++] = slot_num;
  1106. status = ocfs2_recover_node(osb, node_num, slot_num);
  1107. skip_recovery:
  1108. if (!status) {
  1109. ocfs2_recovery_map_clear(osb, node_num);
  1110. } else {
  1111. mlog(ML_ERROR,
  1112. "Error %d recovering node %d on device (%u,%u)!\n",
  1113. status, node_num,
  1114. MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
  1115. mlog(ML_ERROR, "Volume requires unmount.\n");
  1116. }
  1117. spin_lock(&osb->osb_lock);
  1118. }
  1119. spin_unlock(&osb->osb_lock);
  1120. trace_ocfs2_recovery_thread_end(status);
  1121. /* Refresh all journal recovery generations from disk */
  1122. status = ocfs2_check_journals_nolocks(osb);
  1123. status = (status == -EROFS) ? 0 : status;
  1124. if (status < 0)
  1125. mlog_errno(status);
  1126. /* Now it is right time to recover quotas... We have to do this under
  1127. * superblock lock so that no one can start using the slot (and crash)
  1128. * before we recover it */
  1129. for (i = 0; i < rm_quota_used; i++) {
  1130. qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
  1131. if (IS_ERR(qrec)) {
  1132. status = PTR_ERR(qrec);
  1133. mlog_errno(status);
  1134. continue;
  1135. }
  1136. ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
  1137. NULL, NULL, qrec);
  1138. }
  1139. ocfs2_super_unlock(osb, 1);
  1140. /* queue recovery for offline slots */
  1141. ocfs2_queue_replay_slots(osb);
  1142. bail:
  1143. mutex_lock(&osb->recovery_lock);
  1144. if (!status && !ocfs2_recovery_completed(osb)) {
  1145. mutex_unlock(&osb->recovery_lock);
  1146. goto restart;
  1147. }
  1148. ocfs2_free_replay_slots(osb);
  1149. osb->recovery_thread_task = NULL;
  1150. mb(); /* sync with ocfs2_recovery_thread_running */
  1151. wake_up(&osb->recovery_event);
  1152. mutex_unlock(&osb->recovery_lock);
  1153. if (rm_quota)
  1154. kfree(rm_quota);
  1155. /* no one is callint kthread_stop() for us so the kthread() api
  1156. * requires that we call do_exit(). And it isn't exported, but
  1157. * complete_and_exit() seems to be a minimal wrapper around it. */
  1158. complete_and_exit(NULL, status);
  1159. return status;
  1160. }
  1161. void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
  1162. {
  1163. mutex_lock(&osb->recovery_lock);
  1164. trace_ocfs2_recovery_thread(node_num, osb->node_num,
  1165. osb->disable_recovery, osb->recovery_thread_task,
  1166. osb->disable_recovery ?
  1167. -1 : ocfs2_recovery_map_set(osb, node_num));
  1168. if (osb->disable_recovery)
  1169. goto out;
  1170. if (osb->recovery_thread_task)
  1171. goto out;
  1172. osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
  1173. "ocfs2rec");
  1174. if (IS_ERR(osb->recovery_thread_task)) {
  1175. mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
  1176. osb->recovery_thread_task = NULL;
  1177. }
  1178. out:
  1179. mutex_unlock(&osb->recovery_lock);
  1180. wake_up(&osb->recovery_event);
  1181. }
  1182. static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
  1183. int slot_num,
  1184. struct buffer_head **bh,
  1185. struct inode **ret_inode)
  1186. {
  1187. int status = -EACCES;
  1188. struct inode *inode = NULL;
  1189. BUG_ON(slot_num >= osb->max_slots);
  1190. inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
  1191. slot_num);
  1192. if (!inode || is_bad_inode(inode)) {
  1193. mlog_errno(status);
  1194. goto bail;
  1195. }
  1196. SET_INODE_JOURNAL(inode);
  1197. status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
  1198. if (status < 0) {
  1199. mlog_errno(status);
  1200. goto bail;
  1201. }
  1202. status = 0;
  1203. bail:
  1204. if (inode) {
  1205. if (status || !ret_inode)
  1206. iput(inode);
  1207. else
  1208. *ret_inode = inode;
  1209. }
  1210. return status;
  1211. }
  1212. /* Does the actual journal replay and marks the journal inode as
  1213. * clean. Will only replay if the journal inode is marked dirty. */
  1214. static int ocfs2_replay_journal(struct ocfs2_super *osb,
  1215. int node_num,
  1216. int slot_num)
  1217. {
  1218. int status;
  1219. int got_lock = 0;
  1220. unsigned int flags;
  1221. struct inode *inode = NULL;
  1222. struct ocfs2_dinode *fe;
  1223. journal_t *journal = NULL;
  1224. struct buffer_head *bh = NULL;
  1225. u32 slot_reco_gen;
  1226. status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
  1227. if (status) {
  1228. mlog_errno(status);
  1229. goto done;
  1230. }
  1231. fe = (struct ocfs2_dinode *)bh->b_data;
  1232. slot_reco_gen = ocfs2_get_recovery_generation(fe);
  1233. brelse(bh);
  1234. bh = NULL;
  1235. /*
  1236. * As the fs recovery is asynchronous, there is a small chance that
  1237. * another node mounted (and recovered) the slot before the recovery
  1238. * thread could get the lock. To handle that, we dirty read the journal
  1239. * inode for that slot to get the recovery generation. If it is
  1240. * different than what we expected, the slot has been recovered.
  1241. * If not, it needs recovery.
  1242. */
  1243. if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
  1244. trace_ocfs2_replay_journal_recovered(slot_num,
  1245. osb->slot_recovery_generations[slot_num], slot_reco_gen);
  1246. osb->slot_recovery_generations[slot_num] = slot_reco_gen;
  1247. status = -EBUSY;
  1248. goto done;
  1249. }
  1250. /* Continue with recovery as the journal has not yet been recovered */
  1251. status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
  1252. if (status < 0) {
  1253. trace_ocfs2_replay_journal_lock_err(status);
  1254. if (status != -ERESTARTSYS)
  1255. mlog(ML_ERROR, "Could not lock journal!\n");
  1256. goto done;
  1257. }
  1258. got_lock = 1;
  1259. fe = (struct ocfs2_dinode *) bh->b_data;
  1260. flags = le32_to_cpu(fe->id1.journal1.ij_flags);
  1261. slot_reco_gen = ocfs2_get_recovery_generation(fe);
  1262. if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
  1263. trace_ocfs2_replay_journal_skip(node_num);
  1264. /* Refresh recovery generation for the slot */
  1265. osb->slot_recovery_generations[slot_num] = slot_reco_gen;
  1266. goto done;
  1267. }
  1268. /* we need to run complete recovery for offline orphan slots */
  1269. ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
  1270. printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
  1271. "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
  1272. MINOR(osb->sb->s_dev));
  1273. OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
  1274. status = ocfs2_force_read_journal(inode);
  1275. if (status < 0) {
  1276. mlog_errno(status);
  1277. goto done;
  1278. }
  1279. journal = jbd2_journal_init_inode(inode);
  1280. if (journal == NULL) {
  1281. mlog(ML_ERROR, "Linux journal layer error\n");
  1282. status = -EIO;
  1283. goto done;
  1284. }
  1285. status = jbd2_journal_load(journal);
  1286. if (status < 0) {
  1287. mlog_errno(status);
  1288. if (!igrab(inode))
  1289. BUG();
  1290. jbd2_journal_destroy(journal);
  1291. goto done;
  1292. }
  1293. ocfs2_clear_journal_error(osb->sb, journal, slot_num);
  1294. /* wipe the journal */
  1295. jbd2_journal_lock_updates(journal);
  1296. status = jbd2_journal_flush(journal);
  1297. jbd2_journal_unlock_updates(journal);
  1298. if (status < 0)
  1299. mlog_errno(status);
  1300. /* This will mark the node clean */
  1301. flags = le32_to_cpu(fe->id1.journal1.ij_flags);
  1302. flags &= ~OCFS2_JOURNAL_DIRTY_FL;
  1303. fe->id1.journal1.ij_flags = cpu_to_le32(flags);
  1304. /* Increment recovery generation to indicate successful recovery */
  1305. ocfs2_bump_recovery_generation(fe);
  1306. osb->slot_recovery_generations[slot_num] =
  1307. ocfs2_get_recovery_generation(fe);
  1308. ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
  1309. status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
  1310. if (status < 0)
  1311. mlog_errno(status);
  1312. if (!igrab(inode))
  1313. BUG();
  1314. jbd2_journal_destroy(journal);
  1315. printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
  1316. "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
  1317. MINOR(osb->sb->s_dev));
  1318. done:
  1319. /* drop the lock on this nodes journal */
  1320. if (got_lock)
  1321. ocfs2_inode_unlock(inode, 1);
  1322. if (inode)
  1323. iput(inode);
  1324. brelse(bh);
  1325. return status;
  1326. }
  1327. /*
  1328. * Do the most important parts of node recovery:
  1329. * - Replay it's journal
  1330. * - Stamp a clean local allocator file
  1331. * - Stamp a clean truncate log
  1332. * - Mark the node clean
  1333. *
  1334. * If this function completes without error, a node in OCFS2 can be
  1335. * said to have been safely recovered. As a result, failure during the
  1336. * second part of a nodes recovery process (local alloc recovery) is
  1337. * far less concerning.
  1338. */
  1339. static int ocfs2_recover_node(struct ocfs2_super *osb,
  1340. int node_num, int slot_num)
  1341. {
  1342. int status = 0;
  1343. struct ocfs2_dinode *la_copy = NULL;
  1344. struct ocfs2_dinode *tl_copy = NULL;
  1345. trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
  1346. /* Should not ever be called to recover ourselves -- in that
  1347. * case we should've called ocfs2_journal_load instead. */
  1348. BUG_ON(osb->node_num == node_num);
  1349. status = ocfs2_replay_journal(osb, node_num, slot_num);
  1350. if (status < 0) {
  1351. if (status == -EBUSY) {
  1352. trace_ocfs2_recover_node_skip(slot_num, node_num);
  1353. status = 0;
  1354. goto done;
  1355. }
  1356. mlog_errno(status);
  1357. goto done;
  1358. }
  1359. /* Stamp a clean local alloc file AFTER recovering the journal... */
  1360. status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
  1361. if (status < 0) {
  1362. mlog_errno(status);
  1363. goto done;
  1364. }
  1365. /* An error from begin_truncate_log_recovery is not
  1366. * serious enough to warrant halting the rest of
  1367. * recovery. */
  1368. status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
  1369. if (status < 0)
  1370. mlog_errno(status);
  1371. /* Likewise, this would be a strange but ultimately not so
  1372. * harmful place to get an error... */
  1373. status = ocfs2_clear_slot(osb, slot_num);
  1374. if (status < 0)
  1375. mlog_errno(status);
  1376. /* This will kfree the memory pointed to by la_copy and tl_copy */
  1377. ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
  1378. tl_copy, NULL);
  1379. status = 0;
  1380. done:
  1381. return status;
  1382. }
  1383. /* Test node liveness by trylocking his journal. If we get the lock,
  1384. * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
  1385. * still alive (we couldn't get the lock) and < 0 on error. */
  1386. static int ocfs2_trylock_journal(struct ocfs2_super *osb,
  1387. int slot_num)
  1388. {
  1389. int status, flags;
  1390. struct inode *inode = NULL;
  1391. inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
  1392. slot_num);
  1393. if (inode == NULL) {
  1394. mlog(ML_ERROR, "access error\n");
  1395. status = -EACCES;
  1396. goto bail;
  1397. }
  1398. if (is_bad_inode(inode)) {
  1399. mlog(ML_ERROR, "access error (bad inode)\n");
  1400. iput(inode);
  1401. inode = NULL;
  1402. status = -EACCES;
  1403. goto bail;
  1404. }
  1405. SET_INODE_JOURNAL(inode);
  1406. flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
  1407. status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
  1408. if (status < 0) {
  1409. if (status != -EAGAIN)
  1410. mlog_errno(status);
  1411. goto bail;
  1412. }
  1413. ocfs2_inode_unlock(inode, 1);
  1414. bail:
  1415. if (inode)
  1416. iput(inode);
  1417. return status;
  1418. }
  1419. /* Call this underneath ocfs2_super_lock. It also assumes that the
  1420. * slot info struct has been updated from disk. */
  1421. int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
  1422. {
  1423. unsigned int node_num;
  1424. int status, i;
  1425. u32 gen;
  1426. struct buffer_head *bh = NULL;
  1427. struct ocfs2_dinode *di;
  1428. /* This is called with the super block cluster lock, so we
  1429. * know that the slot map can't change underneath us. */
  1430. for (i = 0; i < osb->max_slots; i++) {
  1431. /* Read journal inode to get the recovery generation */
  1432. status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
  1433. if (status) {
  1434. mlog_errno(status);
  1435. goto bail;
  1436. }
  1437. di = (struct ocfs2_dinode *)bh->b_data;
  1438. gen = ocfs2_get_recovery_generation(di);
  1439. brelse(bh);
  1440. bh = NULL;
  1441. spin_lock(&osb->osb_lock);
  1442. osb->slot_recovery_generations[i] = gen;
  1443. trace_ocfs2_mark_dead_nodes(i,
  1444. osb->slot_recovery_generations[i]);
  1445. if (i == osb->slot_num) {
  1446. spin_unlock(&osb->osb_lock);
  1447. continue;
  1448. }
  1449. status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
  1450. if (status == -ENOENT) {
  1451. spin_unlock(&osb->osb_lock);
  1452. continue;
  1453. }
  1454. if (__ocfs2_recovery_map_test(osb, node_num)) {
  1455. spin_unlock(&osb->osb_lock);
  1456. continue;
  1457. }
  1458. spin_unlock(&osb->osb_lock);
  1459. /* Ok, we have a slot occupied by another node which
  1460. * is not in the recovery map. We trylock his journal
  1461. * file here to test if he's alive. */
  1462. status = ocfs2_trylock_journal(osb, i);
  1463. if (!status) {
  1464. /* Since we're called from mount, we know that
  1465. * the recovery thread can't race us on
  1466. * setting / checking the recovery bits. */
  1467. ocfs2_recovery_thread(osb, node_num);
  1468. } else if ((status < 0) && (status != -EAGAIN)) {
  1469. mlog_errno(status);
  1470. goto bail;
  1471. }
  1472. }
  1473. status = 0;
  1474. bail:
  1475. return status;
  1476. }
  1477. /*
  1478. * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
  1479. * randomness to the timeout to minimize multple nodes firing the timer at the
  1480. * same time.
  1481. */
  1482. static inline unsigned long ocfs2_orphan_scan_timeout(void)
  1483. {
  1484. unsigned long time;
  1485. get_random_bytes(&time, sizeof(time));
  1486. time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
  1487. return msecs_to_jiffies(time);
  1488. }
  1489. /*
  1490. * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
  1491. * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
  1492. * is done to catch any orphans that are left over in orphan directories.
  1493. *
  1494. * It scans all slots, even ones that are in use. It does so to handle the
  1495. * case described below:
  1496. *
  1497. * Node 1 has an inode it was using. The dentry went away due to memory
  1498. * pressure. Node 1 closes the inode, but it's on the free list. The node
  1499. * has the open lock.
  1500. * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
  1501. * but node 1 has no dentry and doesn't get the message. It trylocks the
  1502. * open lock, sees that another node has a PR, and does nothing.
  1503. * Later node 2 runs its orphan dir. It igets the inode, trylocks the
  1504. * open lock, sees the PR still, and does nothing.
  1505. * Basically, we have to trigger an orphan iput on node 1. The only way
  1506. * for this to happen is if node 1 runs node 2's orphan dir.
  1507. *
  1508. * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
  1509. * seconds. It gets an EX lock on os_lockres and checks sequence number
  1510. * stored in LVB. If the sequence number has changed, it means some other
  1511. * node has done the scan. This node skips the scan and tracks the
  1512. * sequence number. If the sequence number didn't change, it means a scan
  1513. * hasn't happened. The node queues a scan and increments the
  1514. * sequence number in the LVB.
  1515. */
  1516. void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
  1517. {
  1518. struct ocfs2_orphan_scan *os;
  1519. int status, i;
  1520. u32 seqno = 0;
  1521. os = &osb->osb_orphan_scan;
  1522. if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
  1523. goto out;
  1524. trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
  1525. atomic_read(&os->os_state));
  1526. status = ocfs2_orphan_scan_lock(osb, &seqno);
  1527. if (status < 0) {
  1528. if (status != -EAGAIN)
  1529. mlog_errno(status);
  1530. goto out;
  1531. }
  1532. /* Do no queue the tasks if the volume is being umounted */
  1533. if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
  1534. goto unlock;
  1535. if (os->os_seqno != seqno) {
  1536. os->os_seqno = seqno;
  1537. goto unlock;
  1538. }
  1539. for (i = 0; i < osb->max_slots; i++)
  1540. ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
  1541. NULL);
  1542. /*
  1543. * We queued a recovery on orphan slots, increment the sequence
  1544. * number and update LVB so other node will skip the scan for a while
  1545. */
  1546. seqno++;
  1547. os->os_count++;
  1548. os->os_scantime = CURRENT_TIME;
  1549. unlock:
  1550. ocfs2_orphan_scan_unlock(osb, seqno);
  1551. out:
  1552. trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
  1553. atomic_read(&os->os_state));
  1554. return;
  1555. }
  1556. /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
  1557. void ocfs2_orphan_scan_work(struct work_struct *work)
  1558. {
  1559. struct ocfs2_orphan_scan *os;
  1560. struct ocfs2_super *osb;
  1561. os = container_of(work, struct ocfs2_orphan_scan,
  1562. os_orphan_scan_work.work);
  1563. osb = os->os_osb;
  1564. mutex_lock(&os->os_lock);
  1565. ocfs2_queue_orphan_scan(osb);
  1566. if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
  1567. queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
  1568. ocfs2_orphan_scan_timeout());
  1569. mutex_unlock(&os->os_lock);
  1570. }
  1571. void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
  1572. {
  1573. struct ocfs2_orphan_scan *os;
  1574. os = &osb->osb_orphan_scan;
  1575. if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
  1576. atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
  1577. mutex_lock(&os->os_lock);
  1578. cancel_delayed_work(&os->os_orphan_scan_work);
  1579. mutex_unlock(&os->os_lock);
  1580. }
  1581. }
  1582. void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
  1583. {
  1584. struct ocfs2_orphan_scan *os;
  1585. os = &osb->osb_orphan_scan;
  1586. os->os_osb = osb;
  1587. os->os_count = 0;
  1588. os->os_seqno = 0;
  1589. mutex_init(&os->os_lock);
  1590. INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
  1591. }
  1592. void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
  1593. {
  1594. struct ocfs2_orphan_scan *os;
  1595. os = &osb->osb_orphan_scan;
  1596. os->os_scantime = CURRENT_TIME;
  1597. if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
  1598. atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
  1599. else {
  1600. atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
  1601. queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
  1602. ocfs2_orphan_scan_timeout());
  1603. }
  1604. }
  1605. struct ocfs2_orphan_filldir_priv {
  1606. struct inode *head;
  1607. struct ocfs2_super *osb;
  1608. };
  1609. static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
  1610. loff_t pos, u64 ino, unsigned type)
  1611. {
  1612. struct ocfs2_orphan_filldir_priv *p = priv;
  1613. struct inode *iter;
  1614. if (name_len == 1 && !strncmp(".", name, 1))
  1615. return 0;
  1616. if (name_len == 2 && !strncmp("..", name, 2))
  1617. return 0;
  1618. /* Skip bad inodes so that recovery can continue */
  1619. iter = ocfs2_iget(p->osb, ino,
  1620. OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
  1621. if (IS_ERR(iter))
  1622. return 0;
  1623. trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
  1624. /* No locking is required for the next_orphan queue as there
  1625. * is only ever a single process doing orphan recovery. */
  1626. OCFS2_I(iter)->ip_next_orphan = p->head;
  1627. p->head = iter;
  1628. return 0;
  1629. }
  1630. static int ocfs2_queue_orphans(struct ocfs2_super *osb,
  1631. int slot,
  1632. struct inode **head)
  1633. {
  1634. int status;
  1635. struct inode *orphan_dir_inode = NULL;
  1636. struct ocfs2_orphan_filldir_priv priv;
  1637. loff_t pos = 0;
  1638. priv.osb = osb;
  1639. priv.head = *head;
  1640. orphan_dir_inode = ocfs2_get_system_file_inode(osb,
  1641. ORPHAN_DIR_SYSTEM_INODE,
  1642. slot);
  1643. if (!orphan_dir_inode) {
  1644. status = -ENOENT;
  1645. mlog_errno(status);
  1646. return status;
  1647. }
  1648. mutex_lock(&orphan_dir_inode->i_mutex);
  1649. status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
  1650. if (status < 0) {
  1651. mlog_errno(status);
  1652. goto out;
  1653. }
  1654. status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
  1655. ocfs2_orphan_filldir);
  1656. if (status) {
  1657. mlog_errno(status);
  1658. goto out_cluster;
  1659. }
  1660. *head = priv.head;
  1661. out_cluster:
  1662. ocfs2_inode_unlock(orphan_dir_inode, 0);
  1663. out:
  1664. mutex_unlock(&orphan_dir_inode->i_mutex);
  1665. iput(orphan_dir_inode);
  1666. return status;
  1667. }
  1668. static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
  1669. int slot)
  1670. {
  1671. int ret;
  1672. spin_lock(&osb->osb_lock);
  1673. ret = !osb->osb_orphan_wipes[slot];
  1674. spin_unlock(&osb->osb_lock);
  1675. return ret;
  1676. }
  1677. static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
  1678. int slot)
  1679. {
  1680. spin_lock(&osb->osb_lock);
  1681. /* Mark ourselves such that new processes in delete_inode()
  1682. * know to quit early. */
  1683. ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
  1684. while (osb->osb_orphan_wipes[slot]) {
  1685. /* If any processes are already in the middle of an
  1686. * orphan wipe on this dir, then we need to wait for
  1687. * them. */
  1688. spin_unlock(&osb->osb_lock);
  1689. wait_event_interruptible(osb->osb_wipe_event,
  1690. ocfs2_orphan_recovery_can_continue(osb, slot));
  1691. spin_lock(&osb->osb_lock);
  1692. }
  1693. spin_unlock(&osb->osb_lock);
  1694. }
  1695. static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
  1696. int slot)
  1697. {
  1698. ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
  1699. }
  1700. /*
  1701. * Orphan recovery. Each mounted node has it's own orphan dir which we
  1702. * must run during recovery. Our strategy here is to build a list of
  1703. * the inodes in the orphan dir and iget/iput them. The VFS does
  1704. * (most) of the rest of the work.
  1705. *
  1706. * Orphan recovery can happen at any time, not just mount so we have a
  1707. * couple of extra considerations.
  1708. *
  1709. * - We grab as many inodes as we can under the orphan dir lock -
  1710. * doing iget() outside the orphan dir risks getting a reference on
  1711. * an invalid inode.
  1712. * - We must be sure not to deadlock with other processes on the
  1713. * system wanting to run delete_inode(). This can happen when they go
  1714. * to lock the orphan dir and the orphan recovery process attempts to
  1715. * iget() inside the orphan dir lock. This can be avoided by
  1716. * advertising our state to ocfs2_delete_inode().
  1717. */
  1718. static int ocfs2_recover_orphans(struct ocfs2_super *osb,
  1719. int slot)
  1720. {
  1721. int ret = 0;
  1722. struct inode *inode = NULL;
  1723. struct inode *iter;
  1724. struct ocfs2_inode_info *oi;
  1725. trace_ocfs2_recover_orphans(slot);
  1726. ocfs2_mark_recovering_orphan_dir(osb, slot);
  1727. ret = ocfs2_queue_orphans(osb, slot, &inode);
  1728. ocfs2_clear_recovering_orphan_dir(osb, slot);
  1729. /* Error here should be noted, but we want to continue with as
  1730. * many queued inodes as we've got. */
  1731. if (ret)
  1732. mlog_errno(ret);
  1733. while (inode) {
  1734. oi = OCFS2_I(inode);
  1735. trace_ocfs2_recover_orphans_iput(
  1736. (unsigned long long)oi->ip_blkno);
  1737. iter = oi->ip_next_orphan;
  1738. spin_lock(&oi->ip_lock);
  1739. /* The remote delete code may have set these on the
  1740. * assumption that the other node would wipe them
  1741. * successfully. If they are still in the node's
  1742. * orphan dir, we need to reset that state. */
  1743. oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
  1744. /* Set the proper information to get us going into
  1745. * ocfs2_delete_inode. */
  1746. oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
  1747. spin_unlock(&oi->ip_lock);
  1748. iput(inode);
  1749. inode = iter;
  1750. }
  1751. return ret;
  1752. }
  1753. static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
  1754. {
  1755. /* This check is good because ocfs2 will wait on our recovery
  1756. * thread before changing it to something other than MOUNTED
  1757. * or DISABLED. */
  1758. wait_event(osb->osb_mount_event,
  1759. (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
  1760. atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
  1761. atomic_read(&osb->vol_state) == VOLUME_DISABLED);
  1762. /* If there's an error on mount, then we may never get to the
  1763. * MOUNTED flag, but this is set right before
  1764. * dismount_volume() so we can trust it. */
  1765. if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
  1766. trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
  1767. mlog(0, "mount error, exiting!\n");
  1768. return -EBUSY;
  1769. }
  1770. return 0;
  1771. }
  1772. static int ocfs2_commit_thread(void *arg)
  1773. {
  1774. int status;
  1775. struct ocfs2_super *osb = arg;
  1776. struct ocfs2_journal *journal = osb->journal;
  1777. /* we can trust j_num_trans here because _should_stop() is only set in
  1778. * shutdown and nobody other than ourselves should be able to start
  1779. * transactions. committing on shutdown might take a few iterations
  1780. * as final transactions put deleted inodes on the list */
  1781. while (!(kthread_should_stop() &&
  1782. atomic_read(&journal->j_num_trans) == 0)) {
  1783. wait_event_interruptible(osb->checkpoint_event,
  1784. atomic_read(&journal->j_num_trans)
  1785. || kthread_should_stop());
  1786. status = ocfs2_commit_cache(osb);
  1787. if (status < 0)
  1788. mlog_errno(status);
  1789. if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
  1790. mlog(ML_KTHREAD,
  1791. "commit_thread: %u transactions pending on "
  1792. "shutdown\n",
  1793. atomic_read(&journal->j_num_trans));
  1794. }
  1795. }
  1796. return 0;
  1797. }
  1798. /* Reads all the journal inodes without taking any cluster locks. Used
  1799. * for hard readonly access to determine whether any journal requires
  1800. * recovery. Also used to refresh the recovery generation numbers after
  1801. * a journal has been recovered by another node.
  1802. */
  1803. int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
  1804. {
  1805. int ret = 0;
  1806. unsigned int slot;
  1807. struct buffer_head *di_bh = NULL;
  1808. struct ocfs2_dinode *di;
  1809. int journal_dirty = 0;
  1810. for(slot = 0; slot < osb->max_slots; slot++) {
  1811. ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
  1812. if (ret) {
  1813. mlog_errno(ret);
  1814. goto out;
  1815. }
  1816. di = (struct ocfs2_dinode *) di_bh->b_data;
  1817. osb->slot_recovery_generations[slot] =
  1818. ocfs2_get_recovery_generation(di);
  1819. if (le32_to_cpu(di->id1.journal1.ij_flags) &
  1820. OCFS2_JOURNAL_DIRTY_FL)
  1821. journal_dirty = 1;
  1822. brelse(di_bh);
  1823. di_bh = NULL;
  1824. }
  1825. out:
  1826. if (journal_dirty)
  1827. ret = -EROFS;
  1828. return ret;
  1829. }