levenshtein.c 2.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. #include "cache.h"
  2. #include "levenshtein.h"
  3. /*
  4. * This function implements the Damerau-Levenshtein algorithm to
  5. * calculate a distance between strings.
  6. *
  7. * Basically, it says how many letters need to be swapped, substituted,
  8. * deleted from, or added to string1, at least, to get string2.
  9. *
  10. * The idea is to build a distance matrix for the substrings of both
  11. * strings. To avoid a large space complexity, only the last three rows
  12. * are kept in memory (if swaps had the same or higher cost as one deletion
  13. * plus one insertion, only two rows would be needed).
  14. *
  15. * At any stage, "i + 1" denotes the length of the current substring of
  16. * string1 that the distance is calculated for.
  17. *
  18. * row2 holds the current row, row1 the previous row (i.e. for the substring
  19. * of string1 of length "i"), and row0 the row before that.
  20. *
  21. * In other words, at the start of the big loop, row2[j + 1] contains the
  22. * Damerau-Levenshtein distance between the substring of string1 of length
  23. * "i" and the substring of string2 of length "j + 1".
  24. *
  25. * All the big loop does is determine the partial minimum-cost paths.
  26. *
  27. * It does so by calculating the costs of the path ending in characters
  28. * i (in string1) and j (in string2), respectively, given that the last
  29. * operation is a substition, a swap, a deletion, or an insertion.
  30. *
  31. * This implementation allows the costs to be weighted:
  32. *
  33. * - w (as in "sWap")
  34. * - s (as in "Substitution")
  35. * - a (for insertion, AKA "Add")
  36. * - d (as in "Deletion")
  37. *
  38. * Note that this algorithm calculates a distance _iff_ d == a.
  39. */
  40. int levenshtein(const char *string1, const char *string2,
  41. int w, int s, int a, int d)
  42. {
  43. int len1 = strlen(string1), len2 = strlen(string2);
  44. int *row0 = malloc(sizeof(int) * (len2 + 1));
  45. int *row1 = malloc(sizeof(int) * (len2 + 1));
  46. int *row2 = malloc(sizeof(int) * (len2 + 1));
  47. int i, j;
  48. for (j = 0; j <= len2; j++)
  49. row1[j] = j * a;
  50. for (i = 0; i < len1; i++) {
  51. int *dummy;
  52. row2[0] = (i + 1) * d;
  53. for (j = 0; j < len2; j++) {
  54. /* substitution */
  55. row2[j + 1] = row1[j] + s * (string1[i] != string2[j]);
  56. /* swap */
  57. if (i > 0 && j > 0 && string1[i - 1] == string2[j] &&
  58. string1[i] == string2[j - 1] &&
  59. row2[j + 1] > row0[j - 1] + w)
  60. row2[j + 1] = row0[j - 1] + w;
  61. /* deletion */
  62. if (row2[j + 1] > row1[j + 1] + d)
  63. row2[j + 1] = row1[j + 1] + d;
  64. /* insertion */
  65. if (row2[j + 1] > row2[j] + a)
  66. row2[j + 1] = row2[j] + a;
  67. }
  68. dummy = row0;
  69. row0 = row1;
  70. row1 = row2;
  71. row2 = dummy;
  72. }
  73. i = row1[len2];
  74. free(row0);
  75. free(row1);
  76. free(row2);
  77. return i;
  78. }