gc.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393
  1. /* Key garbage collector
  2. *
  3. * Copyright (C) 2009-2011 Red Hat, Inc. All Rights Reserved.
  4. * Written by David Howells (dhowells@redhat.com)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public Licence
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the Licence, or (at your option) any later version.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/slab.h>
  13. #include <linux/security.h>
  14. #include <keys/keyring-type.h>
  15. #include "internal.h"
  16. /*
  17. * Delay between key revocation/expiry in seconds
  18. */
  19. unsigned key_gc_delay = 5 * 60;
  20. /*
  21. * Reaper for unused keys.
  22. */
  23. static void key_garbage_collector(struct work_struct *work);
  24. DECLARE_WORK(key_gc_work, key_garbage_collector);
  25. /*
  26. * Reaper for links from keyrings to dead keys.
  27. */
  28. static void key_gc_timer_func(unsigned long);
  29. static DEFINE_TIMER(key_gc_timer, key_gc_timer_func, 0, 0);
  30. static time_t key_gc_next_run = LONG_MAX;
  31. static struct key_type *key_gc_dead_keytype;
  32. static unsigned long key_gc_flags;
  33. #define KEY_GC_KEY_EXPIRED 0 /* A key expired and needs unlinking */
  34. #define KEY_GC_REAP_KEYTYPE 1 /* A keytype is being unregistered */
  35. #define KEY_GC_REAPING_KEYTYPE 2 /* Cleared when keytype reaped */
  36. /*
  37. * Any key whose type gets unregistered will be re-typed to this if it can't be
  38. * immediately unlinked.
  39. */
  40. struct key_type key_type_dead = {
  41. .name = ".dead",
  42. };
  43. /*
  44. * Schedule a garbage collection run.
  45. * - time precision isn't particularly important
  46. */
  47. void key_schedule_gc(time_t gc_at)
  48. {
  49. unsigned long expires;
  50. time_t now = current_kernel_time().tv_sec;
  51. kenter("%ld", gc_at - now);
  52. if (gc_at <= now || test_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags)) {
  53. kdebug("IMMEDIATE");
  54. queue_work(system_nrt_wq, &key_gc_work);
  55. } else if (gc_at < key_gc_next_run) {
  56. kdebug("DEFERRED");
  57. key_gc_next_run = gc_at;
  58. expires = jiffies + (gc_at - now) * HZ;
  59. mod_timer(&key_gc_timer, expires);
  60. }
  61. }
  62. /*
  63. * Some key's cleanup time was met after it expired, so we need to get the
  64. * reaper to go through a cycle finding expired keys.
  65. */
  66. static void key_gc_timer_func(unsigned long data)
  67. {
  68. kenter("");
  69. key_gc_next_run = LONG_MAX;
  70. set_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags);
  71. queue_work(system_nrt_wq, &key_gc_work);
  72. }
  73. /*
  74. * wait_on_bit() sleep function for uninterruptible waiting
  75. */
  76. static int key_gc_wait_bit(void *flags)
  77. {
  78. schedule();
  79. return 0;
  80. }
  81. /*
  82. * Reap keys of dead type.
  83. *
  84. * We use three flags to make sure we see three complete cycles of the garbage
  85. * collector: the first to mark keys of that type as being dead, the second to
  86. * collect dead links and the third to clean up the dead keys. We have to be
  87. * careful as there may already be a cycle in progress.
  88. *
  89. * The caller must be holding key_types_sem.
  90. */
  91. void key_gc_keytype(struct key_type *ktype)
  92. {
  93. kenter("%s", ktype->name);
  94. key_gc_dead_keytype = ktype;
  95. set_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags);
  96. smp_mb();
  97. set_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags);
  98. kdebug("schedule");
  99. queue_work(system_nrt_wq, &key_gc_work);
  100. kdebug("sleep");
  101. wait_on_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE, key_gc_wait_bit,
  102. TASK_UNINTERRUPTIBLE);
  103. key_gc_dead_keytype = NULL;
  104. kleave("");
  105. }
  106. /*
  107. * Garbage collect pointers from a keyring.
  108. *
  109. * Not called with any locks held. The keyring's key struct will not be
  110. * deallocated under us as only our caller may deallocate it.
  111. */
  112. static void key_gc_keyring(struct key *keyring, time_t limit)
  113. {
  114. struct keyring_list *klist;
  115. struct key *key;
  116. int loop;
  117. kenter("%x", key_serial(keyring));
  118. if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
  119. goto dont_gc;
  120. /* scan the keyring looking for dead keys */
  121. rcu_read_lock();
  122. klist = rcu_dereference(keyring->payload.subscriptions);
  123. if (!klist)
  124. goto unlock_dont_gc;
  125. loop = klist->nkeys;
  126. smp_rmb();
  127. for (loop--; loop >= 0; loop--) {
  128. key = klist->keys[loop];
  129. if (test_bit(KEY_FLAG_DEAD, &key->flags) ||
  130. (key->expiry > 0 && key->expiry <= limit))
  131. goto do_gc;
  132. }
  133. unlock_dont_gc:
  134. rcu_read_unlock();
  135. dont_gc:
  136. kleave(" [no gc]");
  137. return;
  138. do_gc:
  139. rcu_read_unlock();
  140. keyring_gc(keyring, limit);
  141. kleave(" [gc]");
  142. }
  143. /*
  144. * Garbage collect an unreferenced, detached key
  145. */
  146. static noinline void key_gc_unused_key(struct key *key)
  147. {
  148. key_check(key);
  149. /* Throw away the key data if the key is instantiated */
  150. if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags) &&
  151. !test_bit(KEY_FLAG_NEGATIVE, &key->flags) &&
  152. key->type->destroy)
  153. key->type->destroy(key);
  154. security_key_free(key);
  155. /* deal with the user's key tracking and quota */
  156. if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
  157. spin_lock(&key->user->lock);
  158. key->user->qnkeys--;
  159. key->user->qnbytes -= key->quotalen;
  160. spin_unlock(&key->user->lock);
  161. }
  162. atomic_dec(&key->user->nkeys);
  163. if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
  164. atomic_dec(&key->user->nikeys);
  165. key_user_put(key->user);
  166. kfree(key->description);
  167. #ifdef KEY_DEBUGGING
  168. key->magic = KEY_DEBUG_MAGIC_X;
  169. #endif
  170. kmem_cache_free(key_jar, key);
  171. }
  172. /*
  173. * Garbage collector for unused keys.
  174. *
  175. * This is done in process context so that we don't have to disable interrupts
  176. * all over the place. key_put() schedules this rather than trying to do the
  177. * cleanup itself, which means key_put() doesn't have to sleep.
  178. */
  179. static void key_garbage_collector(struct work_struct *work)
  180. {
  181. static u8 gc_state; /* Internal persistent state */
  182. #define KEY_GC_REAP_AGAIN 0x01 /* - Need another cycle */
  183. #define KEY_GC_REAPING_LINKS 0x02 /* - We need to reap links */
  184. #define KEY_GC_SET_TIMER 0x04 /* - We need to restart the timer */
  185. #define KEY_GC_REAPING_DEAD_1 0x10 /* - We need to mark dead keys */
  186. #define KEY_GC_REAPING_DEAD_2 0x20 /* - We need to reap dead key links */
  187. #define KEY_GC_REAPING_DEAD_3 0x40 /* - We need to reap dead keys */
  188. #define KEY_GC_FOUND_DEAD_KEY 0x80 /* - We found at least one dead key */
  189. struct rb_node *cursor;
  190. struct key *key;
  191. time_t new_timer, limit;
  192. kenter("[%lx,%x]", key_gc_flags, gc_state);
  193. limit = current_kernel_time().tv_sec;
  194. if (limit > key_gc_delay)
  195. limit -= key_gc_delay;
  196. else
  197. limit = key_gc_delay;
  198. /* Work out what we're going to be doing in this pass */
  199. gc_state &= KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2;
  200. gc_state <<= 1;
  201. if (test_and_clear_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags))
  202. gc_state |= KEY_GC_REAPING_LINKS | KEY_GC_SET_TIMER;
  203. if (test_and_clear_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags))
  204. gc_state |= KEY_GC_REAPING_DEAD_1;
  205. kdebug("new pass %x", gc_state);
  206. new_timer = LONG_MAX;
  207. /* As only this function is permitted to remove things from the key
  208. * serial tree, if cursor is non-NULL then it will always point to a
  209. * valid node in the tree - even if lock got dropped.
  210. */
  211. spin_lock(&key_serial_lock);
  212. cursor = rb_first(&key_serial_tree);
  213. continue_scanning:
  214. while (cursor) {
  215. key = rb_entry(cursor, struct key, serial_node);
  216. cursor = rb_next(cursor);
  217. if (atomic_read(&key->usage) == 0)
  218. goto found_unreferenced_key;
  219. if (unlikely(gc_state & KEY_GC_REAPING_DEAD_1)) {
  220. if (key->type == key_gc_dead_keytype) {
  221. gc_state |= KEY_GC_FOUND_DEAD_KEY;
  222. set_bit(KEY_FLAG_DEAD, &key->flags);
  223. key->perm = 0;
  224. goto skip_dead_key;
  225. }
  226. }
  227. if (gc_state & KEY_GC_SET_TIMER) {
  228. if (key->expiry > limit && key->expiry < new_timer) {
  229. kdebug("will expire %x in %ld",
  230. key_serial(key), key->expiry - limit);
  231. new_timer = key->expiry;
  232. }
  233. }
  234. if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2))
  235. if (key->type == key_gc_dead_keytype)
  236. gc_state |= KEY_GC_FOUND_DEAD_KEY;
  237. if ((gc_state & KEY_GC_REAPING_LINKS) ||
  238. unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) {
  239. if (key->type == &key_type_keyring)
  240. goto found_keyring;
  241. }
  242. if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3))
  243. if (key->type == key_gc_dead_keytype)
  244. goto destroy_dead_key;
  245. skip_dead_key:
  246. if (spin_is_contended(&key_serial_lock) || need_resched())
  247. goto contended;
  248. }
  249. contended:
  250. spin_unlock(&key_serial_lock);
  251. maybe_resched:
  252. if (cursor) {
  253. cond_resched();
  254. spin_lock(&key_serial_lock);
  255. goto continue_scanning;
  256. }
  257. /* We've completed the pass. Set the timer if we need to and queue a
  258. * new cycle if necessary. We keep executing cycles until we find one
  259. * where we didn't reap any keys.
  260. */
  261. kdebug("pass complete");
  262. if (gc_state & KEY_GC_SET_TIMER && new_timer != (time_t)LONG_MAX) {
  263. new_timer += key_gc_delay;
  264. key_schedule_gc(new_timer);
  265. }
  266. if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) {
  267. /* Make sure everyone revalidates their keys if we marked a
  268. * bunch as being dead and make sure all keyring ex-payloads
  269. * are destroyed.
  270. */
  271. kdebug("dead sync");
  272. synchronize_rcu();
  273. }
  274. if (unlikely(gc_state & (KEY_GC_REAPING_DEAD_1 |
  275. KEY_GC_REAPING_DEAD_2))) {
  276. if (!(gc_state & KEY_GC_FOUND_DEAD_KEY)) {
  277. /* No remaining dead keys: short circuit the remaining
  278. * keytype reap cycles.
  279. */
  280. kdebug("dead short");
  281. gc_state &= ~(KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2);
  282. gc_state |= KEY_GC_REAPING_DEAD_3;
  283. } else {
  284. gc_state |= KEY_GC_REAP_AGAIN;
  285. }
  286. }
  287. if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3)) {
  288. kdebug("dead wake");
  289. smp_mb();
  290. clear_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags);
  291. wake_up_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE);
  292. }
  293. if (gc_state & KEY_GC_REAP_AGAIN)
  294. queue_work(system_nrt_wq, &key_gc_work);
  295. kleave(" [end %x]", gc_state);
  296. return;
  297. /* We found an unreferenced key - once we've removed it from the tree,
  298. * we can safely drop the lock.
  299. */
  300. found_unreferenced_key:
  301. kdebug("unrefd key %d", key->serial);
  302. rb_erase(&key->serial_node, &key_serial_tree);
  303. spin_unlock(&key_serial_lock);
  304. key_gc_unused_key(key);
  305. gc_state |= KEY_GC_REAP_AGAIN;
  306. goto maybe_resched;
  307. /* We found a keyring and we need to check the payload for links to
  308. * dead or expired keys. We don't flag another reap immediately as we
  309. * have to wait for the old payload to be destroyed by RCU before we
  310. * can reap the keys to which it refers.
  311. */
  312. found_keyring:
  313. spin_unlock(&key_serial_lock);
  314. kdebug("scan keyring %d", key->serial);
  315. key_gc_keyring(key, limit);
  316. goto maybe_resched;
  317. /* We found a dead key that is still referenced. Reset its type and
  318. * destroy its payload with its semaphore held.
  319. */
  320. destroy_dead_key:
  321. spin_unlock(&key_serial_lock);
  322. kdebug("destroy key %d", key->serial);
  323. down_write(&key->sem);
  324. key->type = &key_type_dead;
  325. if (key_gc_dead_keytype->destroy)
  326. key_gc_dead_keytype->destroy(key);
  327. memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
  328. up_write(&key->sem);
  329. goto maybe_resched;
  330. }