ib_recv.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077
  1. /*
  2. * Copyright (c) 2006 Oracle. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/kernel.h>
  34. #include <linux/slab.h>
  35. #include <linux/pci.h>
  36. #include <linux/dma-mapping.h>
  37. #include <rdma/rdma_cm.h>
  38. #include "rds.h"
  39. #include "ib.h"
  40. static struct kmem_cache *rds_ib_incoming_slab;
  41. static struct kmem_cache *rds_ib_frag_slab;
  42. static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
  43. void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
  44. {
  45. struct rds_ib_recv_work *recv;
  46. u32 i;
  47. for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
  48. struct ib_sge *sge;
  49. recv->r_ibinc = NULL;
  50. recv->r_frag = NULL;
  51. recv->r_wr.next = NULL;
  52. recv->r_wr.wr_id = i;
  53. recv->r_wr.sg_list = recv->r_sge;
  54. recv->r_wr.num_sge = RDS_IB_RECV_SGE;
  55. sge = &recv->r_sge[0];
  56. sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
  57. sge->length = sizeof(struct rds_header);
  58. sge->lkey = ic->i_mr->lkey;
  59. sge = &recv->r_sge[1];
  60. sge->addr = 0;
  61. sge->length = RDS_FRAG_SIZE;
  62. sge->lkey = ic->i_mr->lkey;
  63. }
  64. }
  65. /*
  66. * The entire 'from' list, including the from element itself, is put on
  67. * to the tail of the 'to' list.
  68. */
  69. static void list_splice_entire_tail(struct list_head *from,
  70. struct list_head *to)
  71. {
  72. struct list_head *from_last = from->prev;
  73. list_splice_tail(from_last, to);
  74. list_add_tail(from_last, to);
  75. }
  76. static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
  77. {
  78. struct list_head *tmp;
  79. tmp = xchg(&cache->xfer, NULL);
  80. if (tmp) {
  81. if (cache->ready)
  82. list_splice_entire_tail(tmp, cache->ready);
  83. else
  84. cache->ready = tmp;
  85. }
  86. }
  87. static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
  88. {
  89. struct rds_ib_cache_head *head;
  90. int cpu;
  91. cache->percpu = alloc_percpu(struct rds_ib_cache_head);
  92. if (!cache->percpu)
  93. return -ENOMEM;
  94. for_each_possible_cpu(cpu) {
  95. head = per_cpu_ptr(cache->percpu, cpu);
  96. head->first = NULL;
  97. head->count = 0;
  98. }
  99. cache->xfer = NULL;
  100. cache->ready = NULL;
  101. return 0;
  102. }
  103. int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
  104. {
  105. int ret;
  106. ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
  107. if (!ret) {
  108. ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
  109. if (ret)
  110. free_percpu(ic->i_cache_incs.percpu);
  111. }
  112. return ret;
  113. }
  114. static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
  115. struct list_head *caller_list)
  116. {
  117. struct rds_ib_cache_head *head;
  118. int cpu;
  119. for_each_possible_cpu(cpu) {
  120. head = per_cpu_ptr(cache->percpu, cpu);
  121. if (head->first) {
  122. list_splice_entire_tail(head->first, caller_list);
  123. head->first = NULL;
  124. }
  125. }
  126. if (cache->ready) {
  127. list_splice_entire_tail(cache->ready, caller_list);
  128. cache->ready = NULL;
  129. }
  130. }
  131. void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
  132. {
  133. struct rds_ib_incoming *inc;
  134. struct rds_ib_incoming *inc_tmp;
  135. struct rds_page_frag *frag;
  136. struct rds_page_frag *frag_tmp;
  137. LIST_HEAD(list);
  138. rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
  139. rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
  140. free_percpu(ic->i_cache_incs.percpu);
  141. list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
  142. list_del(&inc->ii_cache_entry);
  143. WARN_ON(!list_empty(&inc->ii_frags));
  144. kmem_cache_free(rds_ib_incoming_slab, inc);
  145. }
  146. rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
  147. rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
  148. free_percpu(ic->i_cache_frags.percpu);
  149. list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
  150. list_del(&frag->f_cache_entry);
  151. WARN_ON(!list_empty(&frag->f_item));
  152. kmem_cache_free(rds_ib_frag_slab, frag);
  153. }
  154. }
  155. /* fwd decl */
  156. static void rds_ib_recv_cache_put(struct list_head *new_item,
  157. struct rds_ib_refill_cache *cache);
  158. static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
  159. /* Recycle frag and attached recv buffer f_sg */
  160. static void rds_ib_frag_free(struct rds_ib_connection *ic,
  161. struct rds_page_frag *frag)
  162. {
  163. rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
  164. rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
  165. }
  166. /* Recycle inc after freeing attached frags */
  167. void rds_ib_inc_free(struct rds_incoming *inc)
  168. {
  169. struct rds_ib_incoming *ibinc;
  170. struct rds_page_frag *frag;
  171. struct rds_page_frag *pos;
  172. struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
  173. ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
  174. /* Free attached frags */
  175. list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
  176. list_del_init(&frag->f_item);
  177. rds_ib_frag_free(ic, frag);
  178. }
  179. BUG_ON(!list_empty(&ibinc->ii_frags));
  180. rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
  181. rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
  182. }
  183. static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
  184. struct rds_ib_recv_work *recv)
  185. {
  186. if (recv->r_ibinc) {
  187. rds_inc_put(&recv->r_ibinc->ii_inc);
  188. recv->r_ibinc = NULL;
  189. }
  190. if (recv->r_frag) {
  191. ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
  192. rds_ib_frag_free(ic, recv->r_frag);
  193. recv->r_frag = NULL;
  194. }
  195. }
  196. void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
  197. {
  198. u32 i;
  199. for (i = 0; i < ic->i_recv_ring.w_nr; i++)
  200. rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
  201. }
  202. static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
  203. gfp_t slab_mask)
  204. {
  205. struct rds_ib_incoming *ibinc;
  206. struct list_head *cache_item;
  207. int avail_allocs;
  208. cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
  209. if (cache_item) {
  210. ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
  211. } else {
  212. avail_allocs = atomic_add_unless(&rds_ib_allocation,
  213. 1, rds_ib_sysctl_max_recv_allocation);
  214. if (!avail_allocs) {
  215. rds_ib_stats_inc(s_ib_rx_alloc_limit);
  216. return NULL;
  217. }
  218. ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
  219. if (!ibinc) {
  220. atomic_dec(&rds_ib_allocation);
  221. return NULL;
  222. }
  223. }
  224. INIT_LIST_HEAD(&ibinc->ii_frags);
  225. rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
  226. return ibinc;
  227. }
  228. static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
  229. gfp_t slab_mask, gfp_t page_mask)
  230. {
  231. struct rds_page_frag *frag;
  232. struct list_head *cache_item;
  233. int ret;
  234. cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
  235. if (cache_item) {
  236. frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
  237. } else {
  238. frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
  239. if (!frag)
  240. return NULL;
  241. sg_init_table(&frag->f_sg, 1);
  242. ret = rds_page_remainder_alloc(&frag->f_sg,
  243. RDS_FRAG_SIZE, page_mask);
  244. if (ret) {
  245. kmem_cache_free(rds_ib_frag_slab, frag);
  246. return NULL;
  247. }
  248. }
  249. INIT_LIST_HEAD(&frag->f_item);
  250. return frag;
  251. }
  252. static int rds_ib_recv_refill_one(struct rds_connection *conn,
  253. struct rds_ib_recv_work *recv, int prefill)
  254. {
  255. struct rds_ib_connection *ic = conn->c_transport_data;
  256. struct ib_sge *sge;
  257. int ret = -ENOMEM;
  258. gfp_t slab_mask = GFP_NOWAIT;
  259. gfp_t page_mask = GFP_NOWAIT;
  260. if (prefill) {
  261. slab_mask = GFP_KERNEL;
  262. page_mask = GFP_HIGHUSER;
  263. }
  264. if (!ic->i_cache_incs.ready)
  265. rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
  266. if (!ic->i_cache_frags.ready)
  267. rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
  268. /*
  269. * ibinc was taken from recv if recv contained the start of a message.
  270. * recvs that were continuations will still have this allocated.
  271. */
  272. if (!recv->r_ibinc) {
  273. recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
  274. if (!recv->r_ibinc)
  275. goto out;
  276. }
  277. WARN_ON(recv->r_frag); /* leak! */
  278. recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
  279. if (!recv->r_frag)
  280. goto out;
  281. ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
  282. 1, DMA_FROM_DEVICE);
  283. WARN_ON(ret != 1);
  284. sge = &recv->r_sge[0];
  285. sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
  286. sge->length = sizeof(struct rds_header);
  287. sge = &recv->r_sge[1];
  288. sge->addr = sg_dma_address(&recv->r_frag->f_sg);
  289. sge->length = sg_dma_len(&recv->r_frag->f_sg);
  290. ret = 0;
  291. out:
  292. return ret;
  293. }
  294. /*
  295. * This tries to allocate and post unused work requests after making sure that
  296. * they have all the allocations they need to queue received fragments into
  297. * sockets.
  298. *
  299. * -1 is returned if posting fails due to temporary resource exhaustion.
  300. */
  301. void rds_ib_recv_refill(struct rds_connection *conn, int prefill)
  302. {
  303. struct rds_ib_connection *ic = conn->c_transport_data;
  304. struct rds_ib_recv_work *recv;
  305. struct ib_recv_wr *failed_wr;
  306. unsigned int posted = 0;
  307. int ret = 0;
  308. u32 pos;
  309. while ((prefill || rds_conn_up(conn)) &&
  310. rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
  311. if (pos >= ic->i_recv_ring.w_nr) {
  312. printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
  313. pos);
  314. break;
  315. }
  316. recv = &ic->i_recvs[pos];
  317. ret = rds_ib_recv_refill_one(conn, recv, prefill);
  318. if (ret) {
  319. break;
  320. }
  321. /* XXX when can this fail? */
  322. ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
  323. rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
  324. recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
  325. (long) sg_dma_address(&recv->r_frag->f_sg), ret);
  326. if (ret) {
  327. rds_ib_conn_error(conn, "recv post on "
  328. "%pI4 returned %d, disconnecting and "
  329. "reconnecting\n", &conn->c_faddr,
  330. ret);
  331. break;
  332. }
  333. posted++;
  334. }
  335. /* We're doing flow control - update the window. */
  336. if (ic->i_flowctl && posted)
  337. rds_ib_advertise_credits(conn, posted);
  338. if (ret)
  339. rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
  340. }
  341. /*
  342. * We want to recycle several types of recv allocations, like incs and frags.
  343. * To use this, the *_free() function passes in the ptr to a list_head within
  344. * the recyclee, as well as the cache to put it on.
  345. *
  346. * First, we put the memory on a percpu list. When this reaches a certain size,
  347. * We move it to an intermediate non-percpu list in a lockless manner, with some
  348. * xchg/compxchg wizardry.
  349. *
  350. * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
  351. * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
  352. * list_empty() will return true with one element is actually present.
  353. */
  354. static void rds_ib_recv_cache_put(struct list_head *new_item,
  355. struct rds_ib_refill_cache *cache)
  356. {
  357. unsigned long flags;
  358. struct list_head *old, *chpfirst;
  359. local_irq_save(flags);
  360. chpfirst = __this_cpu_read(cache->percpu->first);
  361. if (!chpfirst)
  362. INIT_LIST_HEAD(new_item);
  363. else /* put on front */
  364. list_add_tail(new_item, chpfirst);
  365. __this_cpu_write(cache->percpu->first, new_item);
  366. __this_cpu_inc(cache->percpu->count);
  367. if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
  368. goto end;
  369. /*
  370. * Return our per-cpu first list to the cache's xfer by atomically
  371. * grabbing the current xfer list, appending it to our per-cpu list,
  372. * and then atomically returning that entire list back to the
  373. * cache's xfer list as long as it's still empty.
  374. */
  375. do {
  376. old = xchg(&cache->xfer, NULL);
  377. if (old)
  378. list_splice_entire_tail(old, chpfirst);
  379. old = cmpxchg(&cache->xfer, NULL, chpfirst);
  380. } while (old);
  381. __this_cpu_write(cache->percpu->first, NULL);
  382. __this_cpu_write(cache->percpu->count, 0);
  383. end:
  384. local_irq_restore(flags);
  385. }
  386. static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
  387. {
  388. struct list_head *head = cache->ready;
  389. if (head) {
  390. if (!list_empty(head)) {
  391. cache->ready = head->next;
  392. list_del_init(head);
  393. } else
  394. cache->ready = NULL;
  395. }
  396. return head;
  397. }
  398. int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
  399. size_t size)
  400. {
  401. struct rds_ib_incoming *ibinc;
  402. struct rds_page_frag *frag;
  403. struct iovec *iov = first_iov;
  404. unsigned long to_copy;
  405. unsigned long frag_off = 0;
  406. unsigned long iov_off = 0;
  407. int copied = 0;
  408. int ret;
  409. u32 len;
  410. ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
  411. frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
  412. len = be32_to_cpu(inc->i_hdr.h_len);
  413. while (copied < size && copied < len) {
  414. if (frag_off == RDS_FRAG_SIZE) {
  415. frag = list_entry(frag->f_item.next,
  416. struct rds_page_frag, f_item);
  417. frag_off = 0;
  418. }
  419. while (iov_off == iov->iov_len) {
  420. iov_off = 0;
  421. iov++;
  422. }
  423. to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
  424. to_copy = min_t(size_t, to_copy, size - copied);
  425. to_copy = min_t(unsigned long, to_copy, len - copied);
  426. rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
  427. "[%p, %u] + %lu\n",
  428. to_copy, iov->iov_base, iov->iov_len, iov_off,
  429. sg_page(&frag->f_sg), frag->f_sg.offset, frag_off);
  430. /* XXX needs + offset for multiple recvs per page */
  431. ret = rds_page_copy_to_user(sg_page(&frag->f_sg),
  432. frag->f_sg.offset + frag_off,
  433. iov->iov_base + iov_off,
  434. to_copy);
  435. if (ret) {
  436. copied = ret;
  437. break;
  438. }
  439. iov_off += to_copy;
  440. frag_off += to_copy;
  441. copied += to_copy;
  442. }
  443. return copied;
  444. }
  445. /* ic starts out kzalloc()ed */
  446. void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
  447. {
  448. struct ib_send_wr *wr = &ic->i_ack_wr;
  449. struct ib_sge *sge = &ic->i_ack_sge;
  450. sge->addr = ic->i_ack_dma;
  451. sge->length = sizeof(struct rds_header);
  452. sge->lkey = ic->i_mr->lkey;
  453. wr->sg_list = sge;
  454. wr->num_sge = 1;
  455. wr->opcode = IB_WR_SEND;
  456. wr->wr_id = RDS_IB_ACK_WR_ID;
  457. wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
  458. }
  459. /*
  460. * You'd think that with reliable IB connections you wouldn't need to ack
  461. * messages that have been received. The problem is that IB hardware generates
  462. * an ack message before it has DMAed the message into memory. This creates a
  463. * potential message loss if the HCA is disabled for any reason between when it
  464. * sends the ack and before the message is DMAed and processed. This is only a
  465. * potential issue if another HCA is available for fail-over.
  466. *
  467. * When the remote host receives our ack they'll free the sent message from
  468. * their send queue. To decrease the latency of this we always send an ack
  469. * immediately after we've received messages.
  470. *
  471. * For simplicity, we only have one ack in flight at a time. This puts
  472. * pressure on senders to have deep enough send queues to absorb the latency of
  473. * a single ack frame being in flight. This might not be good enough.
  474. *
  475. * This is implemented by have a long-lived send_wr and sge which point to a
  476. * statically allocated ack frame. This ack wr does not fall under the ring
  477. * accounting that the tx and rx wrs do. The QP attribute specifically makes
  478. * room for it beyond the ring size. Send completion notices its special
  479. * wr_id and avoids working with the ring in that case.
  480. */
  481. #ifndef KERNEL_HAS_ATOMIC64
  482. static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
  483. int ack_required)
  484. {
  485. unsigned long flags;
  486. spin_lock_irqsave(&ic->i_ack_lock, flags);
  487. ic->i_ack_next = seq;
  488. if (ack_required)
  489. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  490. spin_unlock_irqrestore(&ic->i_ack_lock, flags);
  491. }
  492. static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
  493. {
  494. unsigned long flags;
  495. u64 seq;
  496. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  497. spin_lock_irqsave(&ic->i_ack_lock, flags);
  498. seq = ic->i_ack_next;
  499. spin_unlock_irqrestore(&ic->i_ack_lock, flags);
  500. return seq;
  501. }
  502. #else
  503. static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
  504. int ack_required)
  505. {
  506. atomic64_set(&ic->i_ack_next, seq);
  507. if (ack_required) {
  508. smp_mb__before_clear_bit();
  509. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  510. }
  511. }
  512. static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
  513. {
  514. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  515. smp_mb__after_clear_bit();
  516. return atomic64_read(&ic->i_ack_next);
  517. }
  518. #endif
  519. static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
  520. {
  521. struct rds_header *hdr = ic->i_ack;
  522. struct ib_send_wr *failed_wr;
  523. u64 seq;
  524. int ret;
  525. seq = rds_ib_get_ack(ic);
  526. rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
  527. rds_message_populate_header(hdr, 0, 0, 0);
  528. hdr->h_ack = cpu_to_be64(seq);
  529. hdr->h_credit = adv_credits;
  530. rds_message_make_checksum(hdr);
  531. ic->i_ack_queued = jiffies;
  532. ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
  533. if (unlikely(ret)) {
  534. /* Failed to send. Release the WR, and
  535. * force another ACK.
  536. */
  537. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  538. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  539. rds_ib_stats_inc(s_ib_ack_send_failure);
  540. rds_ib_conn_error(ic->conn, "sending ack failed\n");
  541. } else
  542. rds_ib_stats_inc(s_ib_ack_sent);
  543. }
  544. /*
  545. * There are 3 ways of getting acknowledgements to the peer:
  546. * 1. We call rds_ib_attempt_ack from the recv completion handler
  547. * to send an ACK-only frame.
  548. * However, there can be only one such frame in the send queue
  549. * at any time, so we may have to postpone it.
  550. * 2. When another (data) packet is transmitted while there's
  551. * an ACK in the queue, we piggyback the ACK sequence number
  552. * on the data packet.
  553. * 3. If the ACK WR is done sending, we get called from the
  554. * send queue completion handler, and check whether there's
  555. * another ACK pending (postponed because the WR was on the
  556. * queue). If so, we transmit it.
  557. *
  558. * We maintain 2 variables:
  559. * - i_ack_flags, which keeps track of whether the ACK WR
  560. * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
  561. * - i_ack_next, which is the last sequence number we received
  562. *
  563. * Potentially, send queue and receive queue handlers can run concurrently.
  564. * It would be nice to not have to use a spinlock to synchronize things,
  565. * but the one problem that rules this out is that 64bit updates are
  566. * not atomic on all platforms. Things would be a lot simpler if
  567. * we had atomic64 or maybe cmpxchg64 everywhere.
  568. *
  569. * Reconnecting complicates this picture just slightly. When we
  570. * reconnect, we may be seeing duplicate packets. The peer
  571. * is retransmitting them, because it hasn't seen an ACK for
  572. * them. It is important that we ACK these.
  573. *
  574. * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
  575. * this flag set *MUST* be acknowledged immediately.
  576. */
  577. /*
  578. * When we get here, we're called from the recv queue handler.
  579. * Check whether we ought to transmit an ACK.
  580. */
  581. void rds_ib_attempt_ack(struct rds_ib_connection *ic)
  582. {
  583. unsigned int adv_credits;
  584. if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
  585. return;
  586. if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
  587. rds_ib_stats_inc(s_ib_ack_send_delayed);
  588. return;
  589. }
  590. /* Can we get a send credit? */
  591. if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
  592. rds_ib_stats_inc(s_ib_tx_throttle);
  593. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  594. return;
  595. }
  596. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  597. rds_ib_send_ack(ic, adv_credits);
  598. }
  599. /*
  600. * We get here from the send completion handler, when the
  601. * adapter tells us the ACK frame was sent.
  602. */
  603. void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
  604. {
  605. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  606. rds_ib_attempt_ack(ic);
  607. }
  608. /*
  609. * This is called by the regular xmit code when it wants to piggyback
  610. * an ACK on an outgoing frame.
  611. */
  612. u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
  613. {
  614. if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
  615. rds_ib_stats_inc(s_ib_ack_send_piggybacked);
  616. return rds_ib_get_ack(ic);
  617. }
  618. /*
  619. * It's kind of lame that we're copying from the posted receive pages into
  620. * long-lived bitmaps. We could have posted the bitmaps and rdma written into
  621. * them. But receiving new congestion bitmaps should be a *rare* event, so
  622. * hopefully we won't need to invest that complexity in making it more
  623. * efficient. By copying we can share a simpler core with TCP which has to
  624. * copy.
  625. */
  626. static void rds_ib_cong_recv(struct rds_connection *conn,
  627. struct rds_ib_incoming *ibinc)
  628. {
  629. struct rds_cong_map *map;
  630. unsigned int map_off;
  631. unsigned int map_page;
  632. struct rds_page_frag *frag;
  633. unsigned long frag_off;
  634. unsigned long to_copy;
  635. unsigned long copied;
  636. uint64_t uncongested = 0;
  637. void *addr;
  638. /* catch completely corrupt packets */
  639. if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
  640. return;
  641. map = conn->c_fcong;
  642. map_page = 0;
  643. map_off = 0;
  644. frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
  645. frag_off = 0;
  646. copied = 0;
  647. while (copied < RDS_CONG_MAP_BYTES) {
  648. uint64_t *src, *dst;
  649. unsigned int k;
  650. to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
  651. BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
  652. addr = kmap_atomic(sg_page(&frag->f_sg));
  653. src = addr + frag_off;
  654. dst = (void *)map->m_page_addrs[map_page] + map_off;
  655. for (k = 0; k < to_copy; k += 8) {
  656. /* Record ports that became uncongested, ie
  657. * bits that changed from 0 to 1. */
  658. uncongested |= ~(*src) & *dst;
  659. *dst++ = *src++;
  660. }
  661. kunmap_atomic(addr);
  662. copied += to_copy;
  663. map_off += to_copy;
  664. if (map_off == PAGE_SIZE) {
  665. map_off = 0;
  666. map_page++;
  667. }
  668. frag_off += to_copy;
  669. if (frag_off == RDS_FRAG_SIZE) {
  670. frag = list_entry(frag->f_item.next,
  671. struct rds_page_frag, f_item);
  672. frag_off = 0;
  673. }
  674. }
  675. /* the congestion map is in little endian order */
  676. uncongested = le64_to_cpu(uncongested);
  677. rds_cong_map_updated(map, uncongested);
  678. }
  679. /*
  680. * Rings are posted with all the allocations they'll need to queue the
  681. * incoming message to the receiving socket so this can't fail.
  682. * All fragments start with a header, so we can make sure we're not receiving
  683. * garbage, and we can tell a small 8 byte fragment from an ACK frame.
  684. */
  685. struct rds_ib_ack_state {
  686. u64 ack_next;
  687. u64 ack_recv;
  688. unsigned int ack_required:1;
  689. unsigned int ack_next_valid:1;
  690. unsigned int ack_recv_valid:1;
  691. };
  692. static void rds_ib_process_recv(struct rds_connection *conn,
  693. struct rds_ib_recv_work *recv, u32 data_len,
  694. struct rds_ib_ack_state *state)
  695. {
  696. struct rds_ib_connection *ic = conn->c_transport_data;
  697. struct rds_ib_incoming *ibinc = ic->i_ibinc;
  698. struct rds_header *ihdr, *hdr;
  699. /* XXX shut down the connection if port 0,0 are seen? */
  700. rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
  701. data_len);
  702. if (data_len < sizeof(struct rds_header)) {
  703. rds_ib_conn_error(conn, "incoming message "
  704. "from %pI4 didn't include a "
  705. "header, disconnecting and "
  706. "reconnecting\n",
  707. &conn->c_faddr);
  708. return;
  709. }
  710. data_len -= sizeof(struct rds_header);
  711. ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
  712. /* Validate the checksum. */
  713. if (!rds_message_verify_checksum(ihdr)) {
  714. rds_ib_conn_error(conn, "incoming message "
  715. "from %pI4 has corrupted header - "
  716. "forcing a reconnect\n",
  717. &conn->c_faddr);
  718. rds_stats_inc(s_recv_drop_bad_checksum);
  719. return;
  720. }
  721. /* Process the ACK sequence which comes with every packet */
  722. state->ack_recv = be64_to_cpu(ihdr->h_ack);
  723. state->ack_recv_valid = 1;
  724. /* Process the credits update if there was one */
  725. if (ihdr->h_credit)
  726. rds_ib_send_add_credits(conn, ihdr->h_credit);
  727. if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
  728. /* This is an ACK-only packet. The fact that it gets
  729. * special treatment here is that historically, ACKs
  730. * were rather special beasts.
  731. */
  732. rds_ib_stats_inc(s_ib_ack_received);
  733. /*
  734. * Usually the frags make their way on to incs and are then freed as
  735. * the inc is freed. We don't go that route, so we have to drop the
  736. * page ref ourselves. We can't just leave the page on the recv
  737. * because that confuses the dma mapping of pages and each recv's use
  738. * of a partial page.
  739. *
  740. * FIXME: Fold this into the code path below.
  741. */
  742. rds_ib_frag_free(ic, recv->r_frag);
  743. recv->r_frag = NULL;
  744. return;
  745. }
  746. /*
  747. * If we don't already have an inc on the connection then this
  748. * fragment has a header and starts a message.. copy its header
  749. * into the inc and save the inc so we can hang upcoming fragments
  750. * off its list.
  751. */
  752. if (!ibinc) {
  753. ibinc = recv->r_ibinc;
  754. recv->r_ibinc = NULL;
  755. ic->i_ibinc = ibinc;
  756. hdr = &ibinc->ii_inc.i_hdr;
  757. memcpy(hdr, ihdr, sizeof(*hdr));
  758. ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
  759. rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
  760. ic->i_recv_data_rem, hdr->h_flags);
  761. } else {
  762. hdr = &ibinc->ii_inc.i_hdr;
  763. /* We can't just use memcmp here; fragments of a
  764. * single message may carry different ACKs */
  765. if (hdr->h_sequence != ihdr->h_sequence ||
  766. hdr->h_len != ihdr->h_len ||
  767. hdr->h_sport != ihdr->h_sport ||
  768. hdr->h_dport != ihdr->h_dport) {
  769. rds_ib_conn_error(conn,
  770. "fragment header mismatch; forcing reconnect\n");
  771. return;
  772. }
  773. }
  774. list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
  775. recv->r_frag = NULL;
  776. if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
  777. ic->i_recv_data_rem -= RDS_FRAG_SIZE;
  778. else {
  779. ic->i_recv_data_rem = 0;
  780. ic->i_ibinc = NULL;
  781. if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
  782. rds_ib_cong_recv(conn, ibinc);
  783. else {
  784. rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
  785. &ibinc->ii_inc, GFP_ATOMIC);
  786. state->ack_next = be64_to_cpu(hdr->h_sequence);
  787. state->ack_next_valid = 1;
  788. }
  789. /* Evaluate the ACK_REQUIRED flag *after* we received
  790. * the complete frame, and after bumping the next_rx
  791. * sequence. */
  792. if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
  793. rds_stats_inc(s_recv_ack_required);
  794. state->ack_required = 1;
  795. }
  796. rds_inc_put(&ibinc->ii_inc);
  797. }
  798. }
  799. /*
  800. * Plucking the oldest entry from the ring can be done concurrently with
  801. * the thread refilling the ring. Each ring operation is protected by
  802. * spinlocks and the transient state of refilling doesn't change the
  803. * recording of which entry is oldest.
  804. *
  805. * This relies on IB only calling one cq comp_handler for each cq so that
  806. * there will only be one caller of rds_recv_incoming() per RDS connection.
  807. */
  808. void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
  809. {
  810. struct rds_connection *conn = context;
  811. struct rds_ib_connection *ic = conn->c_transport_data;
  812. rdsdebug("conn %p cq %p\n", conn, cq);
  813. rds_ib_stats_inc(s_ib_rx_cq_call);
  814. tasklet_schedule(&ic->i_recv_tasklet);
  815. }
  816. static inline void rds_poll_cq(struct rds_ib_connection *ic,
  817. struct rds_ib_ack_state *state)
  818. {
  819. struct rds_connection *conn = ic->conn;
  820. struct ib_wc wc;
  821. struct rds_ib_recv_work *recv;
  822. while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
  823. rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
  824. (unsigned long long)wc.wr_id, wc.status,
  825. rds_ib_wc_status_str(wc.status), wc.byte_len,
  826. be32_to_cpu(wc.ex.imm_data));
  827. rds_ib_stats_inc(s_ib_rx_cq_event);
  828. recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
  829. ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
  830. /*
  831. * Also process recvs in connecting state because it is possible
  832. * to get a recv completion _before_ the rdmacm ESTABLISHED
  833. * event is processed.
  834. */
  835. if (wc.status == IB_WC_SUCCESS) {
  836. rds_ib_process_recv(conn, recv, wc.byte_len, state);
  837. } else {
  838. /* We expect errors as the qp is drained during shutdown */
  839. if (rds_conn_up(conn) || rds_conn_connecting(conn))
  840. rds_ib_conn_error(conn, "recv completion on %pI4 had "
  841. "status %u (%s), disconnecting and "
  842. "reconnecting\n", &conn->c_faddr,
  843. wc.status,
  844. rds_ib_wc_status_str(wc.status));
  845. }
  846. /*
  847. * It's very important that we only free this ring entry if we've truly
  848. * freed the resources allocated to the entry. The refilling path can
  849. * leak if we don't.
  850. */
  851. rds_ib_ring_free(&ic->i_recv_ring, 1);
  852. }
  853. }
  854. void rds_ib_recv_tasklet_fn(unsigned long data)
  855. {
  856. struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
  857. struct rds_connection *conn = ic->conn;
  858. struct rds_ib_ack_state state = { 0, };
  859. rds_poll_cq(ic, &state);
  860. ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
  861. rds_poll_cq(ic, &state);
  862. if (state.ack_next_valid)
  863. rds_ib_set_ack(ic, state.ack_next, state.ack_required);
  864. if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
  865. rds_send_drop_acked(conn, state.ack_recv, NULL);
  866. ic->i_ack_recv = state.ack_recv;
  867. }
  868. if (rds_conn_up(conn))
  869. rds_ib_attempt_ack(ic);
  870. /* If we ever end up with a really empty receive ring, we're
  871. * in deep trouble, as the sender will definitely see RNR
  872. * timeouts. */
  873. if (rds_ib_ring_empty(&ic->i_recv_ring))
  874. rds_ib_stats_inc(s_ib_rx_ring_empty);
  875. if (rds_ib_ring_low(&ic->i_recv_ring))
  876. rds_ib_recv_refill(conn, 0);
  877. }
  878. int rds_ib_recv(struct rds_connection *conn)
  879. {
  880. struct rds_ib_connection *ic = conn->c_transport_data;
  881. int ret = 0;
  882. rdsdebug("conn %p\n", conn);
  883. if (rds_conn_up(conn))
  884. rds_ib_attempt_ack(ic);
  885. return ret;
  886. }
  887. int rds_ib_recv_init(void)
  888. {
  889. struct sysinfo si;
  890. int ret = -ENOMEM;
  891. /* Default to 30% of all available RAM for recv memory */
  892. si_meminfo(&si);
  893. rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
  894. rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
  895. sizeof(struct rds_ib_incoming),
  896. 0, SLAB_HWCACHE_ALIGN, NULL);
  897. if (!rds_ib_incoming_slab)
  898. goto out;
  899. rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
  900. sizeof(struct rds_page_frag),
  901. 0, SLAB_HWCACHE_ALIGN, NULL);
  902. if (!rds_ib_frag_slab)
  903. kmem_cache_destroy(rds_ib_incoming_slab);
  904. else
  905. ret = 0;
  906. out:
  907. return ret;
  908. }
  909. void rds_ib_recv_exit(void)
  910. {
  911. kmem_cache_destroy(rds_ib_incoming_slab);
  912. kmem_cache_destroy(rds_ib_frag_slab);
  913. }