tcp_input.c 177 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <net/dst.h>
  69. #include <net/tcp.h>
  70. #include <net/inet_common.h>
  71. #include <linux/ipsec.h>
  72. #include <asm/unaligned.h>
  73. #include <net/netdma.h>
  74. int sysctl_tcp_timestamps __read_mostly = 1;
  75. int sysctl_tcp_window_scaling __read_mostly = 1;
  76. int sysctl_tcp_sack __read_mostly = 1;
  77. int sysctl_tcp_fack __read_mostly = 1;
  78. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  79. EXPORT_SYMBOL(sysctl_tcp_reordering);
  80. int sysctl_tcp_ecn __read_mostly = 2;
  81. EXPORT_SYMBOL(sysctl_tcp_ecn);
  82. int sysctl_tcp_dsack __read_mostly = 1;
  83. int sysctl_tcp_app_win __read_mostly = 31;
  84. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  85. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  86. /* rfc5961 challenge ack rate limiting */
  87. int sysctl_tcp_challenge_ack_limit = 1000;
  88. int sysctl_tcp_stdurg __read_mostly;
  89. int sysctl_tcp_rfc1337 __read_mostly;
  90. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  91. int sysctl_tcp_frto __read_mostly = 2;
  92. int sysctl_tcp_frto_response __read_mostly;
  93. int sysctl_tcp_nometrics_save __read_mostly;
  94. int sysctl_tcp_thin_dupack __read_mostly;
  95. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  96. int sysctl_tcp_default_init_rwnd __read_mostly = TCP_DEFAULT_INIT_RCVWND;
  97. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  98. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  99. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  100. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  101. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  102. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  103. #define FLAG_ECE 0x40 /* ECE in this ACK */
  104. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  105. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  106. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  107. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  108. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  109. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  110. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  111. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  112. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  113. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  114. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  115. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  116. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  117. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  118. /* Adapt the MSS value used to make delayed ack decision to the
  119. * real world.
  120. */
  121. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  122. {
  123. struct inet_connection_sock *icsk = inet_csk(sk);
  124. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  125. unsigned int len;
  126. icsk->icsk_ack.last_seg_size = 0;
  127. /* skb->len may jitter because of SACKs, even if peer
  128. * sends good full-sized frames.
  129. */
  130. len = skb_shinfo(skb)->gso_size ? : skb->len;
  131. if (len >= icsk->icsk_ack.rcv_mss) {
  132. icsk->icsk_ack.rcv_mss = len;
  133. } else {
  134. /* Otherwise, we make more careful check taking into account,
  135. * that SACKs block is variable.
  136. *
  137. * "len" is invariant segment length, including TCP header.
  138. */
  139. len += skb->data - skb_transport_header(skb);
  140. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  141. /* If PSH is not set, packet should be
  142. * full sized, provided peer TCP is not badly broken.
  143. * This observation (if it is correct 8)) allows
  144. * to handle super-low mtu links fairly.
  145. */
  146. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  147. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  148. /* Subtract also invariant (if peer is RFC compliant),
  149. * tcp header plus fixed timestamp option length.
  150. * Resulting "len" is MSS free of SACK jitter.
  151. */
  152. len -= tcp_sk(sk)->tcp_header_len;
  153. icsk->icsk_ack.last_seg_size = len;
  154. if (len == lss) {
  155. icsk->icsk_ack.rcv_mss = len;
  156. return;
  157. }
  158. }
  159. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  160. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  161. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  162. }
  163. }
  164. static void tcp_incr_quickack(struct sock *sk)
  165. {
  166. struct inet_connection_sock *icsk = inet_csk(sk);
  167. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  168. if (quickacks == 0)
  169. quickacks = 2;
  170. if (quickacks > icsk->icsk_ack.quick)
  171. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  172. }
  173. static void tcp_enter_quickack_mode(struct sock *sk)
  174. {
  175. struct inet_connection_sock *icsk = inet_csk(sk);
  176. tcp_incr_quickack(sk);
  177. icsk->icsk_ack.pingpong = 0;
  178. icsk->icsk_ack.ato = TCP_ATO_MIN;
  179. }
  180. /* Send ACKs quickly, if "quick" count is not exhausted
  181. * and the session is not interactive.
  182. */
  183. static inline int tcp_in_quickack_mode(const struct sock *sk)
  184. {
  185. const struct inet_connection_sock *icsk = inet_csk(sk);
  186. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  187. }
  188. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  189. {
  190. if (tp->ecn_flags & TCP_ECN_OK)
  191. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  192. }
  193. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  194. {
  195. if (tcp_hdr(skb)->cwr)
  196. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  197. }
  198. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  199. {
  200. tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
  201. }
  202. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  203. {
  204. if (!(tp->ecn_flags & TCP_ECN_OK))
  205. return;
  206. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  207. case INET_ECN_NOT_ECT:
  208. /* Funny extension: if ECT is not set on a segment,
  209. * and we already seen ECT on a previous segment,
  210. * it is probably a retransmit.
  211. */
  212. if (tp->ecn_flags & TCP_ECN_SEEN)
  213. tcp_enter_quickack_mode((struct sock *)tp);
  214. break;
  215. case INET_ECN_CE:
  216. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  217. /* fallinto */
  218. default:
  219. tp->ecn_flags |= TCP_ECN_SEEN;
  220. }
  221. }
  222. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  223. {
  224. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  225. tp->ecn_flags &= ~TCP_ECN_OK;
  226. }
  227. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  228. {
  229. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  230. tp->ecn_flags &= ~TCP_ECN_OK;
  231. }
  232. static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  233. {
  234. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  235. return 1;
  236. return 0;
  237. }
  238. /* Buffer size and advertised window tuning.
  239. *
  240. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  241. */
  242. static void tcp_fixup_sndbuf(struct sock *sk)
  243. {
  244. int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
  245. sndmem *= TCP_INIT_CWND;
  246. if (sk->sk_sndbuf < sndmem)
  247. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  248. }
  249. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  250. *
  251. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  252. * forward and advertised in receiver window (tp->rcv_wnd) and
  253. * "application buffer", required to isolate scheduling/application
  254. * latencies from network.
  255. * window_clamp is maximal advertised window. It can be less than
  256. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  257. * is reserved for "application" buffer. The less window_clamp is
  258. * the smoother our behaviour from viewpoint of network, but the lower
  259. * throughput and the higher sensitivity of the connection to losses. 8)
  260. *
  261. * rcv_ssthresh is more strict window_clamp used at "slow start"
  262. * phase to predict further behaviour of this connection.
  263. * It is used for two goals:
  264. * - to enforce header prediction at sender, even when application
  265. * requires some significant "application buffer". It is check #1.
  266. * - to prevent pruning of receive queue because of misprediction
  267. * of receiver window. Check #2.
  268. *
  269. * The scheme does not work when sender sends good segments opening
  270. * window and then starts to feed us spaghetti. But it should work
  271. * in common situations. Otherwise, we have to rely on queue collapsing.
  272. */
  273. /* Slow part of check#2. */
  274. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  275. {
  276. struct tcp_sock *tp = tcp_sk(sk);
  277. /* Optimize this! */
  278. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  279. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  280. while (tp->rcv_ssthresh <= window) {
  281. if (truesize <= skb->len)
  282. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  283. truesize >>= 1;
  284. window >>= 1;
  285. }
  286. return 0;
  287. }
  288. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  289. {
  290. struct tcp_sock *tp = tcp_sk(sk);
  291. int room;
  292. room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
  293. /* Check #1 */
  294. if (room > 0 && !sk_under_memory_pressure(sk)) {
  295. int incr;
  296. /* Check #2. Increase window, if skb with such overhead
  297. * will fit to rcvbuf in future.
  298. */
  299. if (tcp_win_from_space(skb->truesize) <= skb->len)
  300. incr = 2 * tp->advmss;
  301. else
  302. incr = __tcp_grow_window(sk, skb);
  303. if (incr) {
  304. incr = max_t(int, incr, 2 * skb->len);
  305. tp->rcv_ssthresh += min(room, incr);
  306. inet_csk(sk)->icsk_ack.quick |= 1;
  307. }
  308. }
  309. }
  310. /* 3. Tuning rcvbuf, when connection enters established state. */
  311. static void tcp_fixup_rcvbuf(struct sock *sk)
  312. {
  313. u32 mss = tcp_sk(sk)->advmss;
  314. u32 icwnd = sysctl_tcp_default_init_rwnd;
  315. int rcvmem;
  316. /* Limit to 10 segments if mss <= 1460,
  317. * or 14600/mss segments, with a minimum of two segments.
  318. */
  319. if (mss > 1460)
  320. icwnd = max_t(u32, (1460 * icwnd) / mss, 2);
  321. rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
  322. while (tcp_win_from_space(rcvmem) < mss)
  323. rcvmem += 128;
  324. rcvmem *= icwnd;
  325. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  326. * Allow enough cushion so that sender is not limited by our window
  327. */
  328. if (sysctl_tcp_moderate_rcvbuf)
  329. rcvmem <<= 2;
  330. if (sk->sk_rcvbuf < rcvmem)
  331. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  332. }
  333. /* 4. Try to fixup all. It is made immediately after connection enters
  334. * established state.
  335. */
  336. static void tcp_init_buffer_space(struct sock *sk)
  337. {
  338. struct tcp_sock *tp = tcp_sk(sk);
  339. int maxwin;
  340. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  341. tcp_fixup_rcvbuf(sk);
  342. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  343. tcp_fixup_sndbuf(sk);
  344. tp->rcvq_space.space = tp->rcv_wnd;
  345. tp->rcvq_space.time = tcp_time_stamp;
  346. tp->rcvq_space.seq = tp->copied_seq;
  347. maxwin = tcp_full_space(sk);
  348. if (tp->window_clamp >= maxwin) {
  349. tp->window_clamp = maxwin;
  350. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  351. tp->window_clamp = max(maxwin -
  352. (maxwin >> sysctl_tcp_app_win),
  353. 4 * tp->advmss);
  354. }
  355. /* Force reservation of one segment. */
  356. if (sysctl_tcp_app_win &&
  357. tp->window_clamp > 2 * tp->advmss &&
  358. tp->window_clamp + tp->advmss > maxwin)
  359. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  360. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  361. tp->snd_cwnd_stamp = tcp_time_stamp;
  362. }
  363. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  364. static void tcp_clamp_window(struct sock *sk)
  365. {
  366. struct tcp_sock *tp = tcp_sk(sk);
  367. struct inet_connection_sock *icsk = inet_csk(sk);
  368. icsk->icsk_ack.quick = 0;
  369. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  370. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  371. !sk_under_memory_pressure(sk) &&
  372. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  373. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  374. sysctl_tcp_rmem[2]);
  375. }
  376. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  377. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  378. }
  379. /* Initialize RCV_MSS value.
  380. * RCV_MSS is an our guess about MSS used by the peer.
  381. * We haven't any direct information about the MSS.
  382. * It's better to underestimate the RCV_MSS rather than overestimate.
  383. * Overestimations make us ACKing less frequently than needed.
  384. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  385. */
  386. void tcp_initialize_rcv_mss(struct sock *sk)
  387. {
  388. const struct tcp_sock *tp = tcp_sk(sk);
  389. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  390. hint = min(hint, tp->rcv_wnd / 2);
  391. hint = min(hint, TCP_MSS_DEFAULT);
  392. hint = max(hint, TCP_MIN_MSS);
  393. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  394. }
  395. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  396. /* Receiver "autotuning" code.
  397. *
  398. * The algorithm for RTT estimation w/o timestamps is based on
  399. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  400. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  401. *
  402. * More detail on this code can be found at
  403. * <http://staff.psc.edu/jheffner/>,
  404. * though this reference is out of date. A new paper
  405. * is pending.
  406. */
  407. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  408. {
  409. u32 new_sample = tp->rcv_rtt_est.rtt;
  410. long m = sample;
  411. if (m == 0)
  412. m = 1;
  413. if (new_sample != 0) {
  414. /* If we sample in larger samples in the non-timestamp
  415. * case, we could grossly overestimate the RTT especially
  416. * with chatty applications or bulk transfer apps which
  417. * are stalled on filesystem I/O.
  418. *
  419. * Also, since we are only going for a minimum in the
  420. * non-timestamp case, we do not smooth things out
  421. * else with timestamps disabled convergence takes too
  422. * long.
  423. */
  424. if (!win_dep) {
  425. m -= (new_sample >> 3);
  426. new_sample += m;
  427. } else {
  428. m <<= 3;
  429. if (m < new_sample)
  430. new_sample = m;
  431. }
  432. } else {
  433. /* No previous measure. */
  434. new_sample = m << 3;
  435. }
  436. if (tp->rcv_rtt_est.rtt != new_sample)
  437. tp->rcv_rtt_est.rtt = new_sample;
  438. }
  439. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  440. {
  441. if (tp->rcv_rtt_est.time == 0)
  442. goto new_measure;
  443. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  444. return;
  445. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  446. new_measure:
  447. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  448. tp->rcv_rtt_est.time = tcp_time_stamp;
  449. }
  450. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  451. const struct sk_buff *skb)
  452. {
  453. struct tcp_sock *tp = tcp_sk(sk);
  454. if (tp->rx_opt.rcv_tsecr &&
  455. (TCP_SKB_CB(skb)->end_seq -
  456. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  457. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  458. }
  459. /*
  460. * This function should be called every time data is copied to user space.
  461. * It calculates the appropriate TCP receive buffer space.
  462. */
  463. void tcp_rcv_space_adjust(struct sock *sk)
  464. {
  465. struct tcp_sock *tp = tcp_sk(sk);
  466. int time;
  467. int copied;
  468. time = tcp_time_stamp - tp->rcvq_space.time;
  469. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  470. return;
  471. /* Number of bytes copied to user in last RTT */
  472. copied = tp->copied_seq - tp->rcvq_space.seq;
  473. if (copied <= tp->rcvq_space.space)
  474. goto new_measure;
  475. /* A bit of theory :
  476. * copied = bytes received in previous RTT, our base window
  477. * To cope with packet losses, we need a 2x factor
  478. * To cope with slow start, and sender growing its cwin by 100 %
  479. * every RTT, we need a 4x factor, because the ACK we are sending
  480. * now is for the next RTT, not the current one :
  481. * <prev RTT . ><current RTT .. ><next RTT .... >
  482. */
  483. if (sysctl_tcp_moderate_rcvbuf &&
  484. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  485. int rcvwin, rcvmem, rcvbuf;
  486. /* minimal window to cope with packet losses, assuming
  487. * steady state. Add some cushion because of small variations.
  488. */
  489. rcvwin = (copied << 1) + 16 * tp->advmss;
  490. /* If rate increased by 25%,
  491. * assume slow start, rcvwin = 3 * copied
  492. * If rate increased by 50%,
  493. * assume sender can use 2x growth, rcvwin = 4 * copied
  494. */
  495. if (copied >=
  496. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  497. if (copied >=
  498. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  499. rcvwin <<= 1;
  500. else
  501. rcvwin += (rcvwin >> 1);
  502. }
  503. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  504. while (tcp_win_from_space(rcvmem) < tp->advmss)
  505. rcvmem += 128;
  506. rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
  507. if (rcvbuf > sk->sk_rcvbuf) {
  508. sk->sk_rcvbuf = rcvbuf;
  509. /* Make the window clamp follow along. */
  510. tp->window_clamp = rcvwin;
  511. }
  512. }
  513. tp->rcvq_space.space = copied;
  514. new_measure:
  515. tp->rcvq_space.seq = tp->copied_seq;
  516. tp->rcvq_space.time = tcp_time_stamp;
  517. }
  518. /* There is something which you must keep in mind when you analyze the
  519. * behavior of the tp->ato delayed ack timeout interval. When a
  520. * connection starts up, we want to ack as quickly as possible. The
  521. * problem is that "good" TCP's do slow start at the beginning of data
  522. * transmission. The means that until we send the first few ACK's the
  523. * sender will sit on his end and only queue most of his data, because
  524. * he can only send snd_cwnd unacked packets at any given time. For
  525. * each ACK we send, he increments snd_cwnd and transmits more of his
  526. * queue. -DaveM
  527. */
  528. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  529. {
  530. struct tcp_sock *tp = tcp_sk(sk);
  531. struct inet_connection_sock *icsk = inet_csk(sk);
  532. u32 now;
  533. inet_csk_schedule_ack(sk);
  534. tcp_measure_rcv_mss(sk, skb);
  535. tcp_rcv_rtt_measure(tp);
  536. now = tcp_time_stamp;
  537. if (!icsk->icsk_ack.ato) {
  538. /* The _first_ data packet received, initialize
  539. * delayed ACK engine.
  540. */
  541. tcp_incr_quickack(sk);
  542. icsk->icsk_ack.ato = TCP_ATO_MIN;
  543. } else {
  544. int m = now - icsk->icsk_ack.lrcvtime;
  545. if (m <= TCP_ATO_MIN / 2) {
  546. /* The fastest case is the first. */
  547. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  548. } else if (m < icsk->icsk_ack.ato) {
  549. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  550. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  551. icsk->icsk_ack.ato = icsk->icsk_rto;
  552. } else if (m > icsk->icsk_rto) {
  553. /* Too long gap. Apparently sender failed to
  554. * restart window, so that we send ACKs quickly.
  555. */
  556. tcp_incr_quickack(sk);
  557. sk_mem_reclaim(sk);
  558. }
  559. }
  560. icsk->icsk_ack.lrcvtime = now;
  561. TCP_ECN_check_ce(tp, skb);
  562. if (skb->len >= 128)
  563. tcp_grow_window(sk, skb);
  564. }
  565. /* Called to compute a smoothed rtt estimate. The data fed to this
  566. * routine either comes from timestamps, or from segments that were
  567. * known _not_ to have been retransmitted [see Karn/Partridge
  568. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  569. * piece by Van Jacobson.
  570. * NOTE: the next three routines used to be one big routine.
  571. * To save cycles in the RFC 1323 implementation it was better to break
  572. * it up into three procedures. -- erics
  573. */
  574. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  575. {
  576. struct tcp_sock *tp = tcp_sk(sk);
  577. long m = mrtt; /* RTT */
  578. u32 srtt = tp->srtt;
  579. /* The following amusing code comes from Jacobson's
  580. * article in SIGCOMM '88. Note that rtt and mdev
  581. * are scaled versions of rtt and mean deviation.
  582. * This is designed to be as fast as possible
  583. * m stands for "measurement".
  584. *
  585. * On a 1990 paper the rto value is changed to:
  586. * RTO = rtt + 4 * mdev
  587. *
  588. * Funny. This algorithm seems to be very broken.
  589. * These formulae increase RTO, when it should be decreased, increase
  590. * too slowly, when it should be increased quickly, decrease too quickly
  591. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  592. * does not matter how to _calculate_ it. Seems, it was trap
  593. * that VJ failed to avoid. 8)
  594. */
  595. if (srtt != 0) {
  596. m -= (srtt >> 3); /* m is now error in rtt est */
  597. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  598. if (m < 0) {
  599. m = -m; /* m is now abs(error) */
  600. m -= (tp->mdev >> 2); /* similar update on mdev */
  601. /* This is similar to one of Eifel findings.
  602. * Eifel blocks mdev updates when rtt decreases.
  603. * This solution is a bit different: we use finer gain
  604. * for mdev in this case (alpha*beta).
  605. * Like Eifel it also prevents growth of rto,
  606. * but also it limits too fast rto decreases,
  607. * happening in pure Eifel.
  608. */
  609. if (m > 0)
  610. m >>= 3;
  611. } else {
  612. m -= (tp->mdev >> 2); /* similar update on mdev */
  613. }
  614. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  615. if (tp->mdev > tp->mdev_max) {
  616. tp->mdev_max = tp->mdev;
  617. if (tp->mdev_max > tp->rttvar)
  618. tp->rttvar = tp->mdev_max;
  619. }
  620. if (after(tp->snd_una, tp->rtt_seq)) {
  621. if (tp->mdev_max < tp->rttvar)
  622. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  623. tp->rtt_seq = tp->snd_nxt;
  624. tp->mdev_max = tcp_rto_min(sk);
  625. }
  626. } else {
  627. /* no previous measure. */
  628. srtt = m << 3; /* take the measured time to be rtt */
  629. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  630. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  631. tp->rtt_seq = tp->snd_nxt;
  632. }
  633. tp->srtt = max(1U, srtt);
  634. }
  635. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  636. * Note: TCP stack does not yet implement pacing.
  637. * FQ packet scheduler can be used to implement cheap but effective
  638. * TCP pacing, to smooth the burst on large writes when packets
  639. * in flight is significantly lower than cwnd (or rwin)
  640. */
  641. static void tcp_update_pacing_rate(struct sock *sk)
  642. {
  643. const struct tcp_sock *tp = tcp_sk(sk);
  644. u64 rate;
  645. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  646. rate = (u64)tp->mss_cache * 2 * (HZ << 3);
  647. rate *= max(tp->snd_cwnd, tp->packets_out);
  648. /* Correction for small srtt and scheduling constraints.
  649. * For small rtt, consider noise is too high, and use
  650. * the minimal value (srtt = 1 -> 125 us for HZ=1000)
  651. *
  652. * We probably need usec resolution in the future.
  653. * Note: This also takes care of possible srtt=0 case,
  654. * when tcp_rtt_estimator() was not yet called.
  655. */
  656. if (tp->srtt > 8 + 2)
  657. do_div(rate, tp->srtt);
  658. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  659. * without any lock. We want to make sure compiler wont store
  660. * intermediate values in this location.
  661. */
  662. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  663. sk->sk_max_pacing_rate);
  664. }
  665. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  666. * routine referred to above.
  667. */
  668. static inline void tcp_set_rto(struct sock *sk)
  669. {
  670. const struct tcp_sock *tp = tcp_sk(sk);
  671. /* Old crap is replaced with new one. 8)
  672. *
  673. * More seriously:
  674. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  675. * It cannot be less due to utterly erratic ACK generation made
  676. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  677. * to do with delayed acks, because at cwnd>2 true delack timeout
  678. * is invisible. Actually, Linux-2.4 also generates erratic
  679. * ACKs in some circumstances.
  680. */
  681. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  682. /* 2. Fixups made earlier cannot be right.
  683. * If we do not estimate RTO correctly without them,
  684. * all the algo is pure shit and should be replaced
  685. * with correct one. It is exactly, which we pretend to do.
  686. */
  687. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  688. * guarantees that rto is higher.
  689. */
  690. tcp_bound_rto(sk);
  691. }
  692. /* Save metrics learned by this TCP session.
  693. This function is called only, when TCP finishes successfully
  694. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  695. */
  696. void tcp_update_metrics(struct sock *sk)
  697. {
  698. struct tcp_sock *tp = tcp_sk(sk);
  699. struct dst_entry *dst = __sk_dst_get(sk);
  700. if (sysctl_tcp_nometrics_save)
  701. return;
  702. if (dst && (dst->flags & DST_HOST)) {
  703. const struct inet_connection_sock *icsk = inet_csk(sk);
  704. int m;
  705. unsigned long rtt;
  706. dst_confirm(dst);
  707. if (icsk->icsk_backoff || !tp->srtt) {
  708. /* This session failed to estimate rtt. Why?
  709. * Probably, no packets returned in time.
  710. * Reset our results.
  711. */
  712. if (!(dst_metric_locked(dst, RTAX_RTT)))
  713. dst_metric_set(dst, RTAX_RTT, 0);
  714. return;
  715. }
  716. rtt = dst_metric_rtt(dst, RTAX_RTT);
  717. m = rtt - tp->srtt;
  718. /* If newly calculated rtt larger than stored one,
  719. * store new one. Otherwise, use EWMA. Remember,
  720. * rtt overestimation is always better than underestimation.
  721. */
  722. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  723. if (m <= 0)
  724. set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
  725. else
  726. set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
  727. }
  728. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  729. unsigned long var;
  730. if (m < 0)
  731. m = -m;
  732. /* Scale deviation to rttvar fixed point */
  733. m >>= 1;
  734. if (m < tp->mdev)
  735. m = tp->mdev;
  736. var = dst_metric_rtt(dst, RTAX_RTTVAR);
  737. if (m >= var)
  738. var = m;
  739. else
  740. var -= (var - m) >> 2;
  741. set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
  742. }
  743. if (tcp_in_initial_slowstart(tp)) {
  744. /* Slow start still did not finish. */
  745. if (dst_metric(dst, RTAX_SSTHRESH) &&
  746. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  747. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  748. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
  749. if (!dst_metric_locked(dst, RTAX_CWND) &&
  750. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  751. dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
  752. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  753. icsk->icsk_ca_state == TCP_CA_Open) {
  754. /* Cong. avoidance phase, cwnd is reliable. */
  755. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  756. dst_metric_set(dst, RTAX_SSTHRESH,
  757. max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
  758. if (!dst_metric_locked(dst, RTAX_CWND))
  759. dst_metric_set(dst, RTAX_CWND,
  760. (dst_metric(dst, RTAX_CWND) +
  761. tp->snd_cwnd) >> 1);
  762. } else {
  763. /* Else slow start did not finish, cwnd is non-sense,
  764. ssthresh may be also invalid.
  765. */
  766. if (!dst_metric_locked(dst, RTAX_CWND))
  767. dst_metric_set(dst, RTAX_CWND,
  768. (dst_metric(dst, RTAX_CWND) +
  769. tp->snd_ssthresh) >> 1);
  770. if (dst_metric(dst, RTAX_SSTHRESH) &&
  771. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  772. tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
  773. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
  774. }
  775. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  776. if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
  777. tp->reordering != sysctl_tcp_reordering)
  778. dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
  779. }
  780. }
  781. }
  782. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  783. {
  784. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  785. if (!cwnd)
  786. cwnd = TCP_INIT_CWND;
  787. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  788. }
  789. /* Set slow start threshold and cwnd not falling to slow start */
  790. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  791. {
  792. struct tcp_sock *tp = tcp_sk(sk);
  793. const struct inet_connection_sock *icsk = inet_csk(sk);
  794. tp->prior_ssthresh = 0;
  795. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  796. tp->undo_marker = 0;
  797. if (set_ssthresh)
  798. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  799. tp->snd_cwnd = min(tp->snd_cwnd,
  800. tcp_packets_in_flight(tp) + 1U);
  801. tp->snd_cwnd_cnt = 0;
  802. tp->high_seq = tp->snd_nxt;
  803. tp->snd_cwnd_stamp = tcp_time_stamp;
  804. TCP_ECN_queue_cwr(tp);
  805. tcp_set_ca_state(sk, TCP_CA_CWR);
  806. }
  807. }
  808. /*
  809. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  810. * disables it when reordering is detected
  811. */
  812. static void tcp_disable_fack(struct tcp_sock *tp)
  813. {
  814. /* RFC3517 uses different metric in lost marker => reset on change */
  815. if (tcp_is_fack(tp))
  816. tp->lost_skb_hint = NULL;
  817. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  818. }
  819. /* Take a notice that peer is sending D-SACKs */
  820. static void tcp_dsack_seen(struct tcp_sock *tp)
  821. {
  822. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  823. }
  824. /* Initialize metrics on socket. */
  825. static void tcp_init_metrics(struct sock *sk)
  826. {
  827. struct tcp_sock *tp = tcp_sk(sk);
  828. struct dst_entry *dst = __sk_dst_get(sk);
  829. if (dst == NULL)
  830. goto reset;
  831. dst_confirm(dst);
  832. if (dst_metric_locked(dst, RTAX_CWND))
  833. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  834. if (dst_metric(dst, RTAX_SSTHRESH)) {
  835. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  836. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  837. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  838. } else {
  839. /* ssthresh may have been reduced unnecessarily during.
  840. * 3WHS. Restore it back to its initial default.
  841. */
  842. tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
  843. }
  844. if (dst_metric(dst, RTAX_REORDERING) &&
  845. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  846. tcp_disable_fack(tp);
  847. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  848. }
  849. if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
  850. goto reset;
  851. /* Initial rtt is determined from SYN,SYN-ACK.
  852. * The segment is small and rtt may appear much
  853. * less than real one. Use per-dst memory
  854. * to make it more realistic.
  855. *
  856. * A bit of theory. RTT is time passed after "normal" sized packet
  857. * is sent until it is ACKed. In normal circumstances sending small
  858. * packets force peer to delay ACKs and calculation is correct too.
  859. * The algorithm is adaptive and, provided we follow specs, it
  860. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  861. * tricks sort of "quick acks" for time long enough to decrease RTT
  862. * to low value, and then abruptly stops to do it and starts to delay
  863. * ACKs, wait for troubles.
  864. */
  865. if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
  866. tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
  867. tp->rtt_seq = tp->snd_nxt;
  868. }
  869. if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
  870. tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
  871. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  872. }
  873. tcp_set_rto(sk);
  874. reset:
  875. if (tp->srtt == 0) {
  876. /* RFC2988bis: We've failed to get a valid RTT sample from
  877. * 3WHS. This is most likely due to retransmission,
  878. * including spurious one. Reset the RTO back to 3secs
  879. * from the more aggressive 1sec to avoid more spurious
  880. * retransmission.
  881. */
  882. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
  883. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
  884. }
  885. /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
  886. * retransmitted. In light of RFC2988bis' more aggressive 1sec
  887. * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
  888. * retransmission has occurred.
  889. */
  890. if (tp->total_retrans > 1)
  891. tp->snd_cwnd = 1;
  892. else
  893. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  894. tp->snd_cwnd_stamp = tcp_time_stamp;
  895. }
  896. static void tcp_update_reordering(struct sock *sk, const int metric,
  897. const int ts)
  898. {
  899. struct tcp_sock *tp = tcp_sk(sk);
  900. if (metric > tp->reordering) {
  901. int mib_idx;
  902. tp->reordering = min(TCP_MAX_REORDERING, metric);
  903. /* This exciting event is worth to be remembered. 8) */
  904. if (ts)
  905. mib_idx = LINUX_MIB_TCPTSREORDER;
  906. else if (tcp_is_reno(tp))
  907. mib_idx = LINUX_MIB_TCPRENOREORDER;
  908. else if (tcp_is_fack(tp))
  909. mib_idx = LINUX_MIB_TCPFACKREORDER;
  910. else
  911. mib_idx = LINUX_MIB_TCPSACKREORDER;
  912. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  913. #if FASTRETRANS_DEBUG > 1
  914. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  915. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  916. tp->reordering,
  917. tp->fackets_out,
  918. tp->sacked_out,
  919. tp->undo_marker ? tp->undo_retrans : 0);
  920. #endif
  921. tcp_disable_fack(tp);
  922. }
  923. }
  924. /* This must be called before lost_out is incremented */
  925. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  926. {
  927. if (((tp->retransmit_skb_hint == NULL) && tp->retrans_out >= tp->lost_out) ||
  928. (tp->retransmit_skb_hint &&
  929. before(TCP_SKB_CB(skb)->seq,
  930. TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
  931. tp->retransmit_skb_hint = skb;
  932. if (!tp->lost_out ||
  933. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  934. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  935. }
  936. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  937. {
  938. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  939. tcp_verify_retransmit_hint(tp, skb);
  940. tp->lost_out += tcp_skb_pcount(skb);
  941. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  942. }
  943. }
  944. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  945. struct sk_buff *skb)
  946. {
  947. tcp_verify_retransmit_hint(tp, skb);
  948. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  949. tp->lost_out += tcp_skb_pcount(skb);
  950. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  951. }
  952. }
  953. /* This procedure tags the retransmission queue when SACKs arrive.
  954. *
  955. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  956. * Packets in queue with these bits set are counted in variables
  957. * sacked_out, retrans_out and lost_out, correspondingly.
  958. *
  959. * Valid combinations are:
  960. * Tag InFlight Description
  961. * 0 1 - orig segment is in flight.
  962. * S 0 - nothing flies, orig reached receiver.
  963. * L 0 - nothing flies, orig lost by net.
  964. * R 2 - both orig and retransmit are in flight.
  965. * L|R 1 - orig is lost, retransmit is in flight.
  966. * S|R 1 - orig reached receiver, retrans is still in flight.
  967. * (L|S|R is logically valid, it could occur when L|R is sacked,
  968. * but it is equivalent to plain S and code short-curcuits it to S.
  969. * L|S is logically invalid, it would mean -1 packet in flight 8))
  970. *
  971. * These 6 states form finite state machine, controlled by the following events:
  972. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  973. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  974. * 3. Loss detection event of two flavors:
  975. * A. Scoreboard estimator decided the packet is lost.
  976. * A'. Reno "three dupacks" marks head of queue lost.
  977. * A''. Its FACK modification, head until snd.fack is lost.
  978. * B. SACK arrives sacking SND.NXT at the moment, when the
  979. * segment was retransmitted.
  980. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  981. *
  982. * It is pleasant to note, that state diagram turns out to be commutative,
  983. * so that we are allowed not to be bothered by order of our actions,
  984. * when multiple events arrive simultaneously. (see the function below).
  985. *
  986. * Reordering detection.
  987. * --------------------
  988. * Reordering metric is maximal distance, which a packet can be displaced
  989. * in packet stream. With SACKs we can estimate it:
  990. *
  991. * 1. SACK fills old hole and the corresponding segment was not
  992. * ever retransmitted -> reordering. Alas, we cannot use it
  993. * when segment was retransmitted.
  994. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  995. * for retransmitted and already SACKed segment -> reordering..
  996. * Both of these heuristics are not used in Loss state, when we cannot
  997. * account for retransmits accurately.
  998. *
  999. * SACK block validation.
  1000. * ----------------------
  1001. *
  1002. * SACK block range validation checks that the received SACK block fits to
  1003. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  1004. * Note that SND.UNA is not included to the range though being valid because
  1005. * it means that the receiver is rather inconsistent with itself reporting
  1006. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  1007. * perfectly valid, however, in light of RFC2018 which explicitly states
  1008. * that "SACK block MUST reflect the newest segment. Even if the newest
  1009. * segment is going to be discarded ...", not that it looks very clever
  1010. * in case of head skb. Due to potentional receiver driven attacks, we
  1011. * choose to avoid immediate execution of a walk in write queue due to
  1012. * reneging and defer head skb's loss recovery to standard loss recovery
  1013. * procedure that will eventually trigger (nothing forbids us doing this).
  1014. *
  1015. * Implements also blockage to start_seq wrap-around. Problem lies in the
  1016. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  1017. * there's no guarantee that it will be before snd_nxt (n). The problem
  1018. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  1019. * wrap (s_w):
  1020. *
  1021. * <- outs wnd -> <- wrapzone ->
  1022. * u e n u_w e_w s n_w
  1023. * | | | | | | |
  1024. * |<------------+------+----- TCP seqno space --------------+---------->|
  1025. * ...-- <2^31 ->| |<--------...
  1026. * ...---- >2^31 ------>| |<--------...
  1027. *
  1028. * Current code wouldn't be vulnerable but it's better still to discard such
  1029. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  1030. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  1031. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  1032. * equal to the ideal case (infinite seqno space without wrap caused issues).
  1033. *
  1034. * With D-SACK the lower bound is extended to cover sequence space below
  1035. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  1036. * again, D-SACK block must not to go across snd_una (for the same reason as
  1037. * for the normal SACK blocks, explained above). But there all simplicity
  1038. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  1039. * fully below undo_marker they do not affect behavior in anyway and can
  1040. * therefore be safely ignored. In rare cases (which are more or less
  1041. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  1042. * fragmentation and packet reordering past skb's retransmission. To consider
  1043. * them correctly, the acceptable range must be extended even more though
  1044. * the exact amount is rather hard to quantify. However, tp->max_window can
  1045. * be used as an exaggerated estimate.
  1046. */
  1047. static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
  1048. u32 start_seq, u32 end_seq)
  1049. {
  1050. /* Too far in future, or reversed (interpretation is ambiguous) */
  1051. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  1052. return 0;
  1053. /* Nasty start_seq wrap-around check (see comments above) */
  1054. if (!before(start_seq, tp->snd_nxt))
  1055. return 0;
  1056. /* In outstanding window? ...This is valid exit for D-SACKs too.
  1057. * start_seq == snd_una is non-sensical (see comments above)
  1058. */
  1059. if (after(start_seq, tp->snd_una))
  1060. return 1;
  1061. if (!is_dsack || !tp->undo_marker)
  1062. return 0;
  1063. /* ...Then it's D-SACK, and must reside below snd_una completely */
  1064. if (after(end_seq, tp->snd_una))
  1065. return 0;
  1066. if (!before(start_seq, tp->undo_marker))
  1067. return 1;
  1068. /* Too old */
  1069. if (!after(end_seq, tp->undo_marker))
  1070. return 0;
  1071. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  1072. * start_seq < undo_marker and end_seq >= undo_marker.
  1073. */
  1074. return !before(start_seq, end_seq - tp->max_window);
  1075. }
  1076. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  1077. * Event "B". Later note: FACK people cheated me again 8), we have to account
  1078. * for reordering! Ugly, but should help.
  1079. *
  1080. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  1081. * less than what is now known to be received by the other end (derived from
  1082. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  1083. * retransmitted skbs to avoid some costly processing per ACKs.
  1084. */
  1085. static void tcp_mark_lost_retrans(struct sock *sk)
  1086. {
  1087. const struct inet_connection_sock *icsk = inet_csk(sk);
  1088. struct tcp_sock *tp = tcp_sk(sk);
  1089. struct sk_buff *skb;
  1090. int cnt = 0;
  1091. u32 new_low_seq = tp->snd_nxt;
  1092. u32 received_upto = tcp_highest_sack_seq(tp);
  1093. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  1094. !after(received_upto, tp->lost_retrans_low) ||
  1095. icsk->icsk_ca_state != TCP_CA_Recovery)
  1096. return;
  1097. tcp_for_write_queue(skb, sk) {
  1098. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  1099. if (skb == tcp_send_head(sk))
  1100. break;
  1101. if (cnt == tp->retrans_out)
  1102. break;
  1103. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1104. continue;
  1105. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  1106. continue;
  1107. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  1108. * constraint here (see above) but figuring out that at
  1109. * least tp->reordering SACK blocks reside between ack_seq
  1110. * and received_upto is not easy task to do cheaply with
  1111. * the available datastructures.
  1112. *
  1113. * Whether FACK should check here for tp->reordering segs
  1114. * in-between one could argue for either way (it would be
  1115. * rather simple to implement as we could count fack_count
  1116. * during the walk and do tp->fackets_out - fack_count).
  1117. */
  1118. if (after(received_upto, ack_seq)) {
  1119. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1120. tp->retrans_out -= tcp_skb_pcount(skb);
  1121. tcp_skb_mark_lost_uncond_verify(tp, skb);
  1122. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  1123. } else {
  1124. if (before(ack_seq, new_low_seq))
  1125. new_low_seq = ack_seq;
  1126. cnt += tcp_skb_pcount(skb);
  1127. }
  1128. }
  1129. if (tp->retrans_out)
  1130. tp->lost_retrans_low = new_low_seq;
  1131. }
  1132. static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  1133. struct tcp_sack_block_wire *sp, int num_sacks,
  1134. u32 prior_snd_una)
  1135. {
  1136. struct tcp_sock *tp = tcp_sk(sk);
  1137. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  1138. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  1139. int dup_sack = 0;
  1140. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  1141. dup_sack = 1;
  1142. tcp_dsack_seen(tp);
  1143. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  1144. } else if (num_sacks > 1) {
  1145. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  1146. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  1147. if (!after(end_seq_0, end_seq_1) &&
  1148. !before(start_seq_0, start_seq_1)) {
  1149. dup_sack = 1;
  1150. tcp_dsack_seen(tp);
  1151. NET_INC_STATS_BH(sock_net(sk),
  1152. LINUX_MIB_TCPDSACKOFORECV);
  1153. }
  1154. }
  1155. /* D-SACK for already forgotten data... Do dumb counting. */
  1156. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  1157. !after(end_seq_0, prior_snd_una) &&
  1158. after(end_seq_0, tp->undo_marker))
  1159. tp->undo_retrans--;
  1160. return dup_sack;
  1161. }
  1162. struct tcp_sacktag_state {
  1163. int reord;
  1164. int fack_count;
  1165. int flag;
  1166. };
  1167. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1168. * the incoming SACK may not exactly match but we can find smaller MSS
  1169. * aligned portion of it that matches. Therefore we might need to fragment
  1170. * which may fail and creates some hassle (caller must handle error case
  1171. * returns).
  1172. *
  1173. * FIXME: this could be merged to shift decision code
  1174. */
  1175. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1176. u32 start_seq, u32 end_seq)
  1177. {
  1178. int in_sack, err;
  1179. unsigned int pkt_len;
  1180. unsigned int mss;
  1181. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1182. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1183. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1184. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1185. mss = tcp_skb_mss(skb);
  1186. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1187. if (!in_sack) {
  1188. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1189. if (pkt_len < mss)
  1190. pkt_len = mss;
  1191. } else {
  1192. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1193. if (pkt_len < mss)
  1194. return -EINVAL;
  1195. }
  1196. /* Round if necessary so that SACKs cover only full MSSes
  1197. * and/or the remaining small portion (if present)
  1198. */
  1199. if (pkt_len > mss) {
  1200. unsigned int new_len = (pkt_len / mss) * mss;
  1201. if (!in_sack && new_len < pkt_len) {
  1202. new_len += mss;
  1203. if (new_len >= skb->len)
  1204. return 0;
  1205. }
  1206. pkt_len = new_len;
  1207. }
  1208. err = tcp_fragment(sk, skb, pkt_len, mss);
  1209. if (err < 0)
  1210. return err;
  1211. }
  1212. return in_sack;
  1213. }
  1214. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1215. static u8 tcp_sacktag_one(struct sock *sk,
  1216. struct tcp_sacktag_state *state, u8 sacked,
  1217. u32 start_seq, u32 end_seq,
  1218. int dup_sack, int pcount)
  1219. {
  1220. struct tcp_sock *tp = tcp_sk(sk);
  1221. int fack_count = state->fack_count;
  1222. /* Account D-SACK for retransmitted packet. */
  1223. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1224. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1225. after(end_seq, tp->undo_marker))
  1226. tp->undo_retrans--;
  1227. if (sacked & TCPCB_SACKED_ACKED)
  1228. state->reord = min(fack_count, state->reord);
  1229. }
  1230. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1231. if (!after(end_seq, tp->snd_una))
  1232. return sacked;
  1233. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1234. if (sacked & TCPCB_SACKED_RETRANS) {
  1235. /* If the segment is not tagged as lost,
  1236. * we do not clear RETRANS, believing
  1237. * that retransmission is still in flight.
  1238. */
  1239. if (sacked & TCPCB_LOST) {
  1240. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1241. tp->lost_out -= pcount;
  1242. tp->retrans_out -= pcount;
  1243. }
  1244. } else {
  1245. if (!(sacked & TCPCB_RETRANS)) {
  1246. /* New sack for not retransmitted frame,
  1247. * which was in hole. It is reordering.
  1248. */
  1249. if (before(start_seq,
  1250. tcp_highest_sack_seq(tp)))
  1251. state->reord = min(fack_count,
  1252. state->reord);
  1253. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1254. if (!after(end_seq, tp->frto_highmark))
  1255. state->flag |= FLAG_ONLY_ORIG_SACKED;
  1256. }
  1257. if (sacked & TCPCB_LOST) {
  1258. sacked &= ~TCPCB_LOST;
  1259. tp->lost_out -= pcount;
  1260. }
  1261. }
  1262. sacked |= TCPCB_SACKED_ACKED;
  1263. state->flag |= FLAG_DATA_SACKED;
  1264. tp->sacked_out += pcount;
  1265. fack_count += pcount;
  1266. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1267. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1268. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1269. tp->lost_cnt_hint += pcount;
  1270. if (fack_count > tp->fackets_out)
  1271. tp->fackets_out = fack_count;
  1272. }
  1273. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1274. * frames and clear it. undo_retrans is decreased above, L|R frames
  1275. * are accounted above as well.
  1276. */
  1277. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1278. sacked &= ~TCPCB_SACKED_RETRANS;
  1279. tp->retrans_out -= pcount;
  1280. }
  1281. return sacked;
  1282. }
  1283. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1284. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1285. */
  1286. static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1287. struct tcp_sacktag_state *state,
  1288. unsigned int pcount, int shifted, int mss,
  1289. int dup_sack)
  1290. {
  1291. struct tcp_sock *tp = tcp_sk(sk);
  1292. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1293. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1294. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1295. BUG_ON(!pcount);
  1296. /* Adjust counters and hints for the newly sacked sequence
  1297. * range but discard the return value since prev is already
  1298. * marked. We must tag the range first because the seq
  1299. * advancement below implicitly advances
  1300. * tcp_highest_sack_seq() when skb is highest_sack.
  1301. */
  1302. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1303. start_seq, end_seq, dup_sack, pcount);
  1304. if (skb == tp->lost_skb_hint)
  1305. tp->lost_cnt_hint += pcount;
  1306. TCP_SKB_CB(prev)->end_seq += shifted;
  1307. TCP_SKB_CB(skb)->seq += shifted;
  1308. skb_shinfo(prev)->gso_segs += pcount;
  1309. WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
  1310. skb_shinfo(skb)->gso_segs -= pcount;
  1311. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1312. * in theory this shouldn't be necessary but as long as DSACK
  1313. * code can come after this skb later on it's better to keep
  1314. * setting gso_size to something.
  1315. */
  1316. if (!skb_shinfo(prev)->gso_size) {
  1317. skb_shinfo(prev)->gso_size = mss;
  1318. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1319. }
  1320. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1321. if (skb_shinfo(skb)->gso_segs <= 1) {
  1322. skb_shinfo(skb)->gso_size = 0;
  1323. skb_shinfo(skb)->gso_type = 0;
  1324. }
  1325. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1326. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1327. if (skb->len > 0) {
  1328. BUG_ON(!tcp_skb_pcount(skb));
  1329. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1330. return 0;
  1331. }
  1332. /* Whole SKB was eaten :-) */
  1333. if (skb == tp->retransmit_skb_hint)
  1334. tp->retransmit_skb_hint = prev;
  1335. if (skb == tp->scoreboard_skb_hint)
  1336. tp->scoreboard_skb_hint = prev;
  1337. if (skb == tp->lost_skb_hint) {
  1338. tp->lost_skb_hint = prev;
  1339. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1340. }
  1341. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1342. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1343. TCP_SKB_CB(prev)->end_seq++;
  1344. if (skb == tcp_highest_sack(sk))
  1345. tcp_advance_highest_sack(sk, skb);
  1346. tcp_unlink_write_queue(skb, sk);
  1347. sk_wmem_free_skb(sk, skb);
  1348. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1349. return 1;
  1350. }
  1351. /* I wish gso_size would have a bit more sane initialization than
  1352. * something-or-zero which complicates things
  1353. */
  1354. static int tcp_skb_seglen(const struct sk_buff *skb)
  1355. {
  1356. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1357. }
  1358. /* Shifting pages past head area doesn't work */
  1359. static int skb_can_shift(const struct sk_buff *skb)
  1360. {
  1361. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1362. }
  1363. int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
  1364. int pcount, int shiftlen)
  1365. {
  1366. /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
  1367. * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
  1368. * to make sure not storing more than 65535 * 8 bytes per skb,
  1369. * even if current MSS is bigger.
  1370. */
  1371. if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
  1372. return 0;
  1373. if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
  1374. return 0;
  1375. return skb_shift(to, from, shiftlen);
  1376. }
  1377. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1378. * skb.
  1379. */
  1380. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1381. struct tcp_sacktag_state *state,
  1382. u32 start_seq, u32 end_seq,
  1383. int dup_sack)
  1384. {
  1385. struct tcp_sock *tp = tcp_sk(sk);
  1386. struct sk_buff *prev;
  1387. int mss;
  1388. int next_pcount;
  1389. int pcount = 0;
  1390. int len;
  1391. int in_sack;
  1392. if (!sk_can_gso(sk))
  1393. goto fallback;
  1394. /* Normally R but no L won't result in plain S */
  1395. if (!dup_sack &&
  1396. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1397. goto fallback;
  1398. if (!skb_can_shift(skb))
  1399. goto fallback;
  1400. /* This frame is about to be dropped (was ACKed). */
  1401. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1402. goto fallback;
  1403. /* Can only happen with delayed DSACK + discard craziness */
  1404. if (unlikely(skb == tcp_write_queue_head(sk)))
  1405. goto fallback;
  1406. prev = tcp_write_queue_prev(sk, skb);
  1407. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1408. goto fallback;
  1409. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1410. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1411. if (in_sack) {
  1412. len = skb->len;
  1413. pcount = tcp_skb_pcount(skb);
  1414. mss = tcp_skb_seglen(skb);
  1415. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1416. * drop this restriction as unnecessary
  1417. */
  1418. if (mss != tcp_skb_seglen(prev))
  1419. goto fallback;
  1420. } else {
  1421. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1422. goto noop;
  1423. /* CHECKME: This is non-MSS split case only?, this will
  1424. * cause skipped skbs due to advancing loop btw, original
  1425. * has that feature too
  1426. */
  1427. if (tcp_skb_pcount(skb) <= 1)
  1428. goto noop;
  1429. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1430. if (!in_sack) {
  1431. /* TODO: head merge to next could be attempted here
  1432. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1433. * though it might not be worth of the additional hassle
  1434. *
  1435. * ...we can probably just fallback to what was done
  1436. * previously. We could try merging non-SACKed ones
  1437. * as well but it probably isn't going to buy off
  1438. * because later SACKs might again split them, and
  1439. * it would make skb timestamp tracking considerably
  1440. * harder problem.
  1441. */
  1442. goto fallback;
  1443. }
  1444. len = end_seq - TCP_SKB_CB(skb)->seq;
  1445. BUG_ON(len < 0);
  1446. BUG_ON(len > skb->len);
  1447. /* MSS boundaries should be honoured or else pcount will
  1448. * severely break even though it makes things bit trickier.
  1449. * Optimize common case to avoid most of the divides
  1450. */
  1451. mss = tcp_skb_mss(skb);
  1452. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1453. * drop this restriction as unnecessary
  1454. */
  1455. if (mss != tcp_skb_seglen(prev))
  1456. goto fallback;
  1457. if (len == mss) {
  1458. pcount = 1;
  1459. } else if (len < mss) {
  1460. goto noop;
  1461. } else {
  1462. pcount = len / mss;
  1463. len = pcount * mss;
  1464. }
  1465. }
  1466. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1467. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1468. goto fallback;
  1469. if (!tcp_skb_shift(prev, skb, pcount, len))
  1470. goto fallback;
  1471. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1472. goto out;
  1473. /* Hole filled allows collapsing with the next as well, this is very
  1474. * useful when hole on every nth skb pattern happens
  1475. */
  1476. if (prev == tcp_write_queue_tail(sk))
  1477. goto out;
  1478. skb = tcp_write_queue_next(sk, prev);
  1479. if (!skb_can_shift(skb) ||
  1480. (skb == tcp_send_head(sk)) ||
  1481. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1482. (mss != tcp_skb_seglen(skb)))
  1483. goto out;
  1484. len = skb->len;
  1485. next_pcount = tcp_skb_pcount(skb);
  1486. if (tcp_skb_shift(prev, skb, next_pcount, len)) {
  1487. pcount += next_pcount;
  1488. tcp_shifted_skb(sk, skb, state, next_pcount, len, mss, 0);
  1489. }
  1490. out:
  1491. state->fack_count += pcount;
  1492. return prev;
  1493. noop:
  1494. return skb;
  1495. fallback:
  1496. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1497. return NULL;
  1498. }
  1499. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1500. struct tcp_sack_block *next_dup,
  1501. struct tcp_sacktag_state *state,
  1502. u32 start_seq, u32 end_seq,
  1503. int dup_sack_in)
  1504. {
  1505. struct tcp_sock *tp = tcp_sk(sk);
  1506. struct sk_buff *tmp;
  1507. tcp_for_write_queue_from(skb, sk) {
  1508. int in_sack = 0;
  1509. int dup_sack = dup_sack_in;
  1510. if (skb == tcp_send_head(sk))
  1511. break;
  1512. /* queue is in-order => we can short-circuit the walk early */
  1513. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1514. break;
  1515. if ((next_dup != NULL) &&
  1516. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1517. in_sack = tcp_match_skb_to_sack(sk, skb,
  1518. next_dup->start_seq,
  1519. next_dup->end_seq);
  1520. if (in_sack > 0)
  1521. dup_sack = 1;
  1522. }
  1523. /* skb reference here is a bit tricky to get right, since
  1524. * shifting can eat and free both this skb and the next,
  1525. * so not even _safe variant of the loop is enough.
  1526. */
  1527. if (in_sack <= 0) {
  1528. tmp = tcp_shift_skb_data(sk, skb, state,
  1529. start_seq, end_seq, dup_sack);
  1530. if (tmp != NULL) {
  1531. if (tmp != skb) {
  1532. skb = tmp;
  1533. continue;
  1534. }
  1535. in_sack = 0;
  1536. } else {
  1537. in_sack = tcp_match_skb_to_sack(sk, skb,
  1538. start_seq,
  1539. end_seq);
  1540. }
  1541. }
  1542. if (unlikely(in_sack < 0))
  1543. break;
  1544. if (in_sack) {
  1545. TCP_SKB_CB(skb)->sacked =
  1546. tcp_sacktag_one(sk,
  1547. state,
  1548. TCP_SKB_CB(skb)->sacked,
  1549. TCP_SKB_CB(skb)->seq,
  1550. TCP_SKB_CB(skb)->end_seq,
  1551. dup_sack,
  1552. tcp_skb_pcount(skb));
  1553. if (!before(TCP_SKB_CB(skb)->seq,
  1554. tcp_highest_sack_seq(tp)))
  1555. tcp_advance_highest_sack(sk, skb);
  1556. }
  1557. state->fack_count += tcp_skb_pcount(skb);
  1558. }
  1559. return skb;
  1560. }
  1561. /* Avoid all extra work that is being done by sacktag while walking in
  1562. * a normal way
  1563. */
  1564. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1565. struct tcp_sacktag_state *state,
  1566. u32 skip_to_seq)
  1567. {
  1568. tcp_for_write_queue_from(skb, sk) {
  1569. if (skb == tcp_send_head(sk))
  1570. break;
  1571. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1572. break;
  1573. state->fack_count += tcp_skb_pcount(skb);
  1574. }
  1575. return skb;
  1576. }
  1577. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1578. struct sock *sk,
  1579. struct tcp_sack_block *next_dup,
  1580. struct tcp_sacktag_state *state,
  1581. u32 skip_to_seq)
  1582. {
  1583. if (next_dup == NULL)
  1584. return skb;
  1585. if (before(next_dup->start_seq, skip_to_seq)) {
  1586. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1587. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1588. next_dup->start_seq, next_dup->end_seq,
  1589. 1);
  1590. }
  1591. return skb;
  1592. }
  1593. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1594. {
  1595. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1596. }
  1597. static int
  1598. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1599. u32 prior_snd_una)
  1600. {
  1601. const struct inet_connection_sock *icsk = inet_csk(sk);
  1602. struct tcp_sock *tp = tcp_sk(sk);
  1603. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1604. TCP_SKB_CB(ack_skb)->sacked);
  1605. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1606. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1607. struct tcp_sack_block *cache;
  1608. struct tcp_sacktag_state state;
  1609. struct sk_buff *skb;
  1610. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1611. int used_sacks;
  1612. int found_dup_sack = 0;
  1613. int i, j;
  1614. int first_sack_index;
  1615. state.flag = 0;
  1616. state.reord = tp->packets_out;
  1617. if (!tp->sacked_out) {
  1618. if (WARN_ON(tp->fackets_out))
  1619. tp->fackets_out = 0;
  1620. tcp_highest_sack_reset(sk);
  1621. }
  1622. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1623. num_sacks, prior_snd_una);
  1624. if (found_dup_sack)
  1625. state.flag |= FLAG_DSACKING_ACK;
  1626. /* Eliminate too old ACKs, but take into
  1627. * account more or less fresh ones, they can
  1628. * contain valid SACK info.
  1629. */
  1630. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1631. return 0;
  1632. if (!tp->packets_out)
  1633. goto out;
  1634. used_sacks = 0;
  1635. first_sack_index = 0;
  1636. for (i = 0; i < num_sacks; i++) {
  1637. int dup_sack = !i && found_dup_sack;
  1638. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1639. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1640. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1641. sp[used_sacks].start_seq,
  1642. sp[used_sacks].end_seq)) {
  1643. int mib_idx;
  1644. if (dup_sack) {
  1645. if (!tp->undo_marker)
  1646. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1647. else
  1648. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1649. } else {
  1650. /* Don't count olds caused by ACK reordering */
  1651. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1652. !after(sp[used_sacks].end_seq, tp->snd_una))
  1653. continue;
  1654. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1655. }
  1656. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1657. if (i == 0)
  1658. first_sack_index = -1;
  1659. continue;
  1660. }
  1661. /* Ignore very old stuff early */
  1662. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1663. continue;
  1664. used_sacks++;
  1665. }
  1666. /* order SACK blocks to allow in order walk of the retrans queue */
  1667. for (i = used_sacks - 1; i > 0; i--) {
  1668. for (j = 0; j < i; j++) {
  1669. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1670. swap(sp[j], sp[j + 1]);
  1671. /* Track where the first SACK block goes to */
  1672. if (j == first_sack_index)
  1673. first_sack_index = j + 1;
  1674. }
  1675. }
  1676. }
  1677. skb = tcp_write_queue_head(sk);
  1678. state.fack_count = 0;
  1679. i = 0;
  1680. if (!tp->sacked_out) {
  1681. /* It's already past, so skip checking against it */
  1682. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1683. } else {
  1684. cache = tp->recv_sack_cache;
  1685. /* Skip empty blocks in at head of the cache */
  1686. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1687. !cache->end_seq)
  1688. cache++;
  1689. }
  1690. while (i < used_sacks) {
  1691. u32 start_seq = sp[i].start_seq;
  1692. u32 end_seq = sp[i].end_seq;
  1693. int dup_sack = (found_dup_sack && (i == first_sack_index));
  1694. struct tcp_sack_block *next_dup = NULL;
  1695. if (found_dup_sack && ((i + 1) == first_sack_index))
  1696. next_dup = &sp[i + 1];
  1697. /* Skip too early cached blocks */
  1698. while (tcp_sack_cache_ok(tp, cache) &&
  1699. !before(start_seq, cache->end_seq))
  1700. cache++;
  1701. /* Can skip some work by looking recv_sack_cache? */
  1702. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1703. after(end_seq, cache->start_seq)) {
  1704. /* Head todo? */
  1705. if (before(start_seq, cache->start_seq)) {
  1706. skb = tcp_sacktag_skip(skb, sk, &state,
  1707. start_seq);
  1708. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1709. &state,
  1710. start_seq,
  1711. cache->start_seq,
  1712. dup_sack);
  1713. }
  1714. /* Rest of the block already fully processed? */
  1715. if (!after(end_seq, cache->end_seq))
  1716. goto advance_sp;
  1717. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1718. &state,
  1719. cache->end_seq);
  1720. /* ...tail remains todo... */
  1721. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1722. /* ...but better entrypoint exists! */
  1723. skb = tcp_highest_sack(sk);
  1724. if (skb == NULL)
  1725. break;
  1726. state.fack_count = tp->fackets_out;
  1727. cache++;
  1728. goto walk;
  1729. }
  1730. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1731. /* Check overlap against next cached too (past this one already) */
  1732. cache++;
  1733. continue;
  1734. }
  1735. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1736. skb = tcp_highest_sack(sk);
  1737. if (skb == NULL)
  1738. break;
  1739. state.fack_count = tp->fackets_out;
  1740. }
  1741. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1742. walk:
  1743. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1744. start_seq, end_seq, dup_sack);
  1745. advance_sp:
  1746. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1747. * due to in-order walk
  1748. */
  1749. if (after(end_seq, tp->frto_highmark))
  1750. state.flag &= ~FLAG_ONLY_ORIG_SACKED;
  1751. i++;
  1752. }
  1753. /* Clear the head of the cache sack blocks so we can skip it next time */
  1754. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1755. tp->recv_sack_cache[i].start_seq = 0;
  1756. tp->recv_sack_cache[i].end_seq = 0;
  1757. }
  1758. for (j = 0; j < used_sacks; j++)
  1759. tp->recv_sack_cache[i++] = sp[j];
  1760. tcp_mark_lost_retrans(sk);
  1761. tcp_verify_left_out(tp);
  1762. if ((state.reord < tp->fackets_out) &&
  1763. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1764. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1765. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1766. out:
  1767. #if FASTRETRANS_DEBUG > 0
  1768. WARN_ON((int)tp->sacked_out < 0);
  1769. WARN_ON((int)tp->lost_out < 0);
  1770. WARN_ON((int)tp->retrans_out < 0);
  1771. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1772. #endif
  1773. return state.flag;
  1774. }
  1775. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1776. * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
  1777. */
  1778. static int tcp_limit_reno_sacked(struct tcp_sock *tp)
  1779. {
  1780. u32 holes;
  1781. holes = max(tp->lost_out, 1U);
  1782. holes = min(holes, tp->packets_out);
  1783. if ((tp->sacked_out + holes) > tp->packets_out) {
  1784. tp->sacked_out = tp->packets_out - holes;
  1785. return 1;
  1786. }
  1787. return 0;
  1788. }
  1789. /* If we receive more dupacks than we expected counting segments
  1790. * in assumption of absent reordering, interpret this as reordering.
  1791. * The only another reason could be bug in receiver TCP.
  1792. */
  1793. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1794. {
  1795. struct tcp_sock *tp = tcp_sk(sk);
  1796. if (tcp_limit_reno_sacked(tp))
  1797. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1798. }
  1799. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1800. static void tcp_add_reno_sack(struct sock *sk)
  1801. {
  1802. struct tcp_sock *tp = tcp_sk(sk);
  1803. tp->sacked_out++;
  1804. tcp_check_reno_reordering(sk, 0);
  1805. tcp_verify_left_out(tp);
  1806. }
  1807. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1808. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1809. {
  1810. struct tcp_sock *tp = tcp_sk(sk);
  1811. if (acked > 0) {
  1812. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1813. if (acked - 1 >= tp->sacked_out)
  1814. tp->sacked_out = 0;
  1815. else
  1816. tp->sacked_out -= acked - 1;
  1817. }
  1818. tcp_check_reno_reordering(sk, acked);
  1819. tcp_verify_left_out(tp);
  1820. }
  1821. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1822. {
  1823. tp->sacked_out = 0;
  1824. }
  1825. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1826. {
  1827. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1828. }
  1829. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1830. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1831. */
  1832. int tcp_use_frto(struct sock *sk)
  1833. {
  1834. const struct tcp_sock *tp = tcp_sk(sk);
  1835. const struct inet_connection_sock *icsk = inet_csk(sk);
  1836. struct sk_buff *skb;
  1837. if (!sysctl_tcp_frto)
  1838. return 0;
  1839. /* MTU probe and F-RTO won't really play nicely along currently */
  1840. if (icsk->icsk_mtup.probe_size)
  1841. return 0;
  1842. if (tcp_is_sackfrto(tp))
  1843. return 1;
  1844. /* Avoid expensive walking of rexmit queue if possible */
  1845. if (tp->retrans_out > 1)
  1846. return 0;
  1847. skb = tcp_write_queue_head(sk);
  1848. if (tcp_skb_is_last(sk, skb))
  1849. return 1;
  1850. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1851. tcp_for_write_queue_from(skb, sk) {
  1852. if (skb == tcp_send_head(sk))
  1853. break;
  1854. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1855. return 0;
  1856. /* Short-circuit when first non-SACKed skb has been checked */
  1857. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1858. break;
  1859. }
  1860. return 1;
  1861. }
  1862. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1863. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1864. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1865. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1866. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1867. * bits are handled if the Loss state is really to be entered (in
  1868. * tcp_enter_frto_loss).
  1869. *
  1870. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1871. * does:
  1872. * "Reduce ssthresh if it has not yet been made inside this window."
  1873. */
  1874. void tcp_enter_frto(struct sock *sk)
  1875. {
  1876. const struct inet_connection_sock *icsk = inet_csk(sk);
  1877. struct tcp_sock *tp = tcp_sk(sk);
  1878. struct sk_buff *skb;
  1879. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1880. tp->snd_una == tp->high_seq ||
  1881. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1882. !icsk->icsk_retransmits)) {
  1883. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1884. /* Our state is too optimistic in ssthresh() call because cwnd
  1885. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1886. * recovery has not yet completed. Pattern would be this: RTO,
  1887. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1888. * up here twice).
  1889. * RFC4138 should be more specific on what to do, even though
  1890. * RTO is quite unlikely to occur after the first Cumulative ACK
  1891. * due to back-off and complexity of triggering events ...
  1892. */
  1893. if (tp->frto_counter) {
  1894. u32 stored_cwnd;
  1895. stored_cwnd = tp->snd_cwnd;
  1896. tp->snd_cwnd = 2;
  1897. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1898. tp->snd_cwnd = stored_cwnd;
  1899. } else {
  1900. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1901. }
  1902. /* ... in theory, cong.control module could do "any tricks" in
  1903. * ssthresh(), which means that ca_state, lost bits and lost_out
  1904. * counter would have to be faked before the call occurs. We
  1905. * consider that too expensive, unlikely and hacky, so modules
  1906. * using these in ssthresh() must deal these incompatibility
  1907. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1908. */
  1909. tcp_ca_event(sk, CA_EVENT_FRTO);
  1910. }
  1911. tp->undo_marker = tp->snd_una;
  1912. tp->undo_retrans = 0;
  1913. skb = tcp_write_queue_head(sk);
  1914. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1915. tp->undo_marker = 0;
  1916. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1917. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1918. tp->retrans_out -= tcp_skb_pcount(skb);
  1919. }
  1920. tcp_verify_left_out(tp);
  1921. /* Too bad if TCP was application limited */
  1922. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1923. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1924. * The last condition is necessary at least in tp->frto_counter case.
  1925. */
  1926. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1927. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1928. after(tp->high_seq, tp->snd_una)) {
  1929. tp->frto_highmark = tp->high_seq;
  1930. } else {
  1931. tp->frto_highmark = tp->snd_nxt;
  1932. }
  1933. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1934. tp->high_seq = tp->snd_nxt;
  1935. tp->frto_counter = 1;
  1936. }
  1937. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1938. * which indicates that we should follow the traditional RTO recovery,
  1939. * i.e. mark everything lost and do go-back-N retransmission.
  1940. */
  1941. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1942. {
  1943. struct tcp_sock *tp = tcp_sk(sk);
  1944. struct sk_buff *skb;
  1945. tp->lost_out = 0;
  1946. tp->retrans_out = 0;
  1947. if (tcp_is_reno(tp))
  1948. tcp_reset_reno_sack(tp);
  1949. tcp_for_write_queue(skb, sk) {
  1950. if (skb == tcp_send_head(sk))
  1951. break;
  1952. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1953. /*
  1954. * Count the retransmission made on RTO correctly (only when
  1955. * waiting for the first ACK and did not get it)...
  1956. */
  1957. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1958. /* For some reason this R-bit might get cleared? */
  1959. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1960. tp->retrans_out += tcp_skb_pcount(skb);
  1961. /* ...enter this if branch just for the first segment */
  1962. flag |= FLAG_DATA_ACKED;
  1963. } else {
  1964. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1965. tp->undo_marker = 0;
  1966. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1967. }
  1968. /* Marking forward transmissions that were made after RTO lost
  1969. * can cause unnecessary retransmissions in some scenarios,
  1970. * SACK blocks will mitigate that in some but not in all cases.
  1971. * We used to not mark them but it was causing break-ups with
  1972. * receivers that do only in-order receival.
  1973. *
  1974. * TODO: we could detect presence of such receiver and select
  1975. * different behavior per flow.
  1976. */
  1977. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1978. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1979. tp->lost_out += tcp_skb_pcount(skb);
  1980. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1981. }
  1982. }
  1983. tcp_verify_left_out(tp);
  1984. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1985. tp->snd_cwnd_cnt = 0;
  1986. tp->snd_cwnd_stamp = tcp_time_stamp;
  1987. tp->frto_counter = 0;
  1988. tp->reordering = min_t(unsigned int, tp->reordering,
  1989. sysctl_tcp_reordering);
  1990. tcp_set_ca_state(sk, TCP_CA_Loss);
  1991. tp->high_seq = tp->snd_nxt;
  1992. TCP_ECN_queue_cwr(tp);
  1993. tcp_clear_all_retrans_hints(tp);
  1994. }
  1995. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1996. {
  1997. tp->retrans_out = 0;
  1998. tp->lost_out = 0;
  1999. tp->undo_marker = 0;
  2000. tp->undo_retrans = -1;
  2001. }
  2002. void tcp_clear_retrans(struct tcp_sock *tp)
  2003. {
  2004. tcp_clear_retrans_partial(tp);
  2005. tp->fackets_out = 0;
  2006. tp->sacked_out = 0;
  2007. }
  2008. /* Enter Loss state. If "how" is not zero, forget all SACK information
  2009. * and reset tags completely, otherwise preserve SACKs. If receiver
  2010. * dropped its ofo queue, we will know this due to reneging detection.
  2011. */
  2012. void tcp_enter_loss(struct sock *sk, int how)
  2013. {
  2014. const struct inet_connection_sock *icsk = inet_csk(sk);
  2015. struct tcp_sock *tp = tcp_sk(sk);
  2016. struct sk_buff *skb;
  2017. /* Reduce ssthresh if it has not yet been made inside this window. */
  2018. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  2019. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  2020. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2021. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  2022. tcp_ca_event(sk, CA_EVENT_LOSS);
  2023. }
  2024. tp->snd_cwnd = 1;
  2025. tp->snd_cwnd_cnt = 0;
  2026. tp->snd_cwnd_stamp = tcp_time_stamp;
  2027. tcp_clear_retrans_partial(tp);
  2028. if (tcp_is_reno(tp))
  2029. tcp_reset_reno_sack(tp);
  2030. tp->undo_marker = tp->snd_una;
  2031. if (how) {
  2032. tp->sacked_out = 0;
  2033. tp->fackets_out = 0;
  2034. }
  2035. tcp_clear_all_retrans_hints(tp);
  2036. tcp_for_write_queue(skb, sk) {
  2037. if (skb == tcp_send_head(sk))
  2038. break;
  2039. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  2040. tp->undo_marker = 0;
  2041. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  2042. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  2043. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  2044. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  2045. tp->lost_out += tcp_skb_pcount(skb);
  2046. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  2047. }
  2048. }
  2049. tcp_verify_left_out(tp);
  2050. tp->reordering = min_t(unsigned int, tp->reordering,
  2051. sysctl_tcp_reordering);
  2052. tcp_set_ca_state(sk, TCP_CA_Loss);
  2053. tp->high_seq = tp->snd_nxt;
  2054. TCP_ECN_queue_cwr(tp);
  2055. /* Abort F-RTO algorithm if one is in progress */
  2056. tp->frto_counter = 0;
  2057. }
  2058. /* If ACK arrived pointing to a remembered SACK, it means that our
  2059. * remembered SACKs do not reflect real state of receiver i.e.
  2060. * receiver _host_ is heavily congested (or buggy).
  2061. *
  2062. * Do processing similar to RTO timeout.
  2063. */
  2064. static int tcp_check_sack_reneging(struct sock *sk, int flag)
  2065. {
  2066. if (flag & FLAG_SACK_RENEGING) {
  2067. struct inet_connection_sock *icsk = inet_csk(sk);
  2068. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  2069. tcp_enter_loss(sk, 1);
  2070. icsk->icsk_retransmits++;
  2071. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  2072. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2073. icsk->icsk_rto, TCP_RTO_MAX);
  2074. return 1;
  2075. }
  2076. return 0;
  2077. }
  2078. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  2079. {
  2080. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  2081. }
  2082. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  2083. * counter when SACK is enabled (without SACK, sacked_out is used for
  2084. * that purpose).
  2085. *
  2086. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  2087. * segments up to the highest received SACK block so far and holes in
  2088. * between them.
  2089. *
  2090. * With reordering, holes may still be in flight, so RFC3517 recovery
  2091. * uses pure sacked_out (total number of SACKed segments) even though
  2092. * it violates the RFC that uses duplicate ACKs, often these are equal
  2093. * but when e.g. out-of-window ACKs or packet duplication occurs,
  2094. * they differ. Since neither occurs due to loss, TCP should really
  2095. * ignore them.
  2096. */
  2097. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  2098. {
  2099. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  2100. }
  2101. static inline int tcp_skb_timedout(const struct sock *sk,
  2102. const struct sk_buff *skb)
  2103. {
  2104. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  2105. }
  2106. static inline int tcp_head_timedout(const struct sock *sk)
  2107. {
  2108. const struct tcp_sock *tp = tcp_sk(sk);
  2109. return tp->packets_out &&
  2110. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  2111. }
  2112. /* Linux NewReno/SACK/FACK/ECN state machine.
  2113. * --------------------------------------
  2114. *
  2115. * "Open" Normal state, no dubious events, fast path.
  2116. * "Disorder" In all the respects it is "Open",
  2117. * but requires a bit more attention. It is entered when
  2118. * we see some SACKs or dupacks. It is split of "Open"
  2119. * mainly to move some processing from fast path to slow one.
  2120. * "CWR" CWND was reduced due to some Congestion Notification event.
  2121. * It can be ECN, ICMP source quench, local device congestion.
  2122. * "Recovery" CWND was reduced, we are fast-retransmitting.
  2123. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  2124. *
  2125. * tcp_fastretrans_alert() is entered:
  2126. * - each incoming ACK, if state is not "Open"
  2127. * - when arrived ACK is unusual, namely:
  2128. * * SACK
  2129. * * Duplicate ACK.
  2130. * * ECN ECE.
  2131. *
  2132. * Counting packets in flight is pretty simple.
  2133. *
  2134. * in_flight = packets_out - left_out + retrans_out
  2135. *
  2136. * packets_out is SND.NXT-SND.UNA counted in packets.
  2137. *
  2138. * retrans_out is number of retransmitted segments.
  2139. *
  2140. * left_out is number of segments left network, but not ACKed yet.
  2141. *
  2142. * left_out = sacked_out + lost_out
  2143. *
  2144. * sacked_out: Packets, which arrived to receiver out of order
  2145. * and hence not ACKed. With SACKs this number is simply
  2146. * amount of SACKed data. Even without SACKs
  2147. * it is easy to give pretty reliable estimate of this number,
  2148. * counting duplicate ACKs.
  2149. *
  2150. * lost_out: Packets lost by network. TCP has no explicit
  2151. * "loss notification" feedback from network (for now).
  2152. * It means that this number can be only _guessed_.
  2153. * Actually, it is the heuristics to predict lossage that
  2154. * distinguishes different algorithms.
  2155. *
  2156. * F.e. after RTO, when all the queue is considered as lost,
  2157. * lost_out = packets_out and in_flight = retrans_out.
  2158. *
  2159. * Essentially, we have now two algorithms counting
  2160. * lost packets.
  2161. *
  2162. * FACK: It is the simplest heuristics. As soon as we decided
  2163. * that something is lost, we decide that _all_ not SACKed
  2164. * packets until the most forward SACK are lost. I.e.
  2165. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  2166. * It is absolutely correct estimate, if network does not reorder
  2167. * packets. And it loses any connection to reality when reordering
  2168. * takes place. We use FACK by default until reordering
  2169. * is suspected on the path to this destination.
  2170. *
  2171. * NewReno: when Recovery is entered, we assume that one segment
  2172. * is lost (classic Reno). While we are in Recovery and
  2173. * a partial ACK arrives, we assume that one more packet
  2174. * is lost (NewReno). This heuristics are the same in NewReno
  2175. * and SACK.
  2176. *
  2177. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  2178. * deflation etc. CWND is real congestion window, never inflated, changes
  2179. * only according to classic VJ rules.
  2180. *
  2181. * Really tricky (and requiring careful tuning) part of algorithm
  2182. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  2183. * The first determines the moment _when_ we should reduce CWND and,
  2184. * hence, slow down forward transmission. In fact, it determines the moment
  2185. * when we decide that hole is caused by loss, rather than by a reorder.
  2186. *
  2187. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  2188. * holes, caused by lost packets.
  2189. *
  2190. * And the most logically complicated part of algorithm is undo
  2191. * heuristics. We detect false retransmits due to both too early
  2192. * fast retransmit (reordering) and underestimated RTO, analyzing
  2193. * timestamps and D-SACKs. When we detect that some segments were
  2194. * retransmitted by mistake and CWND reduction was wrong, we undo
  2195. * window reduction and abort recovery phase. This logic is hidden
  2196. * inside several functions named tcp_try_undo_<something>.
  2197. */
  2198. /* This function decides, when we should leave Disordered state
  2199. * and enter Recovery phase, reducing congestion window.
  2200. *
  2201. * Main question: may we further continue forward transmission
  2202. * with the same cwnd?
  2203. */
  2204. static int tcp_time_to_recover(struct sock *sk)
  2205. {
  2206. struct tcp_sock *tp = tcp_sk(sk);
  2207. __u32 packets_out;
  2208. /* Do not perform any recovery during F-RTO algorithm */
  2209. if (tp->frto_counter)
  2210. return 0;
  2211. /* Trick#1: The loss is proven. */
  2212. if (tp->lost_out)
  2213. return 1;
  2214. /* Not-A-Trick#2 : Classic rule... */
  2215. if (tcp_dupack_heuristics(tp) > tp->reordering)
  2216. return 1;
  2217. /* Trick#3 : when we use RFC2988 timer restart, fast
  2218. * retransmit can be triggered by timeout of queue head.
  2219. */
  2220. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  2221. return 1;
  2222. /* Trick#4: It is still not OK... But will it be useful to delay
  2223. * recovery more?
  2224. */
  2225. packets_out = tp->packets_out;
  2226. if (packets_out <= tp->reordering &&
  2227. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  2228. !tcp_may_send_now(sk)) {
  2229. /* We have nothing to send. This connection is limited
  2230. * either by receiver window or by application.
  2231. */
  2232. return 1;
  2233. }
  2234. /* If a thin stream is detected, retransmit after first
  2235. * received dupack. Employ only if SACK is supported in order
  2236. * to avoid possible corner-case series of spurious retransmissions
  2237. * Use only if there are no unsent data.
  2238. */
  2239. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  2240. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  2241. tcp_is_sack(tp) && !tcp_send_head(sk))
  2242. return 1;
  2243. return 0;
  2244. }
  2245. /* New heuristics: it is possible only after we switched to restart timer
  2246. * each time when something is ACKed. Hence, we can detect timed out packets
  2247. * during fast retransmit without falling to slow start.
  2248. *
  2249. * Usefulness of this as is very questionable, since we should know which of
  2250. * the segments is the next to timeout which is relatively expensive to find
  2251. * in general case unless we add some data structure just for that. The
  2252. * current approach certainly won't find the right one too often and when it
  2253. * finally does find _something_ it usually marks large part of the window
  2254. * right away (because a retransmission with a larger timestamp blocks the
  2255. * loop from advancing). -ij
  2256. */
  2257. static void tcp_timeout_skbs(struct sock *sk)
  2258. {
  2259. struct tcp_sock *tp = tcp_sk(sk);
  2260. struct sk_buff *skb;
  2261. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  2262. return;
  2263. skb = tp->scoreboard_skb_hint;
  2264. if (tp->scoreboard_skb_hint == NULL)
  2265. skb = tcp_write_queue_head(sk);
  2266. tcp_for_write_queue_from(skb, sk) {
  2267. if (skb == tcp_send_head(sk))
  2268. break;
  2269. if (!tcp_skb_timedout(sk, skb))
  2270. break;
  2271. tcp_skb_mark_lost(tp, skb);
  2272. }
  2273. tp->scoreboard_skb_hint = skb;
  2274. tcp_verify_left_out(tp);
  2275. }
  2276. /* Detect loss in event "A" above by marking head of queue up as lost.
  2277. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  2278. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  2279. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  2280. * the maximum SACKed segments to pass before reaching this limit.
  2281. */
  2282. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  2283. {
  2284. struct tcp_sock *tp = tcp_sk(sk);
  2285. struct sk_buff *skb;
  2286. int cnt, oldcnt;
  2287. int err;
  2288. unsigned int mss;
  2289. /* Use SACK to deduce losses of new sequences sent during recovery */
  2290. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  2291. WARN_ON(packets > tp->packets_out);
  2292. if (tp->lost_skb_hint) {
  2293. skb = tp->lost_skb_hint;
  2294. cnt = tp->lost_cnt_hint;
  2295. /* Head already handled? */
  2296. if (mark_head && skb != tcp_write_queue_head(sk))
  2297. return;
  2298. } else {
  2299. skb = tcp_write_queue_head(sk);
  2300. cnt = 0;
  2301. }
  2302. tcp_for_write_queue_from(skb, sk) {
  2303. if (skb == tcp_send_head(sk))
  2304. break;
  2305. /* TODO: do this better */
  2306. /* this is not the most efficient way to do this... */
  2307. tp->lost_skb_hint = skb;
  2308. tp->lost_cnt_hint = cnt;
  2309. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  2310. break;
  2311. oldcnt = cnt;
  2312. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  2313. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2314. cnt += tcp_skb_pcount(skb);
  2315. if (cnt > packets) {
  2316. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  2317. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  2318. (oldcnt >= packets))
  2319. break;
  2320. mss = skb_shinfo(skb)->gso_size;
  2321. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  2322. if (err < 0)
  2323. break;
  2324. cnt = packets;
  2325. }
  2326. tcp_skb_mark_lost(tp, skb);
  2327. if (mark_head)
  2328. break;
  2329. }
  2330. tcp_verify_left_out(tp);
  2331. }
  2332. /* Account newly detected lost packet(s) */
  2333. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  2334. {
  2335. struct tcp_sock *tp = tcp_sk(sk);
  2336. if (tcp_is_reno(tp)) {
  2337. tcp_mark_head_lost(sk, 1, 1);
  2338. } else if (tcp_is_fack(tp)) {
  2339. int lost = tp->fackets_out - tp->reordering;
  2340. if (lost <= 0)
  2341. lost = 1;
  2342. tcp_mark_head_lost(sk, lost, 0);
  2343. } else {
  2344. int sacked_upto = tp->sacked_out - tp->reordering;
  2345. if (sacked_upto >= 0)
  2346. tcp_mark_head_lost(sk, sacked_upto, 0);
  2347. else if (fast_rexmit)
  2348. tcp_mark_head_lost(sk, 1, 1);
  2349. }
  2350. tcp_timeout_skbs(sk);
  2351. }
  2352. /* CWND moderation, preventing bursts due to too big ACKs
  2353. * in dubious situations.
  2354. */
  2355. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2356. {
  2357. tp->snd_cwnd = min(tp->snd_cwnd,
  2358. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2359. tp->snd_cwnd_stamp = tcp_time_stamp;
  2360. }
  2361. /* Lower bound on congestion window is slow start threshold
  2362. * unless congestion avoidance choice decides to overide it.
  2363. */
  2364. static inline u32 tcp_cwnd_min(const struct sock *sk)
  2365. {
  2366. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  2367. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  2368. }
  2369. /* Decrease cwnd each second ack. */
  2370. static void tcp_cwnd_down(struct sock *sk, int flag)
  2371. {
  2372. struct tcp_sock *tp = tcp_sk(sk);
  2373. int decr = tp->snd_cwnd_cnt + 1;
  2374. if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
  2375. (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
  2376. tp->snd_cwnd_cnt = decr & 1;
  2377. decr >>= 1;
  2378. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  2379. tp->snd_cwnd -= decr;
  2380. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  2381. tp->snd_cwnd_stamp = tcp_time_stamp;
  2382. }
  2383. }
  2384. /* Nothing was retransmitted or returned timestamp is less
  2385. * than timestamp of the first retransmission.
  2386. */
  2387. static inline int tcp_packet_delayed(const struct tcp_sock *tp)
  2388. {
  2389. return !tp->retrans_stamp ||
  2390. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2391. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2392. }
  2393. /* Undo procedures. */
  2394. #if FASTRETRANS_DEBUG > 1
  2395. static void DBGUNDO(struct sock *sk, const char *msg)
  2396. {
  2397. struct tcp_sock *tp = tcp_sk(sk);
  2398. struct inet_sock *inet = inet_sk(sk);
  2399. if (sk->sk_family == AF_INET) {
  2400. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2401. msg,
  2402. &inet->inet_daddr, ntohs(inet->inet_dport),
  2403. tp->snd_cwnd, tcp_left_out(tp),
  2404. tp->snd_ssthresh, tp->prior_ssthresh,
  2405. tp->packets_out);
  2406. }
  2407. #if IS_ENABLED(CONFIG_IPV6)
  2408. else if (sk->sk_family == AF_INET6) {
  2409. struct ipv6_pinfo *np = inet6_sk(sk);
  2410. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2411. msg,
  2412. &np->daddr, ntohs(inet->inet_dport),
  2413. tp->snd_cwnd, tcp_left_out(tp),
  2414. tp->snd_ssthresh, tp->prior_ssthresh,
  2415. tp->packets_out);
  2416. }
  2417. #endif
  2418. }
  2419. #else
  2420. #define DBGUNDO(x...) do { } while (0)
  2421. #endif
  2422. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  2423. {
  2424. struct tcp_sock *tp = tcp_sk(sk);
  2425. if (tp->prior_ssthresh) {
  2426. const struct inet_connection_sock *icsk = inet_csk(sk);
  2427. if (icsk->icsk_ca_ops->undo_cwnd)
  2428. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2429. else
  2430. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2431. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2432. tp->snd_ssthresh = tp->prior_ssthresh;
  2433. TCP_ECN_withdraw_cwr(tp);
  2434. }
  2435. } else {
  2436. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2437. }
  2438. tp->snd_cwnd_stamp = tcp_time_stamp;
  2439. }
  2440. static inline int tcp_may_undo(const struct tcp_sock *tp)
  2441. {
  2442. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2443. }
  2444. /* People celebrate: "We love our President!" */
  2445. static int tcp_try_undo_recovery(struct sock *sk)
  2446. {
  2447. struct tcp_sock *tp = tcp_sk(sk);
  2448. if (tcp_may_undo(tp)) {
  2449. int mib_idx;
  2450. /* Happy end! We did not retransmit anything
  2451. * or our original transmission succeeded.
  2452. */
  2453. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2454. tcp_undo_cwr(sk, true);
  2455. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2456. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2457. else
  2458. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2459. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2460. tp->undo_marker = 0;
  2461. }
  2462. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2463. /* Hold old state until something *above* high_seq
  2464. * is ACKed. For Reno it is MUST to prevent false
  2465. * fast retransmits (RFC2582). SACK TCP is safe. */
  2466. tcp_moderate_cwnd(tp);
  2467. return 1;
  2468. }
  2469. tcp_set_ca_state(sk, TCP_CA_Open);
  2470. return 0;
  2471. }
  2472. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2473. static void tcp_try_undo_dsack(struct sock *sk)
  2474. {
  2475. struct tcp_sock *tp = tcp_sk(sk);
  2476. if (tp->undo_marker && !tp->undo_retrans) {
  2477. DBGUNDO(sk, "D-SACK");
  2478. tcp_undo_cwr(sk, true);
  2479. tp->undo_marker = 0;
  2480. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2481. }
  2482. }
  2483. /* We can clear retrans_stamp when there are no retransmissions in the
  2484. * window. It would seem that it is trivially available for us in
  2485. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2486. * what will happen if errors occur when sending retransmission for the
  2487. * second time. ...It could the that such segment has only
  2488. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2489. * the head skb is enough except for some reneging corner cases that
  2490. * are not worth the effort.
  2491. *
  2492. * Main reason for all this complexity is the fact that connection dying
  2493. * time now depends on the validity of the retrans_stamp, in particular,
  2494. * that successive retransmissions of a segment must not advance
  2495. * retrans_stamp under any conditions.
  2496. */
  2497. static int tcp_any_retrans_done(const struct sock *sk)
  2498. {
  2499. const struct tcp_sock *tp = tcp_sk(sk);
  2500. struct sk_buff *skb;
  2501. if (tp->retrans_out)
  2502. return 1;
  2503. skb = tcp_write_queue_head(sk);
  2504. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2505. return 1;
  2506. return 0;
  2507. }
  2508. /* Undo during fast recovery after partial ACK. */
  2509. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2510. {
  2511. struct tcp_sock *tp = tcp_sk(sk);
  2512. /* Partial ACK arrived. Force Hoe's retransmit. */
  2513. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2514. if (tcp_may_undo(tp)) {
  2515. /* Plain luck! Hole if filled with delayed
  2516. * packet, rather than with a retransmit.
  2517. */
  2518. if (!tcp_any_retrans_done(sk))
  2519. tp->retrans_stamp = 0;
  2520. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2521. DBGUNDO(sk, "Hoe");
  2522. tcp_undo_cwr(sk, false);
  2523. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2524. /* So... Do not make Hoe's retransmit yet.
  2525. * If the first packet was delayed, the rest
  2526. * ones are most probably delayed as well.
  2527. */
  2528. failed = 0;
  2529. }
  2530. return failed;
  2531. }
  2532. /* Undo during loss recovery after partial ACK. */
  2533. static int tcp_try_undo_loss(struct sock *sk)
  2534. {
  2535. struct tcp_sock *tp = tcp_sk(sk);
  2536. if (tcp_may_undo(tp)) {
  2537. struct sk_buff *skb;
  2538. tcp_for_write_queue(skb, sk) {
  2539. if (skb == tcp_send_head(sk))
  2540. break;
  2541. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2542. }
  2543. tcp_clear_all_retrans_hints(tp);
  2544. DBGUNDO(sk, "partial loss");
  2545. tp->lost_out = 0;
  2546. tcp_undo_cwr(sk, true);
  2547. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2548. inet_csk(sk)->icsk_retransmits = 0;
  2549. tp->undo_marker = 0;
  2550. if (tcp_is_sack(tp))
  2551. tcp_set_ca_state(sk, TCP_CA_Open);
  2552. return 1;
  2553. }
  2554. return 0;
  2555. }
  2556. static inline void tcp_complete_cwr(struct sock *sk)
  2557. {
  2558. struct tcp_sock *tp = tcp_sk(sk);
  2559. /* Do not moderate cwnd if it's already undone in cwr or recovery. */
  2560. if (tp->undo_marker) {
  2561. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
  2562. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2563. tp->snd_cwnd_stamp = tcp_time_stamp;
  2564. } else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
  2565. /* PRR algorithm. */
  2566. tp->snd_cwnd = tp->snd_ssthresh;
  2567. tp->snd_cwnd_stamp = tcp_time_stamp;
  2568. }
  2569. }
  2570. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2571. }
  2572. static void tcp_try_keep_open(struct sock *sk)
  2573. {
  2574. struct tcp_sock *tp = tcp_sk(sk);
  2575. int state = TCP_CA_Open;
  2576. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2577. state = TCP_CA_Disorder;
  2578. if (inet_csk(sk)->icsk_ca_state != state) {
  2579. tcp_set_ca_state(sk, state);
  2580. tp->high_seq = tp->snd_nxt;
  2581. }
  2582. }
  2583. static void tcp_try_to_open(struct sock *sk, int flag)
  2584. {
  2585. struct tcp_sock *tp = tcp_sk(sk);
  2586. tcp_verify_left_out(tp);
  2587. if (!tp->frto_counter && !tcp_any_retrans_done(sk))
  2588. tp->retrans_stamp = 0;
  2589. if (flag & FLAG_ECE)
  2590. tcp_enter_cwr(sk, 1);
  2591. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2592. tcp_try_keep_open(sk);
  2593. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  2594. tcp_moderate_cwnd(tp);
  2595. } else {
  2596. tcp_cwnd_down(sk, flag);
  2597. }
  2598. }
  2599. static void tcp_mtup_probe_failed(struct sock *sk)
  2600. {
  2601. struct inet_connection_sock *icsk = inet_csk(sk);
  2602. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2603. icsk->icsk_mtup.probe_size = 0;
  2604. }
  2605. static void tcp_mtup_probe_success(struct sock *sk)
  2606. {
  2607. struct tcp_sock *tp = tcp_sk(sk);
  2608. struct inet_connection_sock *icsk = inet_csk(sk);
  2609. /* FIXME: breaks with very large cwnd */
  2610. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2611. tp->snd_cwnd = tp->snd_cwnd *
  2612. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2613. icsk->icsk_mtup.probe_size;
  2614. tp->snd_cwnd_cnt = 0;
  2615. tp->snd_cwnd_stamp = tcp_time_stamp;
  2616. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2617. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2618. icsk->icsk_mtup.probe_size = 0;
  2619. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2620. }
  2621. /* Do a simple retransmit without using the backoff mechanisms in
  2622. * tcp_timer. This is used for path mtu discovery.
  2623. * The socket is already locked here.
  2624. */
  2625. void tcp_simple_retransmit(struct sock *sk)
  2626. {
  2627. const struct inet_connection_sock *icsk = inet_csk(sk);
  2628. struct tcp_sock *tp = tcp_sk(sk);
  2629. struct sk_buff *skb;
  2630. unsigned int mss = tcp_current_mss(sk);
  2631. u32 prior_lost = tp->lost_out;
  2632. tcp_for_write_queue(skb, sk) {
  2633. if (skb == tcp_send_head(sk))
  2634. break;
  2635. if (tcp_skb_seglen(skb) > mss &&
  2636. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2637. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2638. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2639. tp->retrans_out -= tcp_skb_pcount(skb);
  2640. }
  2641. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2642. }
  2643. }
  2644. tcp_clear_retrans_hints_partial(tp);
  2645. if (prior_lost == tp->lost_out)
  2646. return;
  2647. if (tcp_is_reno(tp))
  2648. tcp_limit_reno_sacked(tp);
  2649. tcp_verify_left_out(tp);
  2650. /* Don't muck with the congestion window here.
  2651. * Reason is that we do not increase amount of _data_
  2652. * in network, but units changed and effective
  2653. * cwnd/ssthresh really reduced now.
  2654. */
  2655. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2656. tp->high_seq = tp->snd_nxt;
  2657. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2658. tp->prior_ssthresh = 0;
  2659. tp->undo_marker = 0;
  2660. tcp_set_ca_state(sk, TCP_CA_Loss);
  2661. }
  2662. tcp_xmit_retransmit_queue(sk);
  2663. }
  2664. EXPORT_SYMBOL(tcp_simple_retransmit);
  2665. /* This function implements the PRR algorithm, specifcally the PRR-SSRB
  2666. * (proportional rate reduction with slow start reduction bound) as described in
  2667. * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
  2668. * It computes the number of packets to send (sndcnt) based on packets newly
  2669. * delivered:
  2670. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2671. * cwnd reductions across a full RTT.
  2672. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2673. * losses and/or application stalls), do not perform any further cwnd
  2674. * reductions, but instead slow start up to ssthresh.
  2675. */
  2676. static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
  2677. int fast_rexmit, int flag)
  2678. {
  2679. struct tcp_sock *tp = tcp_sk(sk);
  2680. int sndcnt = 0;
  2681. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2682. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2683. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2684. tp->prior_cwnd - 1;
  2685. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2686. } else {
  2687. sndcnt = min_t(int, delta,
  2688. max_t(int, tp->prr_delivered - tp->prr_out,
  2689. newly_acked_sacked) + 1);
  2690. }
  2691. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2692. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2693. }
  2694. /* Process an event, which can update packets-in-flight not trivially.
  2695. * Main goal of this function is to calculate new estimate for left_out,
  2696. * taking into account both packets sitting in receiver's buffer and
  2697. * packets lost by network.
  2698. *
  2699. * Besides that it does CWND reduction, when packet loss is detected
  2700. * and changes state of machine.
  2701. *
  2702. * It does _not_ decide what to send, it is made in function
  2703. * tcp_xmit_retransmit_queue().
  2704. */
  2705. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
  2706. int prior_sacked, int prior_packets,
  2707. bool is_dupack, int flag)
  2708. {
  2709. struct inet_connection_sock *icsk = inet_csk(sk);
  2710. struct tcp_sock *tp = tcp_sk(sk);
  2711. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2712. (tcp_fackets_out(tp) > tp->reordering));
  2713. int newly_acked_sacked = 0;
  2714. int fast_rexmit = 0, mib_idx;
  2715. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2716. tp->sacked_out = 0;
  2717. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2718. tp->fackets_out = 0;
  2719. /* Now state machine starts.
  2720. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2721. if (flag & FLAG_ECE)
  2722. tp->prior_ssthresh = 0;
  2723. /* B. In all the states check for reneging SACKs. */
  2724. if (tcp_check_sack_reneging(sk, flag))
  2725. return;
  2726. /* C. Check consistency of the current state. */
  2727. tcp_verify_left_out(tp);
  2728. /* D. Check state exit conditions. State can be terminated
  2729. * when high_seq is ACKed. */
  2730. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2731. WARN_ON(tp->retrans_out != 0);
  2732. tp->retrans_stamp = 0;
  2733. } else if (!before(tp->snd_una, tp->high_seq)) {
  2734. switch (icsk->icsk_ca_state) {
  2735. case TCP_CA_Loss:
  2736. icsk->icsk_retransmits = 0;
  2737. if (tcp_try_undo_recovery(sk))
  2738. return;
  2739. break;
  2740. case TCP_CA_CWR:
  2741. /* CWR is to be held something *above* high_seq
  2742. * is ACKed for CWR bit to reach receiver. */
  2743. if (tp->snd_una != tp->high_seq) {
  2744. tcp_complete_cwr(sk);
  2745. tcp_set_ca_state(sk, TCP_CA_Open);
  2746. }
  2747. break;
  2748. case TCP_CA_Recovery:
  2749. if (tcp_is_reno(tp))
  2750. tcp_reset_reno_sack(tp);
  2751. if (tcp_try_undo_recovery(sk))
  2752. return;
  2753. tcp_complete_cwr(sk);
  2754. break;
  2755. }
  2756. }
  2757. /* E. Process state. */
  2758. switch (icsk->icsk_ca_state) {
  2759. case TCP_CA_Recovery:
  2760. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2761. if (tcp_is_reno(tp) && is_dupack)
  2762. tcp_add_reno_sack(sk);
  2763. } else
  2764. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2765. newly_acked_sacked = prior_packets - tp->packets_out +
  2766. tp->sacked_out - prior_sacked;
  2767. break;
  2768. case TCP_CA_Loss:
  2769. if (flag & FLAG_DATA_ACKED)
  2770. icsk->icsk_retransmits = 0;
  2771. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2772. tcp_reset_reno_sack(tp);
  2773. if (!tcp_try_undo_loss(sk)) {
  2774. tcp_moderate_cwnd(tp);
  2775. tcp_xmit_retransmit_queue(sk);
  2776. return;
  2777. }
  2778. if (icsk->icsk_ca_state != TCP_CA_Open)
  2779. return;
  2780. /* Loss is undone; fall through to processing in Open state. */
  2781. default:
  2782. if (tcp_is_reno(tp)) {
  2783. if (flag & FLAG_SND_UNA_ADVANCED)
  2784. tcp_reset_reno_sack(tp);
  2785. if (is_dupack)
  2786. tcp_add_reno_sack(sk);
  2787. }
  2788. newly_acked_sacked = prior_packets - tp->packets_out +
  2789. tp->sacked_out - prior_sacked;
  2790. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2791. tcp_try_undo_dsack(sk);
  2792. if (!tcp_time_to_recover(sk)) {
  2793. tcp_try_to_open(sk, flag);
  2794. return;
  2795. }
  2796. /* MTU probe failure: don't reduce cwnd */
  2797. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2798. icsk->icsk_mtup.probe_size &&
  2799. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2800. tcp_mtup_probe_failed(sk);
  2801. /* Restores the reduction we did in tcp_mtup_probe() */
  2802. tp->snd_cwnd++;
  2803. tcp_simple_retransmit(sk);
  2804. return;
  2805. }
  2806. /* Otherwise enter Recovery state */
  2807. if (tcp_is_reno(tp))
  2808. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2809. else
  2810. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2811. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2812. tp->high_seq = tp->snd_nxt;
  2813. tp->prior_ssthresh = 0;
  2814. tp->undo_marker = tp->snd_una;
  2815. tp->undo_retrans = tp->retrans_out ? : -1;
  2816. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  2817. if (!(flag & FLAG_ECE))
  2818. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2819. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  2820. TCP_ECN_queue_cwr(tp);
  2821. }
  2822. tp->snd_cwnd_cnt = 0;
  2823. tp->prior_cwnd = tp->snd_cwnd;
  2824. tp->prr_delivered = 0;
  2825. tp->prr_out = 0;
  2826. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2827. fast_rexmit = 1;
  2828. }
  2829. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2830. tcp_update_scoreboard(sk, fast_rexmit);
  2831. tp->prr_delivered += newly_acked_sacked;
  2832. tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
  2833. tcp_xmit_retransmit_queue(sk);
  2834. }
  2835. void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2836. {
  2837. tcp_rtt_estimator(sk, seq_rtt);
  2838. tcp_set_rto(sk);
  2839. inet_csk(sk)->icsk_backoff = 0;
  2840. }
  2841. EXPORT_SYMBOL(tcp_valid_rtt_meas);
  2842. /* Read draft-ietf-tcplw-high-performance before mucking
  2843. * with this code. (Supersedes RFC1323)
  2844. */
  2845. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2846. {
  2847. /* RTTM Rule: A TSecr value received in a segment is used to
  2848. * update the averaged RTT measurement only if the segment
  2849. * acknowledges some new data, i.e., only if it advances the
  2850. * left edge of the send window.
  2851. *
  2852. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2853. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2854. *
  2855. * Changed: reset backoff as soon as we see the first valid sample.
  2856. * If we do not, we get strongly overestimated rto. With timestamps
  2857. * samples are accepted even from very old segments: f.e., when rtt=1
  2858. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2859. * answer arrives rto becomes 120 seconds! If at least one of segments
  2860. * in window is lost... Voila. --ANK (010210)
  2861. */
  2862. struct tcp_sock *tp = tcp_sk(sk);
  2863. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2864. }
  2865. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2866. {
  2867. /* We don't have a timestamp. Can only use
  2868. * packets that are not retransmitted to determine
  2869. * rtt estimates. Also, we must not reset the
  2870. * backoff for rto until we get a non-retransmitted
  2871. * packet. This allows us to deal with a situation
  2872. * where the network delay has increased suddenly.
  2873. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2874. */
  2875. if (flag & FLAG_RETRANS_DATA_ACKED)
  2876. return;
  2877. tcp_valid_rtt_meas(sk, seq_rtt);
  2878. }
  2879. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2880. const s32 seq_rtt)
  2881. {
  2882. const struct tcp_sock *tp = tcp_sk(sk);
  2883. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2884. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2885. tcp_ack_saw_tstamp(sk, flag);
  2886. else if (seq_rtt >= 0)
  2887. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2888. }
  2889. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2890. {
  2891. const struct inet_connection_sock *icsk = inet_csk(sk);
  2892. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2893. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2894. }
  2895. /* Restart timer after forward progress on connection.
  2896. * RFC2988 recommends to restart timer to now+rto.
  2897. */
  2898. static void tcp_rearm_rto(struct sock *sk)
  2899. {
  2900. const struct tcp_sock *tp = tcp_sk(sk);
  2901. if (!tp->packets_out) {
  2902. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2903. } else {
  2904. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2905. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2906. }
  2907. }
  2908. /* If we get here, the whole TSO packet has not been acked. */
  2909. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2910. {
  2911. struct tcp_sock *tp = tcp_sk(sk);
  2912. u32 packets_acked;
  2913. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2914. packets_acked = tcp_skb_pcount(skb);
  2915. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2916. return 0;
  2917. packets_acked -= tcp_skb_pcount(skb);
  2918. if (packets_acked) {
  2919. BUG_ON(tcp_skb_pcount(skb) == 0);
  2920. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2921. }
  2922. return packets_acked;
  2923. }
  2924. /* Remove acknowledged frames from the retransmission queue. If our packet
  2925. * is before the ack sequence we can discard it as it's confirmed to have
  2926. * arrived at the other end.
  2927. */
  2928. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2929. u32 prior_snd_una)
  2930. {
  2931. struct tcp_sock *tp = tcp_sk(sk);
  2932. const struct inet_connection_sock *icsk = inet_csk(sk);
  2933. struct sk_buff *skb;
  2934. u32 now = tcp_time_stamp;
  2935. int fully_acked = 1;
  2936. int flag = 0;
  2937. u32 pkts_acked = 0;
  2938. u32 reord = tp->packets_out;
  2939. u32 prior_sacked = tp->sacked_out;
  2940. s32 seq_rtt = -1;
  2941. s32 ca_seq_rtt = -1;
  2942. ktime_t last_ackt = net_invalid_timestamp();
  2943. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2944. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2945. u32 acked_pcount;
  2946. u8 sacked = scb->sacked;
  2947. /* Determine how many packets and what bytes were acked, tso and else */
  2948. if (after(scb->end_seq, tp->snd_una)) {
  2949. if (tcp_skb_pcount(skb) == 1 ||
  2950. !after(tp->snd_una, scb->seq))
  2951. break;
  2952. acked_pcount = tcp_tso_acked(sk, skb);
  2953. if (!acked_pcount)
  2954. break;
  2955. fully_acked = 0;
  2956. } else {
  2957. acked_pcount = tcp_skb_pcount(skb);
  2958. }
  2959. if (sacked & TCPCB_RETRANS) {
  2960. if (sacked & TCPCB_SACKED_RETRANS)
  2961. tp->retrans_out -= acked_pcount;
  2962. flag |= FLAG_RETRANS_DATA_ACKED;
  2963. ca_seq_rtt = -1;
  2964. seq_rtt = -1;
  2965. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2966. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2967. } else {
  2968. ca_seq_rtt = now - scb->when;
  2969. last_ackt = skb->tstamp;
  2970. if (seq_rtt < 0) {
  2971. seq_rtt = ca_seq_rtt;
  2972. }
  2973. if (!(sacked & TCPCB_SACKED_ACKED))
  2974. reord = min(pkts_acked, reord);
  2975. }
  2976. if (sacked & TCPCB_SACKED_ACKED)
  2977. tp->sacked_out -= acked_pcount;
  2978. if (sacked & TCPCB_LOST)
  2979. tp->lost_out -= acked_pcount;
  2980. tp->packets_out -= acked_pcount;
  2981. pkts_acked += acked_pcount;
  2982. /* Initial outgoing SYN's get put onto the write_queue
  2983. * just like anything else we transmit. It is not
  2984. * true data, and if we misinform our callers that
  2985. * this ACK acks real data, we will erroneously exit
  2986. * connection startup slow start one packet too
  2987. * quickly. This is severely frowned upon behavior.
  2988. */
  2989. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2990. flag |= FLAG_DATA_ACKED;
  2991. } else {
  2992. flag |= FLAG_SYN_ACKED;
  2993. tp->retrans_stamp = 0;
  2994. }
  2995. if (!fully_acked)
  2996. break;
  2997. tcp_unlink_write_queue(skb, sk);
  2998. sk_wmem_free_skb(sk, skb);
  2999. tp->scoreboard_skb_hint = NULL;
  3000. if (skb == tp->retransmit_skb_hint)
  3001. tp->retransmit_skb_hint = NULL;
  3002. if (skb == tp->lost_skb_hint)
  3003. tp->lost_skb_hint = NULL;
  3004. }
  3005. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  3006. tp->snd_up = tp->snd_una;
  3007. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  3008. flag |= FLAG_SACK_RENEGING;
  3009. if (flag & FLAG_ACKED) {
  3010. const struct tcp_congestion_ops *ca_ops
  3011. = inet_csk(sk)->icsk_ca_ops;
  3012. if (unlikely(icsk->icsk_mtup.probe_size &&
  3013. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  3014. tcp_mtup_probe_success(sk);
  3015. }
  3016. tcp_ack_update_rtt(sk, flag, seq_rtt);
  3017. tcp_rearm_rto(sk);
  3018. if (tcp_is_reno(tp)) {
  3019. tcp_remove_reno_sacks(sk, pkts_acked);
  3020. } else {
  3021. int delta;
  3022. /* Non-retransmitted hole got filled? That's reordering */
  3023. if (reord < prior_fackets)
  3024. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  3025. delta = tcp_is_fack(tp) ? pkts_acked :
  3026. prior_sacked - tp->sacked_out;
  3027. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  3028. }
  3029. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  3030. if (ca_ops->pkts_acked) {
  3031. s32 rtt_us = -1;
  3032. /* Is the ACK triggering packet unambiguous? */
  3033. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  3034. /* High resolution needed and available? */
  3035. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  3036. !ktime_equal(last_ackt,
  3037. net_invalid_timestamp()))
  3038. rtt_us = ktime_us_delta(ktime_get_real(),
  3039. last_ackt);
  3040. else if (ca_seq_rtt >= 0)
  3041. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  3042. }
  3043. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  3044. }
  3045. }
  3046. #if FASTRETRANS_DEBUG > 0
  3047. WARN_ON((int)tp->sacked_out < 0);
  3048. WARN_ON((int)tp->lost_out < 0);
  3049. WARN_ON((int)tp->retrans_out < 0);
  3050. if (!tp->packets_out && tcp_is_sack(tp)) {
  3051. icsk = inet_csk(sk);
  3052. if (tp->lost_out) {
  3053. pr_debug("Leak l=%u %d\n",
  3054. tp->lost_out, icsk->icsk_ca_state);
  3055. tp->lost_out = 0;
  3056. }
  3057. if (tp->sacked_out) {
  3058. pr_debug("Leak s=%u %d\n",
  3059. tp->sacked_out, icsk->icsk_ca_state);
  3060. tp->sacked_out = 0;
  3061. }
  3062. if (tp->retrans_out) {
  3063. pr_debug("Leak r=%u %d\n",
  3064. tp->retrans_out, icsk->icsk_ca_state);
  3065. tp->retrans_out = 0;
  3066. }
  3067. }
  3068. #endif
  3069. return flag;
  3070. }
  3071. static void tcp_ack_probe(struct sock *sk)
  3072. {
  3073. const struct tcp_sock *tp = tcp_sk(sk);
  3074. struct inet_connection_sock *icsk = inet_csk(sk);
  3075. /* Was it a usable window open? */
  3076. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  3077. icsk->icsk_backoff = 0;
  3078. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  3079. /* Socket must be waked up by subsequent tcp_data_snd_check().
  3080. * This function is not for random using!
  3081. */
  3082. } else {
  3083. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  3084. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  3085. TCP_RTO_MAX);
  3086. }
  3087. }
  3088. static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
  3089. {
  3090. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  3091. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  3092. }
  3093. static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  3094. {
  3095. const struct tcp_sock *tp = tcp_sk(sk);
  3096. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  3097. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  3098. }
  3099. /* Check that window update is acceptable.
  3100. * The function assumes that snd_una<=ack<=snd_next.
  3101. */
  3102. static inline int tcp_may_update_window(const struct tcp_sock *tp,
  3103. const u32 ack, const u32 ack_seq,
  3104. const u32 nwin)
  3105. {
  3106. return after(ack, tp->snd_una) ||
  3107. after(ack_seq, tp->snd_wl1) ||
  3108. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  3109. }
  3110. /* If we update tp->snd_una, also update tp->bytes_acked */
  3111. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  3112. {
  3113. u32 delta = ack - tp->snd_una;
  3114. u64_stats_update_begin(&tp->syncp);
  3115. tp->bytes_acked += delta;
  3116. u64_stats_update_end(&tp->syncp);
  3117. tp->snd_una = ack;
  3118. }
  3119. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  3120. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  3121. {
  3122. u32 delta = seq - tp->rcv_nxt;
  3123. u64_stats_update_begin(&tp->syncp);
  3124. tp->bytes_received += delta;
  3125. u64_stats_update_end(&tp->syncp);
  3126. tp->rcv_nxt = seq;
  3127. }
  3128. /* Update our send window.
  3129. *
  3130. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  3131. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  3132. */
  3133. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  3134. u32 ack_seq)
  3135. {
  3136. struct tcp_sock *tp = tcp_sk(sk);
  3137. int flag = 0;
  3138. u32 nwin = ntohs(tcp_hdr(skb)->window);
  3139. if (likely(!tcp_hdr(skb)->syn))
  3140. nwin <<= tp->rx_opt.snd_wscale;
  3141. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  3142. flag |= FLAG_WIN_UPDATE;
  3143. tcp_update_wl(tp, ack_seq);
  3144. if (tp->snd_wnd != nwin) {
  3145. tp->snd_wnd = nwin;
  3146. /* Note, it is the only place, where
  3147. * fast path is recovered for sending TCP.
  3148. */
  3149. tp->pred_flags = 0;
  3150. tcp_fast_path_check(sk);
  3151. if (nwin > tp->max_window) {
  3152. tp->max_window = nwin;
  3153. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  3154. }
  3155. }
  3156. }
  3157. tcp_snd_una_update(tp, ack);
  3158. return flag;
  3159. }
  3160. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  3161. * continue in congestion avoidance.
  3162. */
  3163. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  3164. {
  3165. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  3166. tp->snd_cwnd_cnt = 0;
  3167. TCP_ECN_queue_cwr(tp);
  3168. tcp_moderate_cwnd(tp);
  3169. }
  3170. /* A conservative spurious RTO response algorithm: reduce cwnd using
  3171. * rate halving and continue in congestion avoidance.
  3172. */
  3173. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  3174. {
  3175. tcp_enter_cwr(sk, 0);
  3176. }
  3177. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  3178. {
  3179. if (flag & FLAG_ECE)
  3180. tcp_ratehalving_spur_to_response(sk);
  3181. else
  3182. tcp_undo_cwr(sk, true);
  3183. }
  3184. /* F-RTO spurious RTO detection algorithm (RFC4138)
  3185. *
  3186. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  3187. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  3188. * window (but not to or beyond highest sequence sent before RTO):
  3189. * On First ACK, send two new segments out.
  3190. * On Second ACK, RTO was likely spurious. Do spurious response (response
  3191. * algorithm is not part of the F-RTO detection algorithm
  3192. * given in RFC4138 but can be selected separately).
  3193. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  3194. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  3195. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  3196. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  3197. *
  3198. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  3199. * original window even after we transmit two new data segments.
  3200. *
  3201. * SACK version:
  3202. * on first step, wait until first cumulative ACK arrives, then move to
  3203. * the second step. In second step, the next ACK decides.
  3204. *
  3205. * F-RTO is implemented (mainly) in four functions:
  3206. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  3207. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  3208. * called when tcp_use_frto() showed green light
  3209. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  3210. * - tcp_enter_frto_loss() is called if there is not enough evidence
  3211. * to prove that the RTO is indeed spurious. It transfers the control
  3212. * from F-RTO to the conventional RTO recovery
  3213. */
  3214. static int tcp_process_frto(struct sock *sk, int flag)
  3215. {
  3216. struct tcp_sock *tp = tcp_sk(sk);
  3217. tcp_verify_left_out(tp);
  3218. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  3219. if (flag & FLAG_DATA_ACKED)
  3220. inet_csk(sk)->icsk_retransmits = 0;
  3221. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  3222. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  3223. tp->undo_marker = 0;
  3224. if (!before(tp->snd_una, tp->frto_highmark)) {
  3225. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  3226. return 1;
  3227. }
  3228. if (!tcp_is_sackfrto(tp)) {
  3229. /* RFC4138 shortcoming in step 2; should also have case c):
  3230. * ACK isn't duplicate nor advances window, e.g., opposite dir
  3231. * data, winupdate
  3232. */
  3233. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  3234. return 1;
  3235. if (!(flag & FLAG_DATA_ACKED)) {
  3236. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  3237. flag);
  3238. return 1;
  3239. }
  3240. } else {
  3241. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  3242. if (!tcp_packets_in_flight(tp)) {
  3243. tcp_enter_frto_loss(sk, 2, flag);
  3244. return true;
  3245. }
  3246. /* Prevent sending of new data. */
  3247. tp->snd_cwnd = min(tp->snd_cwnd,
  3248. tcp_packets_in_flight(tp));
  3249. return 1;
  3250. }
  3251. if ((tp->frto_counter >= 2) &&
  3252. (!(flag & FLAG_FORWARD_PROGRESS) ||
  3253. ((flag & FLAG_DATA_SACKED) &&
  3254. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  3255. /* RFC4138 shortcoming (see comment above) */
  3256. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  3257. (flag & FLAG_NOT_DUP))
  3258. return 1;
  3259. tcp_enter_frto_loss(sk, 3, flag);
  3260. return 1;
  3261. }
  3262. }
  3263. if (tp->frto_counter == 1) {
  3264. /* tcp_may_send_now needs to see updated state */
  3265. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  3266. tp->frto_counter = 2;
  3267. if (!tcp_may_send_now(sk))
  3268. tcp_enter_frto_loss(sk, 2, flag);
  3269. return 1;
  3270. } else {
  3271. switch (sysctl_tcp_frto_response) {
  3272. case 2:
  3273. tcp_undo_spur_to_response(sk, flag);
  3274. break;
  3275. case 1:
  3276. tcp_conservative_spur_to_response(tp);
  3277. break;
  3278. default:
  3279. tcp_ratehalving_spur_to_response(sk);
  3280. break;
  3281. }
  3282. tp->frto_counter = 0;
  3283. tp->undo_marker = 0;
  3284. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  3285. }
  3286. return 0;
  3287. }
  3288. /* RFC 5961 7 [ACK Throttling] */
  3289. static void tcp_send_challenge_ack(struct sock *sk)
  3290. {
  3291. /* unprotected vars, we dont care of overwrites */
  3292. static u32 challenge_timestamp;
  3293. static unsigned int challenge_count;
  3294. u32 count, now = jiffies / HZ;
  3295. if (now != challenge_timestamp) {
  3296. u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
  3297. challenge_timestamp = now;
  3298. ACCESS_ONCE(challenge_count) = half +
  3299. (u32)(((u64)random32() * sysctl_tcp_challenge_ack_limit) >> 32);
  3300. }
  3301. count = ACCESS_ONCE(challenge_count);
  3302. if (count > 0) {
  3303. ACCESS_ONCE(challenge_count) = count - 1;
  3304. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  3305. tcp_send_ack(sk);
  3306. }
  3307. }
  3308. static void tcp_store_ts_recent(struct tcp_sock *tp)
  3309. {
  3310. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3311. tp->rx_opt.ts_recent_stamp = get_seconds();
  3312. }
  3313. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3314. {
  3315. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3316. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3317. * extra check below makes sure this can only happen
  3318. * for pure ACK frames. -DaveM
  3319. *
  3320. * Not only, also it occurs for expired timestamps.
  3321. */
  3322. if (tcp_paws_check(&tp->rx_opt, 0))
  3323. tcp_store_ts_recent(tp);
  3324. }
  3325. }
  3326. /* This routine deals with incoming acks, but not outgoing ones. */
  3327. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3328. {
  3329. struct inet_connection_sock *icsk = inet_csk(sk);
  3330. struct tcp_sock *tp = tcp_sk(sk);
  3331. u32 prior_snd_una = tp->snd_una;
  3332. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3333. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3334. bool is_dupack = false;
  3335. u32 prior_in_flight, prior_cwnd = tp->snd_cwnd, prior_rtt = tp->srtt;
  3336. u32 prior_fackets;
  3337. int prior_packets = tp->packets_out;
  3338. int prior_sacked = tp->sacked_out;
  3339. int pkts_acked = 0;
  3340. int previous_packets_out = 0;
  3341. int frto_cwnd = 0;
  3342. /* If the ack is older than previous acks
  3343. * then we can probably ignore it.
  3344. */
  3345. if (before(ack, prior_snd_una)) {
  3346. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3347. if (before(ack, prior_snd_una - tp->max_window)) {
  3348. tcp_send_challenge_ack(sk);
  3349. return -1;
  3350. }
  3351. goto old_ack;
  3352. }
  3353. /* If the ack includes data we haven't sent yet, discard
  3354. * this segment (RFC793 Section 3.9).
  3355. */
  3356. if (after(ack, tp->snd_nxt))
  3357. goto invalid_ack;
  3358. if (after(ack, prior_snd_una))
  3359. flag |= FLAG_SND_UNA_ADVANCED;
  3360. prior_fackets = tp->fackets_out;
  3361. prior_in_flight = tcp_packets_in_flight(tp);
  3362. /* ts_recent update must be made after we are sure that the packet
  3363. * is in window.
  3364. */
  3365. if (flag & FLAG_UPDATE_TS_RECENT)
  3366. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3367. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3368. /* Window is constant, pure forward advance.
  3369. * No more checks are required.
  3370. * Note, we use the fact that SND.UNA>=SND.WL2.
  3371. */
  3372. tcp_update_wl(tp, ack_seq);
  3373. tcp_snd_una_update(tp, ack);
  3374. flag |= FLAG_WIN_UPDATE;
  3375. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  3376. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3377. } else {
  3378. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3379. flag |= FLAG_DATA;
  3380. else
  3381. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3382. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3383. if (TCP_SKB_CB(skb)->sacked)
  3384. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3385. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  3386. flag |= FLAG_ECE;
  3387. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  3388. }
  3389. /* We passed data and got it acked, remove any soft error
  3390. * log. Something worked...
  3391. */
  3392. sk->sk_err_soft = 0;
  3393. icsk->icsk_probes_out = 0;
  3394. tp->rcv_tstamp = tcp_time_stamp;
  3395. if (!prior_packets)
  3396. goto no_queue;
  3397. /* See if we can take anything off of the retransmit queue. */
  3398. previous_packets_out = tp->packets_out;
  3399. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  3400. pkts_acked = previous_packets_out - tp->packets_out;
  3401. if (tp->frto_counter)
  3402. frto_cwnd = tcp_process_frto(sk, flag);
  3403. /* Guarantee sacktag reordering detection against wrap-arounds */
  3404. if (before(tp->frto_highmark, tp->snd_una))
  3405. tp->frto_highmark = 0;
  3406. if (tcp_ack_is_dubious(sk, flag)) {
  3407. /* Advance CWND, if state allows this. */
  3408. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  3409. tcp_may_raise_cwnd(sk, flag))
  3410. tcp_cong_avoid(sk, ack, prior_in_flight);
  3411. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3412. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  3413. prior_packets, is_dupack, flag);
  3414. } else {
  3415. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  3416. tcp_cong_avoid(sk, ack, prior_in_flight);
  3417. }
  3418. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  3419. struct dst_entry *dst = __sk_dst_get(sk);
  3420. if (dst)
  3421. dst_confirm(dst);
  3422. }
  3423. if (tp->srtt != prior_rtt || tp->snd_cwnd != prior_cwnd)
  3424. tcp_update_pacing_rate(sk);
  3425. return 1;
  3426. no_queue:
  3427. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3428. if (flag & FLAG_DSACKING_ACK)
  3429. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  3430. prior_packets, is_dupack, flag);
  3431. /* If this ack opens up a zero window, clear backoff. It was
  3432. * being used to time the probes, and is probably far higher than
  3433. * it needs to be for normal retransmission.
  3434. */
  3435. if (tcp_send_head(sk))
  3436. tcp_ack_probe(sk);
  3437. return 1;
  3438. invalid_ack:
  3439. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3440. return -1;
  3441. old_ack:
  3442. /* If data was SACKed, tag it and see if we should send more data.
  3443. * If data was DSACKed, see if we can undo a cwnd reduction.
  3444. */
  3445. if (TCP_SKB_CB(skb)->sacked) {
  3446. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3447. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  3448. prior_packets, is_dupack, flag);
  3449. }
  3450. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3451. return 0;
  3452. }
  3453. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3454. * But, this can also be called on packets in the established flow when
  3455. * the fast version below fails.
  3456. */
  3457. void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
  3458. const u8 **hvpp, int estab)
  3459. {
  3460. const unsigned char *ptr;
  3461. const struct tcphdr *th = tcp_hdr(skb);
  3462. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3463. ptr = (const unsigned char *)(th + 1);
  3464. opt_rx->saw_tstamp = 0;
  3465. while (length > 0) {
  3466. int opcode = *ptr++;
  3467. int opsize;
  3468. switch (opcode) {
  3469. case TCPOPT_EOL:
  3470. return;
  3471. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3472. length--;
  3473. continue;
  3474. default:
  3475. opsize = *ptr++;
  3476. if (opsize < 2) /* "silly options" */
  3477. return;
  3478. if (opsize > length)
  3479. return; /* don't parse partial options */
  3480. switch (opcode) {
  3481. case TCPOPT_MSS:
  3482. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3483. u16 in_mss = get_unaligned_be16(ptr);
  3484. if (in_mss) {
  3485. if (opt_rx->user_mss &&
  3486. opt_rx->user_mss < in_mss)
  3487. in_mss = opt_rx->user_mss;
  3488. opt_rx->mss_clamp = in_mss;
  3489. }
  3490. }
  3491. break;
  3492. case TCPOPT_WINDOW:
  3493. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3494. !estab && sysctl_tcp_window_scaling) {
  3495. __u8 snd_wscale = *(__u8 *)ptr;
  3496. opt_rx->wscale_ok = 1;
  3497. if (snd_wscale > 14) {
  3498. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3499. __func__,
  3500. snd_wscale);
  3501. snd_wscale = 14;
  3502. }
  3503. opt_rx->snd_wscale = snd_wscale;
  3504. }
  3505. break;
  3506. case TCPOPT_TIMESTAMP:
  3507. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3508. ((estab && opt_rx->tstamp_ok) ||
  3509. (!estab && sysctl_tcp_timestamps))) {
  3510. opt_rx->saw_tstamp = 1;
  3511. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3512. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3513. }
  3514. break;
  3515. case TCPOPT_SACK_PERM:
  3516. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3517. !estab && sysctl_tcp_sack) {
  3518. opt_rx->sack_ok = TCP_SACK_SEEN;
  3519. tcp_sack_reset(opt_rx);
  3520. }
  3521. break;
  3522. case TCPOPT_SACK:
  3523. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3524. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3525. opt_rx->sack_ok) {
  3526. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3527. }
  3528. break;
  3529. #ifdef CONFIG_TCP_MD5SIG
  3530. case TCPOPT_MD5SIG:
  3531. /*
  3532. * The MD5 Hash has already been
  3533. * checked (see tcp_v{4,6}_do_rcv()).
  3534. */
  3535. break;
  3536. #endif
  3537. case TCPOPT_COOKIE:
  3538. /* This option is variable length.
  3539. */
  3540. switch (opsize) {
  3541. case TCPOLEN_COOKIE_BASE:
  3542. /* not yet implemented */
  3543. break;
  3544. case TCPOLEN_COOKIE_PAIR:
  3545. /* not yet implemented */
  3546. break;
  3547. case TCPOLEN_COOKIE_MIN+0:
  3548. case TCPOLEN_COOKIE_MIN+2:
  3549. case TCPOLEN_COOKIE_MIN+4:
  3550. case TCPOLEN_COOKIE_MIN+6:
  3551. case TCPOLEN_COOKIE_MAX:
  3552. /* 16-bit multiple */
  3553. opt_rx->cookie_plus = opsize;
  3554. *hvpp = ptr;
  3555. break;
  3556. default:
  3557. /* ignore option */
  3558. break;
  3559. }
  3560. break;
  3561. }
  3562. ptr += opsize-2;
  3563. length -= opsize;
  3564. }
  3565. }
  3566. }
  3567. EXPORT_SYMBOL(tcp_parse_options);
  3568. static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3569. {
  3570. const __be32 *ptr = (const __be32 *)(th + 1);
  3571. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3572. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3573. tp->rx_opt.saw_tstamp = 1;
  3574. ++ptr;
  3575. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3576. ++ptr;
  3577. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3578. return 1;
  3579. }
  3580. return 0;
  3581. }
  3582. /* Fast parse options. This hopes to only see timestamps.
  3583. * If it is wrong it falls back on tcp_parse_options().
  3584. */
  3585. static int tcp_fast_parse_options(const struct sk_buff *skb,
  3586. const struct tcphdr *th,
  3587. struct tcp_sock *tp, const u8 **hvpp)
  3588. {
  3589. /* In the spirit of fast parsing, compare doff directly to constant
  3590. * values. Because equality is used, short doff can be ignored here.
  3591. */
  3592. if (th->doff == (sizeof(*th) / 4)) {
  3593. tp->rx_opt.saw_tstamp = 0;
  3594. return 0;
  3595. } else if (tp->rx_opt.tstamp_ok &&
  3596. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3597. if (tcp_parse_aligned_timestamp(tp, th))
  3598. return 1;
  3599. }
  3600. tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
  3601. return 1;
  3602. }
  3603. #ifdef CONFIG_TCP_MD5SIG
  3604. /*
  3605. * Parse MD5 Signature option
  3606. */
  3607. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3608. {
  3609. int length = (th->doff << 2) - sizeof(*th);
  3610. const u8 *ptr = (const u8 *)(th + 1);
  3611. /* If the TCP option is too short, we can short cut */
  3612. if (length < TCPOLEN_MD5SIG)
  3613. return NULL;
  3614. while (length > 0) {
  3615. int opcode = *ptr++;
  3616. int opsize;
  3617. switch (opcode) {
  3618. case TCPOPT_EOL:
  3619. return NULL;
  3620. case TCPOPT_NOP:
  3621. length--;
  3622. continue;
  3623. default:
  3624. opsize = *ptr++;
  3625. if (opsize < 2 || opsize > length)
  3626. return NULL;
  3627. if (opcode == TCPOPT_MD5SIG)
  3628. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3629. }
  3630. ptr += opsize - 2;
  3631. length -= opsize;
  3632. }
  3633. return NULL;
  3634. }
  3635. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3636. #endif
  3637. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3638. *
  3639. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3640. * it can pass through stack. So, the following predicate verifies that
  3641. * this segment is not used for anything but congestion avoidance or
  3642. * fast retransmit. Moreover, we even are able to eliminate most of such
  3643. * second order effects, if we apply some small "replay" window (~RTO)
  3644. * to timestamp space.
  3645. *
  3646. * All these measures still do not guarantee that we reject wrapped ACKs
  3647. * on networks with high bandwidth, when sequence space is recycled fastly,
  3648. * but it guarantees that such events will be very rare and do not affect
  3649. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3650. * buggy extension.
  3651. *
  3652. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3653. * states that events when retransmit arrives after original data are rare.
  3654. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3655. * the biggest problem on large power networks even with minor reordering.
  3656. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3657. * up to bandwidth of 18Gigabit/sec. 8) ]
  3658. */
  3659. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3660. {
  3661. const struct tcp_sock *tp = tcp_sk(sk);
  3662. const struct tcphdr *th = tcp_hdr(skb);
  3663. u32 seq = TCP_SKB_CB(skb)->seq;
  3664. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3665. return (/* 1. Pure ACK with correct sequence number. */
  3666. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3667. /* 2. ... and duplicate ACK. */
  3668. ack == tp->snd_una &&
  3669. /* 3. ... and does not update window. */
  3670. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3671. /* 4. ... and sits in replay window. */
  3672. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3673. }
  3674. static inline int tcp_paws_discard(const struct sock *sk,
  3675. const struct sk_buff *skb)
  3676. {
  3677. const struct tcp_sock *tp = tcp_sk(sk);
  3678. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3679. !tcp_disordered_ack(sk, skb);
  3680. }
  3681. /* Check segment sequence number for validity.
  3682. *
  3683. * Segment controls are considered valid, if the segment
  3684. * fits to the window after truncation to the window. Acceptability
  3685. * of data (and SYN, FIN, of course) is checked separately.
  3686. * See tcp_data_queue(), for example.
  3687. *
  3688. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3689. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3690. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3691. * (borrowed from freebsd)
  3692. */
  3693. static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3694. {
  3695. return !before(end_seq, tp->rcv_wup) &&
  3696. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3697. }
  3698. /* When we get a reset we do this. */
  3699. static void tcp_reset(struct sock *sk)
  3700. {
  3701. /* We want the right error as BSD sees it (and indeed as we do). */
  3702. switch (sk->sk_state) {
  3703. case TCP_SYN_SENT:
  3704. sk->sk_err = ECONNREFUSED;
  3705. break;
  3706. case TCP_CLOSE_WAIT:
  3707. sk->sk_err = EPIPE;
  3708. break;
  3709. case TCP_CLOSE:
  3710. return;
  3711. default:
  3712. sk->sk_err = ECONNRESET;
  3713. }
  3714. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3715. smp_wmb();
  3716. if (!sock_flag(sk, SOCK_DEAD))
  3717. sk->sk_error_report(sk);
  3718. tcp_done(sk);
  3719. }
  3720. /*
  3721. * Process the FIN bit. This now behaves as it is supposed to work
  3722. * and the FIN takes effect when it is validly part of sequence
  3723. * space. Not before when we get holes.
  3724. *
  3725. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3726. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3727. * TIME-WAIT)
  3728. *
  3729. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3730. * close and we go into CLOSING (and later onto TIME-WAIT)
  3731. *
  3732. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3733. */
  3734. static void tcp_fin(struct sock *sk)
  3735. {
  3736. struct tcp_sock *tp = tcp_sk(sk);
  3737. inet_csk_schedule_ack(sk);
  3738. sk->sk_shutdown |= RCV_SHUTDOWN;
  3739. sock_set_flag(sk, SOCK_DONE);
  3740. switch (sk->sk_state) {
  3741. case TCP_SYN_RECV:
  3742. case TCP_ESTABLISHED:
  3743. /* Move to CLOSE_WAIT */
  3744. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3745. inet_csk(sk)->icsk_ack.pingpong = 1;
  3746. break;
  3747. case TCP_CLOSE_WAIT:
  3748. case TCP_CLOSING:
  3749. /* Received a retransmission of the FIN, do
  3750. * nothing.
  3751. */
  3752. break;
  3753. case TCP_LAST_ACK:
  3754. /* RFC793: Remain in the LAST-ACK state. */
  3755. break;
  3756. case TCP_FIN_WAIT1:
  3757. /* This case occurs when a simultaneous close
  3758. * happens, we must ack the received FIN and
  3759. * enter the CLOSING state.
  3760. */
  3761. tcp_send_ack(sk);
  3762. tcp_set_state(sk, TCP_CLOSING);
  3763. break;
  3764. case TCP_FIN_WAIT2:
  3765. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3766. tcp_send_ack(sk);
  3767. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3768. break;
  3769. default:
  3770. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3771. * cases we should never reach this piece of code.
  3772. */
  3773. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3774. __func__, sk->sk_state);
  3775. break;
  3776. }
  3777. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3778. * Probably, we should reset in this case. For now drop them.
  3779. */
  3780. __skb_queue_purge(&tp->out_of_order_queue);
  3781. if (tcp_is_sack(tp))
  3782. tcp_sack_reset(&tp->rx_opt);
  3783. sk_mem_reclaim(sk);
  3784. if (!sock_flag(sk, SOCK_DEAD)) {
  3785. sk->sk_state_change(sk);
  3786. /* Do not send POLL_HUP for half duplex close. */
  3787. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3788. sk->sk_state == TCP_CLOSE)
  3789. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3790. else
  3791. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3792. }
  3793. }
  3794. static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3795. u32 end_seq)
  3796. {
  3797. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3798. if (before(seq, sp->start_seq))
  3799. sp->start_seq = seq;
  3800. if (after(end_seq, sp->end_seq))
  3801. sp->end_seq = end_seq;
  3802. return 1;
  3803. }
  3804. return 0;
  3805. }
  3806. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3807. {
  3808. struct tcp_sock *tp = tcp_sk(sk);
  3809. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3810. int mib_idx;
  3811. if (before(seq, tp->rcv_nxt))
  3812. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3813. else
  3814. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3815. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3816. tp->rx_opt.dsack = 1;
  3817. tp->duplicate_sack[0].start_seq = seq;
  3818. tp->duplicate_sack[0].end_seq = end_seq;
  3819. }
  3820. }
  3821. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3822. {
  3823. struct tcp_sock *tp = tcp_sk(sk);
  3824. if (!tp->rx_opt.dsack)
  3825. tcp_dsack_set(sk, seq, end_seq);
  3826. else
  3827. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3828. }
  3829. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3830. {
  3831. struct tcp_sock *tp = tcp_sk(sk);
  3832. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3833. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3834. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3835. tcp_enter_quickack_mode(sk);
  3836. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3837. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3838. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3839. end_seq = tp->rcv_nxt;
  3840. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3841. }
  3842. }
  3843. tcp_send_ack(sk);
  3844. }
  3845. /* These routines update the SACK block as out-of-order packets arrive or
  3846. * in-order packets close up the sequence space.
  3847. */
  3848. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3849. {
  3850. int this_sack;
  3851. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3852. struct tcp_sack_block *swalk = sp + 1;
  3853. /* See if the recent change to the first SACK eats into
  3854. * or hits the sequence space of other SACK blocks, if so coalesce.
  3855. */
  3856. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3857. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3858. int i;
  3859. /* Zap SWALK, by moving every further SACK up by one slot.
  3860. * Decrease num_sacks.
  3861. */
  3862. tp->rx_opt.num_sacks--;
  3863. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3864. sp[i] = sp[i + 1];
  3865. continue;
  3866. }
  3867. this_sack++, swalk++;
  3868. }
  3869. }
  3870. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3871. {
  3872. struct tcp_sock *tp = tcp_sk(sk);
  3873. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3874. int cur_sacks = tp->rx_opt.num_sacks;
  3875. int this_sack;
  3876. if (!cur_sacks)
  3877. goto new_sack;
  3878. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3879. if (tcp_sack_extend(sp, seq, end_seq)) {
  3880. /* Rotate this_sack to the first one. */
  3881. for (; this_sack > 0; this_sack--, sp--)
  3882. swap(*sp, *(sp - 1));
  3883. if (cur_sacks > 1)
  3884. tcp_sack_maybe_coalesce(tp);
  3885. return;
  3886. }
  3887. }
  3888. /* Could not find an adjacent existing SACK, build a new one,
  3889. * put it at the front, and shift everyone else down. We
  3890. * always know there is at least one SACK present already here.
  3891. *
  3892. * If the sack array is full, forget about the last one.
  3893. */
  3894. if (this_sack >= TCP_NUM_SACKS) {
  3895. this_sack--;
  3896. tp->rx_opt.num_sacks--;
  3897. sp--;
  3898. }
  3899. for (; this_sack > 0; this_sack--, sp--)
  3900. *sp = *(sp - 1);
  3901. new_sack:
  3902. /* Build the new head SACK, and we're done. */
  3903. sp->start_seq = seq;
  3904. sp->end_seq = end_seq;
  3905. tp->rx_opt.num_sacks++;
  3906. }
  3907. /* RCV.NXT advances, some SACKs should be eaten. */
  3908. static void tcp_sack_remove(struct tcp_sock *tp)
  3909. {
  3910. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3911. int num_sacks = tp->rx_opt.num_sacks;
  3912. int this_sack;
  3913. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3914. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3915. tp->rx_opt.num_sacks = 0;
  3916. return;
  3917. }
  3918. for (this_sack = 0; this_sack < num_sacks;) {
  3919. /* Check if the start of the sack is covered by RCV.NXT. */
  3920. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3921. int i;
  3922. /* RCV.NXT must cover all the block! */
  3923. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3924. /* Zap this SACK, by moving forward any other SACKS. */
  3925. for (i = this_sack+1; i < num_sacks; i++)
  3926. tp->selective_acks[i-1] = tp->selective_acks[i];
  3927. num_sacks--;
  3928. continue;
  3929. }
  3930. this_sack++;
  3931. sp++;
  3932. }
  3933. tp->rx_opt.num_sacks = num_sacks;
  3934. }
  3935. /* This one checks to see if we can put data from the
  3936. * out_of_order queue into the receive_queue.
  3937. */
  3938. static void tcp_ofo_queue(struct sock *sk)
  3939. {
  3940. struct tcp_sock *tp = tcp_sk(sk);
  3941. __u32 dsack_high = tp->rcv_nxt;
  3942. struct sk_buff *skb;
  3943. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3944. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3945. break;
  3946. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3947. __u32 dsack = dsack_high;
  3948. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3949. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3950. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3951. }
  3952. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3953. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3954. __skb_unlink(skb, &tp->out_of_order_queue);
  3955. __kfree_skb(skb);
  3956. continue;
  3957. }
  3958. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3959. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3960. TCP_SKB_CB(skb)->end_seq);
  3961. __skb_unlink(skb, &tp->out_of_order_queue);
  3962. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3963. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3964. if (tcp_hdr(skb)->fin)
  3965. tcp_fin(sk);
  3966. }
  3967. }
  3968. static int tcp_prune_ofo_queue(struct sock *sk);
  3969. static int tcp_prune_queue(struct sock *sk);
  3970. static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
  3971. {
  3972. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3973. !sk_rmem_schedule(sk, size)) {
  3974. if (tcp_prune_queue(sk) < 0)
  3975. return -1;
  3976. if (!sk_rmem_schedule(sk, size)) {
  3977. if (!tcp_prune_ofo_queue(sk))
  3978. return -1;
  3979. if (!sk_rmem_schedule(sk, size))
  3980. return -1;
  3981. }
  3982. }
  3983. return 0;
  3984. }
  3985. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3986. {
  3987. struct tcp_sock *tp = tcp_sk(sk);
  3988. struct sk_buff *skb1;
  3989. u32 seq, end_seq;
  3990. TCP_ECN_check_ce(tp, skb);
  3991. if (tcp_try_rmem_schedule(sk, skb->truesize)) {
  3992. /* TODO: should increment a counter */
  3993. __kfree_skb(skb);
  3994. return;
  3995. }
  3996. /* Disable header prediction. */
  3997. tp->pred_flags = 0;
  3998. inet_csk_schedule_ack(sk);
  3999. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  4000. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4001. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  4002. if (!skb1) {
  4003. /* Initial out of order segment, build 1 SACK. */
  4004. if (tcp_is_sack(tp)) {
  4005. tp->rx_opt.num_sacks = 1;
  4006. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  4007. tp->selective_acks[0].end_seq =
  4008. TCP_SKB_CB(skb)->end_seq;
  4009. }
  4010. __skb_queue_head(&tp->out_of_order_queue, skb);
  4011. goto end;
  4012. }
  4013. seq = TCP_SKB_CB(skb)->seq;
  4014. end_seq = TCP_SKB_CB(skb)->end_seq;
  4015. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  4016. /* Packets in ofo can stay in queue a long time.
  4017. * Better try to coalesce them right now
  4018. * to avoid future tcp_collapse_ofo_queue(),
  4019. * probably the most expensive function in tcp stack.
  4020. */
  4021. if (skb->len <= skb_tailroom(skb1) && !tcp_hdr(skb)->fin) {
  4022. NET_INC_STATS_BH(sock_net(sk),
  4023. LINUX_MIB_TCPRCVCOALESCE);
  4024. BUG_ON(skb_copy_bits(skb, 0,
  4025. skb_put(skb1, skb->len),
  4026. skb->len));
  4027. TCP_SKB_CB(skb1)->end_seq = end_seq;
  4028. TCP_SKB_CB(skb1)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
  4029. __kfree_skb(skb);
  4030. skb = NULL;
  4031. } else {
  4032. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  4033. }
  4034. if (!tp->rx_opt.num_sacks ||
  4035. tp->selective_acks[0].end_seq != seq)
  4036. goto add_sack;
  4037. /* Common case: data arrive in order after hole. */
  4038. tp->selective_acks[0].end_seq = end_seq;
  4039. goto end;
  4040. }
  4041. /* Find place to insert this segment. */
  4042. while (1) {
  4043. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  4044. break;
  4045. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  4046. skb1 = NULL;
  4047. break;
  4048. }
  4049. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  4050. }
  4051. /* Do skb overlap to previous one? */
  4052. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  4053. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  4054. /* All the bits are present. Drop. */
  4055. __kfree_skb(skb);
  4056. skb = NULL;
  4057. tcp_dsack_set(sk, seq, end_seq);
  4058. goto add_sack;
  4059. }
  4060. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  4061. /* Partial overlap. */
  4062. tcp_dsack_set(sk, seq,
  4063. TCP_SKB_CB(skb1)->end_seq);
  4064. } else {
  4065. if (skb_queue_is_first(&tp->out_of_order_queue,
  4066. skb1))
  4067. skb1 = NULL;
  4068. else
  4069. skb1 = skb_queue_prev(
  4070. &tp->out_of_order_queue,
  4071. skb1);
  4072. }
  4073. }
  4074. if (!skb1)
  4075. __skb_queue_head(&tp->out_of_order_queue, skb);
  4076. else
  4077. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  4078. /* And clean segments covered by new one as whole. */
  4079. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  4080. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  4081. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  4082. break;
  4083. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  4084. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  4085. end_seq);
  4086. break;
  4087. }
  4088. __skb_unlink(skb1, &tp->out_of_order_queue);
  4089. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  4090. TCP_SKB_CB(skb1)->end_seq);
  4091. __kfree_skb(skb1);
  4092. }
  4093. add_sack:
  4094. if (tcp_is_sack(tp))
  4095. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  4096. end:
  4097. if (skb)
  4098. skb_set_owner_r(skb, sk);
  4099. }
  4100. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  4101. {
  4102. const struct tcphdr *th = tcp_hdr(skb);
  4103. struct tcp_sock *tp = tcp_sk(sk);
  4104. int eaten = -1;
  4105. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  4106. goto drop;
  4107. skb_dst_drop(skb);
  4108. __skb_pull(skb, th->doff * 4);
  4109. TCP_ECN_accept_cwr(tp, skb);
  4110. tp->rx_opt.dsack = 0;
  4111. /* Queue data for delivery to the user.
  4112. * Packets in sequence go to the receive queue.
  4113. * Out of sequence packets to the out_of_order_queue.
  4114. */
  4115. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  4116. if (tcp_receive_window(tp) == 0)
  4117. goto out_of_window;
  4118. /* Ok. In sequence. In window. */
  4119. if (tp->ucopy.task == current &&
  4120. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  4121. sock_owned_by_user(sk) && !tp->urg_data) {
  4122. int chunk = min_t(unsigned int, skb->len,
  4123. tp->ucopy.len);
  4124. __set_current_state(TASK_RUNNING);
  4125. local_bh_enable();
  4126. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  4127. tp->ucopy.len -= chunk;
  4128. tp->copied_seq += chunk;
  4129. eaten = (chunk == skb->len);
  4130. tcp_rcv_space_adjust(sk);
  4131. }
  4132. local_bh_disable();
  4133. }
  4134. if (eaten <= 0) {
  4135. queue_and_out:
  4136. if (eaten < 0 &&
  4137. tcp_try_rmem_schedule(sk, skb->truesize))
  4138. goto drop;
  4139. skb_set_owner_r(skb, sk);
  4140. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4141. }
  4142. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4143. if (skb->len)
  4144. tcp_event_data_recv(sk, skb);
  4145. if (th->fin)
  4146. tcp_fin(sk);
  4147. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4148. tcp_ofo_queue(sk);
  4149. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4150. * gap in queue is filled.
  4151. */
  4152. if (skb_queue_empty(&tp->out_of_order_queue))
  4153. inet_csk(sk)->icsk_ack.pingpong = 0;
  4154. }
  4155. if (tp->rx_opt.num_sacks)
  4156. tcp_sack_remove(tp);
  4157. tcp_fast_path_check(sk);
  4158. if (eaten > 0)
  4159. __kfree_skb(skb);
  4160. else if (!sock_flag(sk, SOCK_DEAD))
  4161. sk->sk_data_ready(sk, 0);
  4162. return;
  4163. }
  4164. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4165. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4166. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4167. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4168. out_of_window:
  4169. tcp_enter_quickack_mode(sk);
  4170. inet_csk_schedule_ack(sk);
  4171. drop:
  4172. __kfree_skb(skb);
  4173. return;
  4174. }
  4175. /* Out of window. F.e. zero window probe. */
  4176. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4177. goto out_of_window;
  4178. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4179. /* Partial packet, seq < rcv_next < end_seq */
  4180. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4181. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4182. TCP_SKB_CB(skb)->end_seq);
  4183. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4184. /* If window is closed, drop tail of packet. But after
  4185. * remembering D-SACK for its head made in previous line.
  4186. */
  4187. if (!tcp_receive_window(tp))
  4188. goto out_of_window;
  4189. goto queue_and_out;
  4190. }
  4191. tcp_data_queue_ofo(sk, skb);
  4192. }
  4193. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4194. struct sk_buff_head *list)
  4195. {
  4196. struct sk_buff *next = NULL;
  4197. if (!skb_queue_is_last(list, skb))
  4198. next = skb_queue_next(list, skb);
  4199. __skb_unlink(skb, list);
  4200. __kfree_skb(skb);
  4201. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4202. return next;
  4203. }
  4204. /* Collapse contiguous sequence of skbs head..tail with
  4205. * sequence numbers start..end.
  4206. *
  4207. * If tail is NULL, this means until the end of the list.
  4208. *
  4209. * Segments with FIN/SYN are not collapsed (only because this
  4210. * simplifies code)
  4211. */
  4212. static void
  4213. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  4214. struct sk_buff *head, struct sk_buff *tail,
  4215. u32 start, u32 end)
  4216. {
  4217. struct sk_buff *skb, *n;
  4218. bool end_of_skbs;
  4219. /* First, check that queue is collapsible and find
  4220. * the point where collapsing can be useful. */
  4221. skb = head;
  4222. restart:
  4223. end_of_skbs = true;
  4224. skb_queue_walk_from_safe(list, skb, n) {
  4225. if (skb == tail)
  4226. break;
  4227. /* No new bits? It is possible on ofo queue. */
  4228. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4229. skb = tcp_collapse_one(sk, skb, list);
  4230. if (!skb)
  4231. break;
  4232. goto restart;
  4233. }
  4234. /* The first skb to collapse is:
  4235. * - not SYN/FIN and
  4236. * - bloated or contains data before "start" or
  4237. * overlaps to the next one.
  4238. */
  4239. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  4240. (tcp_win_from_space(skb->truesize) > skb->len ||
  4241. before(TCP_SKB_CB(skb)->seq, start))) {
  4242. end_of_skbs = false;
  4243. break;
  4244. }
  4245. if (!skb_queue_is_last(list, skb)) {
  4246. struct sk_buff *next = skb_queue_next(list, skb);
  4247. if (next != tail &&
  4248. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4249. end_of_skbs = false;
  4250. break;
  4251. }
  4252. }
  4253. /* Decided to skip this, advance start seq. */
  4254. start = TCP_SKB_CB(skb)->end_seq;
  4255. }
  4256. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  4257. return;
  4258. while (before(start, end)) {
  4259. struct sk_buff *nskb;
  4260. unsigned int header = skb_headroom(skb);
  4261. int copy = SKB_MAX_ORDER(header, 0);
  4262. /* Too big header? This can happen with IPv6. */
  4263. if (copy < 0)
  4264. return;
  4265. if (end - start < copy)
  4266. copy = end - start;
  4267. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  4268. if (!nskb)
  4269. return;
  4270. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  4271. skb_set_network_header(nskb, (skb_network_header(skb) -
  4272. skb->head));
  4273. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  4274. skb->head));
  4275. skb_reserve(nskb, header);
  4276. memcpy(nskb->head, skb->head, header);
  4277. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4278. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4279. __skb_queue_before(list, skb, nskb);
  4280. skb_set_owner_r(nskb, sk);
  4281. /* Copy data, releasing collapsed skbs. */
  4282. while (copy > 0) {
  4283. int offset = start - TCP_SKB_CB(skb)->seq;
  4284. int size = TCP_SKB_CB(skb)->end_seq - start;
  4285. BUG_ON(offset < 0);
  4286. if (size > 0) {
  4287. size = min(copy, size);
  4288. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4289. BUG();
  4290. TCP_SKB_CB(nskb)->end_seq += size;
  4291. copy -= size;
  4292. start += size;
  4293. }
  4294. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4295. skb = tcp_collapse_one(sk, skb, list);
  4296. if (!skb ||
  4297. skb == tail ||
  4298. tcp_hdr(skb)->syn ||
  4299. tcp_hdr(skb)->fin)
  4300. return;
  4301. }
  4302. }
  4303. }
  4304. }
  4305. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4306. * and tcp_collapse() them until all the queue is collapsed.
  4307. */
  4308. static void tcp_collapse_ofo_queue(struct sock *sk)
  4309. {
  4310. struct tcp_sock *tp = tcp_sk(sk);
  4311. u32 range_truesize, sum_tiny = 0;
  4312. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4313. struct sk_buff *head;
  4314. u32 start, end;
  4315. if (skb == NULL)
  4316. return;
  4317. start = TCP_SKB_CB(skb)->seq;
  4318. end = TCP_SKB_CB(skb)->end_seq;
  4319. range_truesize = skb->truesize;
  4320. head = skb;
  4321. for (;;) {
  4322. struct sk_buff *next = NULL;
  4323. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4324. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4325. skb = next;
  4326. /* Segment is terminated when we see gap or when
  4327. * we are at the end of all the queue. */
  4328. if (!skb ||
  4329. after(TCP_SKB_CB(skb)->seq, end) ||
  4330. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4331. /* Do not attempt collapsing tiny skbs */
  4332. if (range_truesize != head->truesize ||
  4333. end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
  4334. tcp_collapse(sk, &tp->out_of_order_queue,
  4335. head, skb, start, end);
  4336. } else {
  4337. sum_tiny += range_truesize;
  4338. if (sum_tiny > sk->sk_rcvbuf >> 3)
  4339. return;
  4340. }
  4341. head = skb;
  4342. if (!skb)
  4343. break;
  4344. /* Start new segment */
  4345. start = TCP_SKB_CB(skb)->seq;
  4346. end = TCP_SKB_CB(skb)->end_seq;
  4347. range_truesize = skb->truesize;
  4348. } else {
  4349. if (before(TCP_SKB_CB(skb)->seq, start))
  4350. start = TCP_SKB_CB(skb)->seq;
  4351. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4352. end = TCP_SKB_CB(skb)->end_seq;
  4353. }
  4354. }
  4355. }
  4356. /*
  4357. * Purge the out-of-order queue.
  4358. * Return true if queue was pruned.
  4359. */
  4360. static int tcp_prune_ofo_queue(struct sock *sk)
  4361. {
  4362. struct tcp_sock *tp = tcp_sk(sk);
  4363. int res = 0;
  4364. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4365. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4366. __skb_queue_purge(&tp->out_of_order_queue);
  4367. /* Reset SACK state. A conforming SACK implementation will
  4368. * do the same at a timeout based retransmit. When a connection
  4369. * is in a sad state like this, we care only about integrity
  4370. * of the connection not performance.
  4371. */
  4372. if (tp->rx_opt.sack_ok)
  4373. tcp_sack_reset(&tp->rx_opt);
  4374. sk_mem_reclaim(sk);
  4375. res = 1;
  4376. }
  4377. return res;
  4378. }
  4379. /* Reduce allocated memory if we can, trying to get
  4380. * the socket within its memory limits again.
  4381. *
  4382. * Return less than zero if we should start dropping frames
  4383. * until the socket owning process reads some of the data
  4384. * to stabilize the situation.
  4385. */
  4386. static int tcp_prune_queue(struct sock *sk)
  4387. {
  4388. struct tcp_sock *tp = tcp_sk(sk);
  4389. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4390. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4391. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4392. tcp_clamp_window(sk);
  4393. else if (sk_under_memory_pressure(sk))
  4394. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4395. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4396. return 0;
  4397. tcp_collapse_ofo_queue(sk);
  4398. if (!skb_queue_empty(&sk->sk_receive_queue))
  4399. tcp_collapse(sk, &sk->sk_receive_queue,
  4400. skb_peek(&sk->sk_receive_queue),
  4401. NULL,
  4402. tp->copied_seq, tp->rcv_nxt);
  4403. sk_mem_reclaim(sk);
  4404. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4405. return 0;
  4406. /* Collapsing did not help, destructive actions follow.
  4407. * This must not ever occur. */
  4408. tcp_prune_ofo_queue(sk);
  4409. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4410. return 0;
  4411. /* If we are really being abused, tell the caller to silently
  4412. * drop receive data on the floor. It will get retransmitted
  4413. * and hopefully then we'll have sufficient space.
  4414. */
  4415. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4416. /* Massive buffer overcommit. */
  4417. tp->pred_flags = 0;
  4418. return -1;
  4419. }
  4420. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4421. * As additional protections, we do not touch cwnd in retransmission phases,
  4422. * and if application hit its sndbuf limit recently.
  4423. */
  4424. void tcp_cwnd_application_limited(struct sock *sk)
  4425. {
  4426. struct tcp_sock *tp = tcp_sk(sk);
  4427. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4428. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4429. /* Limited by application or receiver window. */
  4430. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4431. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4432. if (win_used < tp->snd_cwnd) {
  4433. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4434. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4435. }
  4436. tp->snd_cwnd_used = 0;
  4437. }
  4438. tp->snd_cwnd_stamp = tcp_time_stamp;
  4439. }
  4440. static int tcp_should_expand_sndbuf(const struct sock *sk)
  4441. {
  4442. const struct tcp_sock *tp = tcp_sk(sk);
  4443. /* If the user specified a specific send buffer setting, do
  4444. * not modify it.
  4445. */
  4446. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4447. return 0;
  4448. /* If we are under global TCP memory pressure, do not expand. */
  4449. if (sk_under_memory_pressure(sk))
  4450. return 0;
  4451. /* If we are under soft global TCP memory pressure, do not expand. */
  4452. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4453. return 0;
  4454. /* If we filled the congestion window, do not expand. */
  4455. if (tp->packets_out >= tp->snd_cwnd)
  4456. return 0;
  4457. return 1;
  4458. }
  4459. /* When incoming ACK allowed to free some skb from write_queue,
  4460. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4461. * on the exit from tcp input handler.
  4462. *
  4463. * PROBLEM: sndbuf expansion does not work well with largesend.
  4464. */
  4465. static void tcp_new_space(struct sock *sk)
  4466. {
  4467. struct tcp_sock *tp = tcp_sk(sk);
  4468. if (tcp_should_expand_sndbuf(sk)) {
  4469. int sndmem = SKB_TRUESIZE(max_t(u32,
  4470. tp->rx_opt.mss_clamp,
  4471. tp->mss_cache) +
  4472. MAX_TCP_HEADER);
  4473. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4474. tp->reordering + 1);
  4475. sndmem *= 2 * demanded;
  4476. if (sndmem > sk->sk_sndbuf)
  4477. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4478. tp->snd_cwnd_stamp = tcp_time_stamp;
  4479. }
  4480. sk->sk_write_space(sk);
  4481. }
  4482. static void tcp_check_space(struct sock *sk)
  4483. {
  4484. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4485. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4486. if (sk->sk_socket &&
  4487. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4488. tcp_new_space(sk);
  4489. }
  4490. }
  4491. static inline void tcp_data_snd_check(struct sock *sk)
  4492. {
  4493. tcp_push_pending_frames(sk);
  4494. tcp_check_space(sk);
  4495. }
  4496. /*
  4497. * Check if sending an ack is needed.
  4498. */
  4499. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4500. {
  4501. struct tcp_sock *tp = tcp_sk(sk);
  4502. /* More than one full frame received... */
  4503. if (((tp->rcv_nxt - tp->rcv_wup) > (inet_csk(sk)->icsk_ack.rcv_mss) *
  4504. sysctl_tcp_delack_seg &&
  4505. /* ... and right edge of window advances far enough.
  4506. * (tcp_recvmsg() will send ACK otherwise). Or...
  4507. */
  4508. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4509. /* We ACK each frame or... */
  4510. tcp_in_quickack_mode(sk) ||
  4511. /* We have out of order data. */
  4512. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4513. /* Then ack it now */
  4514. tcp_send_ack(sk);
  4515. } else {
  4516. /* Else, send delayed ack. */
  4517. tcp_send_delayed_ack(sk);
  4518. }
  4519. }
  4520. static inline void tcp_ack_snd_check(struct sock *sk)
  4521. {
  4522. if (!inet_csk_ack_scheduled(sk)) {
  4523. /* We sent a data segment already. */
  4524. return;
  4525. }
  4526. __tcp_ack_snd_check(sk, 1);
  4527. }
  4528. /*
  4529. * This routine is only called when we have urgent data
  4530. * signaled. Its the 'slow' part of tcp_urg. It could be
  4531. * moved inline now as tcp_urg is only called from one
  4532. * place. We handle URGent data wrong. We have to - as
  4533. * BSD still doesn't use the correction from RFC961.
  4534. * For 1003.1g we should support a new option TCP_STDURG to permit
  4535. * either form (or just set the sysctl tcp_stdurg).
  4536. */
  4537. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4538. {
  4539. struct tcp_sock *tp = tcp_sk(sk);
  4540. u32 ptr = ntohs(th->urg_ptr);
  4541. if (ptr && !sysctl_tcp_stdurg)
  4542. ptr--;
  4543. ptr += ntohl(th->seq);
  4544. /* Ignore urgent data that we've already seen and read. */
  4545. if (after(tp->copied_seq, ptr))
  4546. return;
  4547. /* Do not replay urg ptr.
  4548. *
  4549. * NOTE: interesting situation not covered by specs.
  4550. * Misbehaving sender may send urg ptr, pointing to segment,
  4551. * which we already have in ofo queue. We are not able to fetch
  4552. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4553. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4554. * situations. But it is worth to think about possibility of some
  4555. * DoSes using some hypothetical application level deadlock.
  4556. */
  4557. if (before(ptr, tp->rcv_nxt))
  4558. return;
  4559. /* Do we already have a newer (or duplicate) urgent pointer? */
  4560. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4561. return;
  4562. /* Tell the world about our new urgent pointer. */
  4563. sk_send_sigurg(sk);
  4564. /* We may be adding urgent data when the last byte read was
  4565. * urgent. To do this requires some care. We cannot just ignore
  4566. * tp->copied_seq since we would read the last urgent byte again
  4567. * as data, nor can we alter copied_seq until this data arrives
  4568. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4569. *
  4570. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4571. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4572. * and expect that both A and B disappear from stream. This is _wrong_.
  4573. * Though this happens in BSD with high probability, this is occasional.
  4574. * Any application relying on this is buggy. Note also, that fix "works"
  4575. * only in this artificial test. Insert some normal data between A and B and we will
  4576. * decline of BSD again. Verdict: it is better to remove to trap
  4577. * buggy users.
  4578. */
  4579. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4580. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4581. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4582. tp->copied_seq++;
  4583. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4584. __skb_unlink(skb, &sk->sk_receive_queue);
  4585. __kfree_skb(skb);
  4586. }
  4587. }
  4588. tp->urg_data = TCP_URG_NOTYET;
  4589. tp->urg_seq = ptr;
  4590. /* Disable header prediction. */
  4591. tp->pred_flags = 0;
  4592. }
  4593. /* This is the 'fast' part of urgent handling. */
  4594. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4595. {
  4596. struct tcp_sock *tp = tcp_sk(sk);
  4597. /* Check if we get a new urgent pointer - normally not. */
  4598. if (th->urg)
  4599. tcp_check_urg(sk, th);
  4600. /* Do we wait for any urgent data? - normally not... */
  4601. if (tp->urg_data == TCP_URG_NOTYET) {
  4602. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4603. th->syn;
  4604. /* Is the urgent pointer pointing into this packet? */
  4605. if (ptr < skb->len) {
  4606. u8 tmp;
  4607. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4608. BUG();
  4609. tp->urg_data = TCP_URG_VALID | tmp;
  4610. if (!sock_flag(sk, SOCK_DEAD))
  4611. sk->sk_data_ready(sk, 0);
  4612. }
  4613. }
  4614. }
  4615. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4616. {
  4617. struct tcp_sock *tp = tcp_sk(sk);
  4618. int chunk = skb->len - hlen;
  4619. int err;
  4620. local_bh_enable();
  4621. if (skb_csum_unnecessary(skb))
  4622. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4623. else
  4624. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4625. tp->ucopy.iov, chunk);
  4626. if (!err) {
  4627. tp->ucopy.len -= chunk;
  4628. tp->copied_seq += chunk;
  4629. tcp_rcv_space_adjust(sk);
  4630. }
  4631. local_bh_disable();
  4632. return err;
  4633. }
  4634. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4635. struct sk_buff *skb)
  4636. {
  4637. __sum16 result;
  4638. if (sock_owned_by_user(sk)) {
  4639. local_bh_enable();
  4640. result = __tcp_checksum_complete(skb);
  4641. local_bh_disable();
  4642. } else {
  4643. result = __tcp_checksum_complete(skb);
  4644. }
  4645. return result;
  4646. }
  4647. static inline int tcp_checksum_complete_user(struct sock *sk,
  4648. struct sk_buff *skb)
  4649. {
  4650. return !skb_csum_unnecessary(skb) &&
  4651. __tcp_checksum_complete_user(sk, skb);
  4652. }
  4653. #ifdef CONFIG_NET_DMA
  4654. static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4655. int hlen)
  4656. {
  4657. struct tcp_sock *tp = tcp_sk(sk);
  4658. int chunk = skb->len - hlen;
  4659. int dma_cookie;
  4660. int copied_early = 0;
  4661. if (tp->ucopy.wakeup)
  4662. return 0;
  4663. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4664. tp->ucopy.dma_chan = net_dma_find_channel();
  4665. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4666. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4667. skb, hlen,
  4668. tp->ucopy.iov, chunk,
  4669. tp->ucopy.pinned_list);
  4670. if (dma_cookie < 0)
  4671. goto out;
  4672. tp->ucopy.dma_cookie = dma_cookie;
  4673. copied_early = 1;
  4674. tp->ucopy.len -= chunk;
  4675. tp->copied_seq += chunk;
  4676. tcp_rcv_space_adjust(sk);
  4677. if ((tp->ucopy.len == 0) ||
  4678. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4679. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4680. tp->ucopy.wakeup = 1;
  4681. sk->sk_data_ready(sk, 0);
  4682. }
  4683. } else if (chunk > 0) {
  4684. tp->ucopy.wakeup = 1;
  4685. sk->sk_data_ready(sk, 0);
  4686. }
  4687. out:
  4688. return copied_early;
  4689. }
  4690. #endif /* CONFIG_NET_DMA */
  4691. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4692. * play significant role here.
  4693. */
  4694. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4695. const struct tcphdr *th, int syn_inerr)
  4696. {
  4697. const u8 *hash_location;
  4698. struct tcp_sock *tp = tcp_sk(sk);
  4699. /* RFC1323: H1. Apply PAWS check first. */
  4700. if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
  4701. tp->rx_opt.saw_tstamp &&
  4702. tcp_paws_discard(sk, skb)) {
  4703. if (!th->rst) {
  4704. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4705. tcp_send_dupack(sk, skb);
  4706. goto discard;
  4707. }
  4708. /* Reset is accepted even if it did not pass PAWS. */
  4709. }
  4710. /* Step 1: check sequence number */
  4711. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4712. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4713. * (RST) segments are validated by checking their SEQ-fields."
  4714. * And page 69: "If an incoming segment is not acceptable,
  4715. * an acknowledgment should be sent in reply (unless the RST
  4716. * bit is set, if so drop the segment and return)".
  4717. */
  4718. if (!th->rst) {
  4719. if (th->syn)
  4720. goto syn_challenge;
  4721. tcp_send_dupack(sk, skb);
  4722. }
  4723. goto discard;
  4724. }
  4725. /* Step 2: check RST bit */
  4726. if (th->rst) {
  4727. /* RFC 5961 3.2 :
  4728. * If sequence number exactly matches RCV.NXT, then
  4729. * RESET the connection
  4730. * else
  4731. * Send a challenge ACK
  4732. */
  4733. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4734. tcp_reset(sk);
  4735. else
  4736. tcp_send_challenge_ack(sk);
  4737. goto discard;
  4738. }
  4739. /* step 3: check security and precedence [ignored] */
  4740. /* step 4: Check for a SYN
  4741. * RFC 5691 4.2 : Send a challenge ack
  4742. */
  4743. if (th->syn) {
  4744. syn_challenge:
  4745. if (syn_inerr)
  4746. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4747. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4748. tcp_send_challenge_ack(sk);
  4749. goto discard;
  4750. }
  4751. return true;
  4752. discard:
  4753. __kfree_skb(skb);
  4754. return false;
  4755. }
  4756. /*
  4757. * TCP receive function for the ESTABLISHED state.
  4758. *
  4759. * It is split into a fast path and a slow path. The fast path is
  4760. * disabled when:
  4761. * - A zero window was announced from us - zero window probing
  4762. * is only handled properly in the slow path.
  4763. * - Out of order segments arrived.
  4764. * - Urgent data is expected.
  4765. * - There is no buffer space left
  4766. * - Unexpected TCP flags/window values/header lengths are received
  4767. * (detected by checking the TCP header against pred_flags)
  4768. * - Data is sent in both directions. Fast path only supports pure senders
  4769. * or pure receivers (this means either the sequence number or the ack
  4770. * value must stay constant)
  4771. * - Unexpected TCP option.
  4772. *
  4773. * When these conditions are not satisfied it drops into a standard
  4774. * receive procedure patterned after RFC793 to handle all cases.
  4775. * The first three cases are guaranteed by proper pred_flags setting,
  4776. * the rest is checked inline. Fast processing is turned on in
  4777. * tcp_data_queue when everything is OK.
  4778. */
  4779. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4780. const struct tcphdr *th, unsigned int len)
  4781. {
  4782. struct tcp_sock *tp = tcp_sk(sk);
  4783. /*
  4784. * Header prediction.
  4785. * The code loosely follows the one in the famous
  4786. * "30 instruction TCP receive" Van Jacobson mail.
  4787. *
  4788. * Van's trick is to deposit buffers into socket queue
  4789. * on a device interrupt, to call tcp_recv function
  4790. * on the receive process context and checksum and copy
  4791. * the buffer to user space. smart...
  4792. *
  4793. * Our current scheme is not silly either but we take the
  4794. * extra cost of the net_bh soft interrupt processing...
  4795. * We do checksum and copy also but from device to kernel.
  4796. */
  4797. tp->rx_opt.saw_tstamp = 0;
  4798. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4799. * if header_prediction is to be made
  4800. * 'S' will always be tp->tcp_header_len >> 2
  4801. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4802. * turn it off (when there are holes in the receive
  4803. * space for instance)
  4804. * PSH flag is ignored.
  4805. */
  4806. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4807. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4808. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4809. int tcp_header_len = tp->tcp_header_len;
  4810. /* Timestamp header prediction: tcp_header_len
  4811. * is automatically equal to th->doff*4 due to pred_flags
  4812. * match.
  4813. */
  4814. /* Check timestamp */
  4815. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4816. /* No? Slow path! */
  4817. if (!tcp_parse_aligned_timestamp(tp, th))
  4818. goto slow_path;
  4819. /* If PAWS failed, check it more carefully in slow path */
  4820. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4821. goto slow_path;
  4822. /* DO NOT update ts_recent here, if checksum fails
  4823. * and timestamp was corrupted part, it will result
  4824. * in a hung connection since we will drop all
  4825. * future packets due to the PAWS test.
  4826. */
  4827. }
  4828. if (len <= tcp_header_len) {
  4829. /* Bulk data transfer: sender */
  4830. if (len == tcp_header_len) {
  4831. /* Predicted packet is in window by definition.
  4832. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4833. * Hence, check seq<=rcv_wup reduces to:
  4834. */
  4835. if (tcp_header_len ==
  4836. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4837. tp->rcv_nxt == tp->rcv_wup)
  4838. tcp_store_ts_recent(tp);
  4839. /* We know that such packets are checksummed
  4840. * on entry.
  4841. */
  4842. tcp_ack(sk, skb, 0);
  4843. __kfree_skb(skb);
  4844. tcp_data_snd_check(sk);
  4845. return;
  4846. } else { /* Header too small */
  4847. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4848. goto discard;
  4849. }
  4850. } else {
  4851. int eaten = 0;
  4852. int copied_early = 0;
  4853. if (tp->copied_seq == tp->rcv_nxt &&
  4854. len - tcp_header_len <= tp->ucopy.len) {
  4855. #ifdef CONFIG_NET_DMA
  4856. if (tp->ucopy.task == current &&
  4857. sock_owned_by_user(sk) &&
  4858. tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4859. copied_early = 1;
  4860. eaten = 1;
  4861. }
  4862. #endif
  4863. if (tp->ucopy.task == current &&
  4864. sock_owned_by_user(sk) && !copied_early) {
  4865. __set_current_state(TASK_RUNNING);
  4866. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4867. eaten = 1;
  4868. }
  4869. if (eaten) {
  4870. /* Predicted packet is in window by definition.
  4871. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4872. * Hence, check seq<=rcv_wup reduces to:
  4873. */
  4874. if (tcp_header_len ==
  4875. (sizeof(struct tcphdr) +
  4876. TCPOLEN_TSTAMP_ALIGNED) &&
  4877. tp->rcv_nxt == tp->rcv_wup)
  4878. tcp_store_ts_recent(tp);
  4879. tcp_rcv_rtt_measure_ts(sk, skb);
  4880. __skb_pull(skb, tcp_header_len);
  4881. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4882. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4883. }
  4884. if (copied_early)
  4885. tcp_cleanup_rbuf(sk, skb->len);
  4886. }
  4887. if (!eaten) {
  4888. if (tcp_checksum_complete_user(sk, skb))
  4889. goto csum_error;
  4890. if ((int)skb->truesize > sk->sk_forward_alloc)
  4891. goto step5;
  4892. /* Predicted packet is in window by definition.
  4893. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4894. * Hence, check seq<=rcv_wup reduces to:
  4895. */
  4896. if (tcp_header_len ==
  4897. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4898. tp->rcv_nxt == tp->rcv_wup)
  4899. tcp_store_ts_recent(tp);
  4900. tcp_rcv_rtt_measure_ts(sk, skb);
  4901. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4902. /* Bulk data transfer: receiver */
  4903. __skb_pull(skb, tcp_header_len);
  4904. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4905. skb_set_owner_r(skb, sk);
  4906. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4907. }
  4908. tcp_event_data_recv(sk, skb);
  4909. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4910. /* Well, only one small jumplet in fast path... */
  4911. tcp_ack(sk, skb, FLAG_DATA);
  4912. tcp_data_snd_check(sk);
  4913. if (!inet_csk_ack_scheduled(sk))
  4914. goto no_ack;
  4915. }
  4916. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4917. __tcp_ack_snd_check(sk, 0);
  4918. no_ack:
  4919. #ifdef CONFIG_NET_DMA
  4920. if (copied_early)
  4921. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4922. else
  4923. #endif
  4924. if (eaten)
  4925. __kfree_skb(skb);
  4926. else
  4927. sk->sk_data_ready(sk, 0);
  4928. return;
  4929. }
  4930. }
  4931. slow_path:
  4932. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4933. goto csum_error;
  4934. /*
  4935. * Standard slow path.
  4936. */
  4937. if (!tcp_validate_incoming(sk, skb, th, 1))
  4938. return;
  4939. step5:
  4940. if (th->ack &&
  4941. tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4942. goto discard;
  4943. tcp_rcv_rtt_measure_ts(sk, skb);
  4944. /* Process urgent data. */
  4945. tcp_urg(sk, skb, th);
  4946. /* step 7: process the segment text */
  4947. tcp_data_queue(sk, skb);
  4948. tcp_data_snd_check(sk);
  4949. tcp_ack_snd_check(sk);
  4950. return;
  4951. csum_error:
  4952. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4953. discard:
  4954. __kfree_skb(skb);
  4955. }
  4956. EXPORT_SYMBOL(tcp_rcv_established);
  4957. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4958. const struct tcphdr *th, unsigned int len)
  4959. {
  4960. const u8 *hash_location;
  4961. struct inet_connection_sock *icsk = inet_csk(sk);
  4962. struct tcp_sock *tp = tcp_sk(sk);
  4963. struct tcp_cookie_values *cvp = tp->cookie_values;
  4964. int saved_clamp = tp->rx_opt.mss_clamp;
  4965. tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
  4966. if (th->ack) {
  4967. /* rfc793:
  4968. * "If the state is SYN-SENT then
  4969. * first check the ACK bit
  4970. * If the ACK bit is set
  4971. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4972. * a reset (unless the RST bit is set, if so drop
  4973. * the segment and return)"
  4974. *
  4975. * We do not send data with SYN, so that RFC-correct
  4976. * test reduces to:
  4977. */
  4978. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  4979. goto reset_and_undo;
  4980. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4981. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4982. tcp_time_stamp)) {
  4983. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4984. goto reset_and_undo;
  4985. }
  4986. /* Now ACK is acceptable.
  4987. *
  4988. * "If the RST bit is set
  4989. * If the ACK was acceptable then signal the user "error:
  4990. * connection reset", drop the segment, enter CLOSED state,
  4991. * delete TCB, and return."
  4992. */
  4993. if (th->rst) {
  4994. tcp_reset(sk);
  4995. goto discard;
  4996. }
  4997. /* rfc793:
  4998. * "fifth, if neither of the SYN or RST bits is set then
  4999. * drop the segment and return."
  5000. *
  5001. * See note below!
  5002. * --ANK(990513)
  5003. */
  5004. if (!th->syn)
  5005. goto discard_and_undo;
  5006. /* rfc793:
  5007. * "If the SYN bit is on ...
  5008. * are acceptable then ...
  5009. * (our SYN has been ACKed), change the connection
  5010. * state to ESTABLISHED..."
  5011. */
  5012. TCP_ECN_rcv_synack(tp, th);
  5013. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5014. tcp_ack(sk, skb, FLAG_SLOWPATH);
  5015. /* Ok.. it's good. Set up sequence numbers and
  5016. * move to established.
  5017. */
  5018. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5019. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5020. /* RFC1323: The window in SYN & SYN/ACK segments is
  5021. * never scaled.
  5022. */
  5023. tp->snd_wnd = ntohs(th->window);
  5024. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5025. if (!tp->rx_opt.wscale_ok) {
  5026. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  5027. tp->window_clamp = min(tp->window_clamp, 65535U);
  5028. }
  5029. if (tp->rx_opt.saw_tstamp) {
  5030. tp->rx_opt.tstamp_ok = 1;
  5031. tp->tcp_header_len =
  5032. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  5033. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5034. tcp_store_ts_recent(tp);
  5035. } else {
  5036. tp->tcp_header_len = sizeof(struct tcphdr);
  5037. }
  5038. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  5039. tcp_enable_fack(tp);
  5040. tcp_mtup_init(sk);
  5041. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5042. tcp_initialize_rcv_mss(sk);
  5043. /* Remember, tcp_poll() does not lock socket!
  5044. * Change state from SYN-SENT only after copied_seq
  5045. * is initialized. */
  5046. tp->copied_seq = tp->rcv_nxt;
  5047. if (cvp != NULL &&
  5048. cvp->cookie_pair_size > 0 &&
  5049. tp->rx_opt.cookie_plus > 0) {
  5050. int cookie_size = tp->rx_opt.cookie_plus
  5051. - TCPOLEN_COOKIE_BASE;
  5052. int cookie_pair_size = cookie_size
  5053. + cvp->cookie_desired;
  5054. /* A cookie extension option was sent and returned.
  5055. * Note that each incoming SYNACK replaces the
  5056. * Responder cookie. The initial exchange is most
  5057. * fragile, as protection against spoofing relies
  5058. * entirely upon the sequence and timestamp (above).
  5059. * This replacement strategy allows the correct pair to
  5060. * pass through, while any others will be filtered via
  5061. * Responder verification later.
  5062. */
  5063. if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
  5064. memcpy(&cvp->cookie_pair[cvp->cookie_desired],
  5065. hash_location, cookie_size);
  5066. cvp->cookie_pair_size = cookie_pair_size;
  5067. }
  5068. }
  5069. smp_mb();
  5070. tcp_set_state(sk, TCP_ESTABLISHED);
  5071. security_inet_conn_established(sk, skb);
  5072. /* Make sure socket is routed, for correct metrics. */
  5073. icsk->icsk_af_ops->rebuild_header(sk);
  5074. tcp_init_metrics(sk);
  5075. tcp_init_congestion_control(sk);
  5076. /* Prevent spurious tcp_cwnd_restart() on first data
  5077. * packet.
  5078. */
  5079. tp->lsndtime = tcp_time_stamp;
  5080. tcp_init_buffer_space(sk);
  5081. if (sock_flag(sk, SOCK_KEEPOPEN))
  5082. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  5083. if (!tp->rx_opt.snd_wscale)
  5084. __tcp_fast_path_on(tp, tp->snd_wnd);
  5085. else
  5086. tp->pred_flags = 0;
  5087. if (!sock_flag(sk, SOCK_DEAD)) {
  5088. sk->sk_state_change(sk);
  5089. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5090. }
  5091. if (sk->sk_write_pending ||
  5092. icsk->icsk_accept_queue.rskq_defer_accept ||
  5093. icsk->icsk_ack.pingpong) {
  5094. /* Save one ACK. Data will be ready after
  5095. * several ticks, if write_pending is set.
  5096. *
  5097. * It may be deleted, but with this feature tcpdumps
  5098. * look so _wonderfully_ clever, that I was not able
  5099. * to stand against the temptation 8) --ANK
  5100. */
  5101. inet_csk_schedule_ack(sk);
  5102. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  5103. icsk->icsk_ack.ato = TCP_ATO_MIN;
  5104. tcp_incr_quickack(sk);
  5105. tcp_enter_quickack_mode(sk);
  5106. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  5107. TCP_DELACK_MAX, TCP_RTO_MAX);
  5108. discard:
  5109. __kfree_skb(skb);
  5110. return 0;
  5111. } else {
  5112. tcp_send_ack(sk);
  5113. }
  5114. return -1;
  5115. }
  5116. /* No ACK in the segment */
  5117. if (th->rst) {
  5118. /* rfc793:
  5119. * "If the RST bit is set
  5120. *
  5121. * Otherwise (no ACK) drop the segment and return."
  5122. */
  5123. goto discard_and_undo;
  5124. }
  5125. /* PAWS check. */
  5126. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  5127. tcp_paws_reject(&tp->rx_opt, 0))
  5128. goto discard_and_undo;
  5129. if (th->syn) {
  5130. /* We see SYN without ACK. It is attempt of
  5131. * simultaneous connect with crossed SYNs.
  5132. * Particularly, it can be connect to self.
  5133. */
  5134. tcp_set_state(sk, TCP_SYN_RECV);
  5135. if (tp->rx_opt.saw_tstamp) {
  5136. tp->rx_opt.tstamp_ok = 1;
  5137. tcp_store_ts_recent(tp);
  5138. tp->tcp_header_len =
  5139. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  5140. } else {
  5141. tp->tcp_header_len = sizeof(struct tcphdr);
  5142. }
  5143. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5144. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5145. /* RFC1323: The window in SYN & SYN/ACK segments is
  5146. * never scaled.
  5147. */
  5148. tp->snd_wnd = ntohs(th->window);
  5149. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5150. tp->max_window = tp->snd_wnd;
  5151. TCP_ECN_rcv_syn(tp, th);
  5152. tcp_mtup_init(sk);
  5153. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5154. tcp_initialize_rcv_mss(sk);
  5155. tcp_send_synack(sk);
  5156. #if 0
  5157. /* Note, we could accept data and URG from this segment.
  5158. * There are no obstacles to make this.
  5159. *
  5160. * However, if we ignore data in ACKless segments sometimes,
  5161. * we have no reasons to accept it sometimes.
  5162. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  5163. * is not flawless. So, discard packet for sanity.
  5164. * Uncomment this return to process the data.
  5165. */
  5166. return -1;
  5167. #else
  5168. goto discard;
  5169. #endif
  5170. }
  5171. /* "fifth, if neither of the SYN or RST bits is set then
  5172. * drop the segment and return."
  5173. */
  5174. discard_and_undo:
  5175. tcp_clear_options(&tp->rx_opt);
  5176. tp->rx_opt.mss_clamp = saved_clamp;
  5177. goto discard;
  5178. reset_and_undo:
  5179. tcp_clear_options(&tp->rx_opt);
  5180. tp->rx_opt.mss_clamp = saved_clamp;
  5181. return 1;
  5182. }
  5183. /*
  5184. * This function implements the receiving procedure of RFC 793 for
  5185. * all states except ESTABLISHED and TIME_WAIT.
  5186. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5187. * address independent.
  5188. */
  5189. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  5190. const struct tcphdr *th, unsigned int len)
  5191. {
  5192. struct tcp_sock *tp = tcp_sk(sk);
  5193. struct inet_connection_sock *icsk = inet_csk(sk);
  5194. int queued = 0;
  5195. tp->rx_opt.saw_tstamp = 0;
  5196. switch (sk->sk_state) {
  5197. case TCP_CLOSE:
  5198. goto discard;
  5199. case TCP_LISTEN:
  5200. if (th->ack)
  5201. return 1;
  5202. if (th->rst)
  5203. goto discard;
  5204. if (th->syn) {
  5205. if (th->fin)
  5206. goto discard;
  5207. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  5208. return 1;
  5209. /* Now we have several options: In theory there is
  5210. * nothing else in the frame. KA9Q has an option to
  5211. * send data with the syn, BSD accepts data with the
  5212. * syn up to the [to be] advertised window and
  5213. * Solaris 2.1 gives you a protocol error. For now
  5214. * we just ignore it, that fits the spec precisely
  5215. * and avoids incompatibilities. It would be nice in
  5216. * future to drop through and process the data.
  5217. *
  5218. * Now that TTCP is starting to be used we ought to
  5219. * queue this data.
  5220. * But, this leaves one open to an easy denial of
  5221. * service attack, and SYN cookies can't defend
  5222. * against this problem. So, we drop the data
  5223. * in the interest of security over speed unless
  5224. * it's still in use.
  5225. */
  5226. kfree_skb(skb);
  5227. return 0;
  5228. }
  5229. goto discard;
  5230. case TCP_SYN_SENT:
  5231. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  5232. if (queued >= 0)
  5233. return queued;
  5234. /* Do step6 onward by hand. */
  5235. tcp_urg(sk, skb, th);
  5236. __kfree_skb(skb);
  5237. tcp_data_snd_check(sk);
  5238. return 0;
  5239. }
  5240. if (!tcp_validate_incoming(sk, skb, th, 0))
  5241. return 0;
  5242. /* step 5: check the ACK field */
  5243. if (th->ack) {
  5244. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  5245. FLAG_UPDATE_TS_RECENT) > 0;
  5246. switch (sk->sk_state) {
  5247. case TCP_SYN_RECV:
  5248. if (acceptable) {
  5249. tp->copied_seq = tp->rcv_nxt;
  5250. smp_mb();
  5251. tcp_set_state(sk, TCP_ESTABLISHED);
  5252. sk->sk_state_change(sk);
  5253. /* Note, that this wakeup is only for marginal
  5254. * crossed SYN case. Passively open sockets
  5255. * are not waked up, because sk->sk_sleep ==
  5256. * NULL and sk->sk_socket == NULL.
  5257. */
  5258. if (sk->sk_socket)
  5259. sk_wake_async(sk,
  5260. SOCK_WAKE_IO, POLL_OUT);
  5261. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5262. tp->snd_wnd = ntohs(th->window) <<
  5263. tp->rx_opt.snd_wscale;
  5264. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5265. if (tp->rx_opt.tstamp_ok)
  5266. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5267. /* Make sure socket is routed, for
  5268. * correct metrics.
  5269. */
  5270. icsk->icsk_af_ops->rebuild_header(sk);
  5271. tcp_init_metrics(sk);
  5272. tcp_init_congestion_control(sk);
  5273. /* Prevent spurious tcp_cwnd_restart() on
  5274. * first data packet.
  5275. */
  5276. tp->lsndtime = tcp_time_stamp;
  5277. tcp_mtup_init(sk);
  5278. tcp_initialize_rcv_mss(sk);
  5279. tcp_fast_path_on(tp);
  5280. tcp_init_buffer_space(sk);
  5281. } else {
  5282. return 1;
  5283. }
  5284. break;
  5285. case TCP_FIN_WAIT1:
  5286. if (tp->snd_una == tp->write_seq) {
  5287. struct dst_entry *dst;
  5288. tcp_set_state(sk, TCP_FIN_WAIT2);
  5289. sk->sk_shutdown |= SEND_SHUTDOWN;
  5290. dst = __sk_dst_get(sk);
  5291. if (dst)
  5292. dst_confirm(dst);
  5293. if (!sock_flag(sk, SOCK_DEAD))
  5294. /* Wake up lingering close() */
  5295. sk->sk_state_change(sk);
  5296. else {
  5297. int tmo;
  5298. if (tp->linger2 < 0 ||
  5299. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5300. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5301. tcp_done(sk);
  5302. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5303. return 1;
  5304. }
  5305. tmo = tcp_fin_time(sk);
  5306. if (tmo > TCP_TIMEWAIT_LEN) {
  5307. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5308. } else if (th->fin || sock_owned_by_user(sk)) {
  5309. /* Bad case. We could lose such FIN otherwise.
  5310. * It is not a big problem, but it looks confusing
  5311. * and not so rare event. We still can lose it now,
  5312. * if it spins in bh_lock_sock(), but it is really
  5313. * marginal case.
  5314. */
  5315. inet_csk_reset_keepalive_timer(sk, tmo);
  5316. } else {
  5317. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5318. goto discard;
  5319. }
  5320. }
  5321. }
  5322. break;
  5323. case TCP_CLOSING:
  5324. if (tp->snd_una == tp->write_seq) {
  5325. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5326. goto discard;
  5327. }
  5328. break;
  5329. case TCP_LAST_ACK:
  5330. if (tp->snd_una == tp->write_seq) {
  5331. tcp_update_metrics(sk);
  5332. tcp_done(sk);
  5333. goto discard;
  5334. }
  5335. break;
  5336. }
  5337. } else
  5338. goto discard;
  5339. /* step 6: check the URG bit */
  5340. tcp_urg(sk, skb, th);
  5341. /* step 7: process the segment text */
  5342. switch (sk->sk_state) {
  5343. case TCP_CLOSE_WAIT:
  5344. case TCP_CLOSING:
  5345. case TCP_LAST_ACK:
  5346. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5347. break;
  5348. case TCP_FIN_WAIT1:
  5349. case TCP_FIN_WAIT2:
  5350. /* RFC 793 says to queue data in these states,
  5351. * RFC 1122 says we MUST send a reset.
  5352. * BSD 4.4 also does reset.
  5353. */
  5354. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5355. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5356. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5357. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5358. tcp_reset(sk);
  5359. return 1;
  5360. }
  5361. }
  5362. /* Fall through */
  5363. case TCP_ESTABLISHED:
  5364. tcp_data_queue(sk, skb);
  5365. queued = 1;
  5366. break;
  5367. }
  5368. /* tcp_data could move socket to TIME-WAIT */
  5369. if (sk->sk_state != TCP_CLOSE) {
  5370. tcp_data_snd_check(sk);
  5371. tcp_ack_snd_check(sk);
  5372. }
  5373. if (!queued) {
  5374. discard:
  5375. __kfree_skb(skb);
  5376. }
  5377. return 0;
  5378. }
  5379. EXPORT_SYMBOL(tcp_rcv_state_process);