1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811 |
- /*
- * linux/mm/vmscan.c
- *
- * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
- *
- * Swap reorganised 29.12.95, Stephen Tweedie.
- * kswapd added: 7.1.96 sct
- * Removed kswapd_ctl limits, and swap out as many pages as needed
- * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
- * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
- * Multiqueue VM started 5.8.00, Rik van Riel.
- */
- #include <linux/mm.h>
- #include <linux/module.h>
- #include <linux/gfp.h>
- #include <linux/kernel_stat.h>
- #include <linux/swap.h>
- #include <linux/pagemap.h>
- #include <linux/init.h>
- #include <linux/highmem.h>
- #include <linux/vmpressure.h>
- #include <linux/vmstat.h>
- #include <linux/file.h>
- #include <linux/writeback.h>
- #include <linux/blkdev.h>
- #include <linux/buffer_head.h> /* for try_to_release_page(),
- buffer_heads_over_limit */
- #include <linux/mm_inline.h>
- #include <linux/backing-dev.h>
- #include <linux/rmap.h>
- #include <linux/topology.h>
- #include <linux/cpu.h>
- #include <linux/cpuset.h>
- #include <linux/compaction.h>
- #include <linux/notifier.h>
- #include <linux/rwsem.h>
- #include <linux/delay.h>
- #include <linux/kthread.h>
- #include <linux/freezer.h>
- #include <linux/memcontrol.h>
- #include <linux/delayacct.h>
- #include <linux/sysctl.h>
- #include <linux/oom.h>
- #include <linux/prefetch.h>
- #include <linux/debugfs.h>
- #include <asm/tlbflush.h>
- #include <asm/div64.h>
- #include <linux/swapops.h>
- #include "internal.h"
- #define CREATE_TRACE_POINTS
- #include <trace/events/vmscan.h>
- #ifdef CONFIG_INCREASE_MAXIMUM_SWAPPINESS
- int max_swappiness = 200;
- #endif
- #ifdef CONFIG_RUNTIME_COMPCACHE
- struct rtcc_control {
- int nr_anon;
- int nr_file;
- int swappiness;
- int nr_swapped;
- };
- #endif /* CONFIG_RUNTIME_COMPCACHE */
- struct scan_control {
- /* Incremented by the number of inactive pages that were scanned */
- unsigned long nr_scanned;
- /* Number of pages freed so far during a call to shrink_zones() */
- unsigned long nr_reclaimed;
- /* How many pages shrink_list() should reclaim */
- unsigned long nr_to_reclaim;
- unsigned long hibernation_mode;
- /* This context's GFP mask */
- gfp_t gfp_mask;
- int may_writepage;
- /* Can mapped pages be reclaimed? */
- int may_unmap;
- /* Can pages be swapped as part of reclaim? */
- int may_swap;
- int order;
- int swappiness;
- /* Scan (total_size >> priority) pages at once */
- int priority;
- /*
- * The memory cgroup that hit its limit and as a result is the
- * primary target of this reclaim invocation.
- */
- struct mem_cgroup *target_mem_cgroup;
- /*
- * Nodemask of nodes allowed by the caller. If NULL, all nodes
- * are scanned.
- */
- nodemask_t *nodemask;
- #ifdef CONFIG_RUNTIME_COMPCACHE
- struct rtcc_control *rc;
- #endif /* CONFIG_RUNTIME_COMPCACHE */
- };
- struct mem_cgroup_zone {
- struct mem_cgroup *mem_cgroup;
- struct zone *zone;
- };
- #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
- #ifdef ARCH_HAS_PREFETCH
- #define prefetch_prev_lru_page(_page, _base, _field) \
- do { \
- if ((_page)->lru.prev != _base) { \
- struct page *prev; \
- \
- prev = lru_to_page(&(_page->lru)); \
- prefetch(&prev->_field); \
- } \
- } while (0)
- #else
- #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
- #endif
- #ifdef ARCH_HAS_PREFETCHW
- #define prefetchw_prev_lru_page(_page, _base, _field) \
- do { \
- if ((_page)->lru.prev != _base) { \
- struct page *prev; \
- \
- prev = lru_to_page(&(_page->lru)); \
- prefetchw(&prev->_field); \
- } \
- } while (0)
- #else
- #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
- #endif
- /*
- * From 0 .. 100. Higher means more swappy.
- */
- int vm_swappiness = 60;
- long vm_total_pages; /* The total number of pages which the VM controls */
- #ifdef CONFIG_RUNTIME_COMPCACHE
- extern int get_rtcc_status(void);
- atomic_t kswapd_running = ATOMIC_INIT(1);
- long nr_kswapd_swapped = 0;
- static bool rtcc_reclaim(struct scan_control *sc)
- {
- return (sc->rc != NULL);
- }
- #endif /* CONFIG_RUNTIME_COMPCACHE */
- static LIST_HEAD(shrinker_list);
- static DECLARE_RWSEM(shrinker_rwsem);
- #ifdef CONFIG_MEMCG
- static bool global_reclaim(struct scan_control *sc)
- {
- return !sc->target_mem_cgroup;
- }
- #else
- static bool global_reclaim(struct scan_control *sc)
- {
- return true;
- }
- #endif
- static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
- {
- return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
- }
- unsigned long zone_reclaimable_pages(struct zone *zone)
- {
- unsigned long nr;
- nr = zone_page_state(zone, NR_ACTIVE_FILE) +
- zone_page_state(zone, NR_INACTIVE_FILE);
- #ifndef CONFIG_RUNTIME_COMPCACHE
- if (get_nr_swap_pages() > 0)
- nr += zone_page_state(zone, NR_ACTIVE_ANON) +
- zone_page_state(zone, NR_INACTIVE_ANON);
- #endif /* CONFIG_RUNTIME_COMPCACHE */
- return nr;
- }
- bool zone_reclaimable(struct zone *zone)
- {
- return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
- }
- static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
- enum lru_list lru)
- {
- if (!mem_cgroup_disabled())
- return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
- zone_to_nid(mz->zone),
- zone_idx(mz->zone),
- BIT(lru));
- return zone_page_state(mz->zone, NR_LRU_BASE + lru);
- }
- struct dentry *debug_file;
- static int debug_shrinker_show(struct seq_file *s, void *unused)
- {
- struct shrinker *shrinker;
- struct shrink_control sc;
- sc.gfp_mask = -1;
- sc.nr_to_scan = 0;
- down_read(&shrinker_rwsem);
- list_for_each_entry(shrinker, &shrinker_list, list) {
- int num_objs;
- num_objs = shrinker->shrink(shrinker, &sc);
- seq_printf(s, "%pf %d\n", shrinker->shrink, num_objs);
- }
- up_read(&shrinker_rwsem);
- return 0;
- }
- static int debug_shrinker_open(struct inode *inode, struct file *file)
- {
- return single_open(file, debug_shrinker_show, inode->i_private);
- }
- static const struct file_operations debug_shrinker_fops = {
- .open = debug_shrinker_open,
- .read = seq_read,
- .llseek = seq_lseek,
- .release = single_release,
- };
- /*
- * Add a shrinker callback to be called from the vm
- */
- void register_shrinker(struct shrinker *shrinker)
- {
- atomic_long_set(&shrinker->nr_in_batch, 0);
- down_write(&shrinker_rwsem);
- list_add_tail(&shrinker->list, &shrinker_list);
- up_write(&shrinker_rwsem);
- }
- EXPORT_SYMBOL(register_shrinker);
- static int __init add_shrinker_debug(void)
- {
- debugfs_create_file("shrinker", 0644, NULL, NULL,
- &debug_shrinker_fops);
- return 0;
- }
- late_initcall(add_shrinker_debug);
- /*
- * Remove one
- */
- void unregister_shrinker(struct shrinker *shrinker)
- {
- down_write(&shrinker_rwsem);
- list_del(&shrinker->list);
- up_write(&shrinker_rwsem);
- }
- EXPORT_SYMBOL(unregister_shrinker);
- static inline int do_shrinker_shrink(struct shrinker *shrinker,
- struct shrink_control *sc,
- unsigned long nr_to_scan)
- {
- sc->nr_to_scan = nr_to_scan;
- return (*shrinker->shrink)(shrinker, sc);
- }
- #define SHRINK_BATCH 128
- /*
- * Call the shrink functions to age shrinkable caches
- *
- * Here we assume it costs one seek to replace a lru page and that it also
- * takes a seek to recreate a cache object. With this in mind we age equal
- * percentages of the lru and ageable caches. This should balance the seeks
- * generated by these structures.
- *
- * If the vm encountered mapped pages on the LRU it increase the pressure on
- * slab to avoid swapping.
- *
- * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
- *
- * `lru_pages' represents the number of on-LRU pages in all the zones which
- * are eligible for the caller's allocation attempt. It is used for balancing
- * slab reclaim versus page reclaim.
- *
- * Returns the number of slab objects which we shrunk.
- */
- unsigned long shrink_slab(struct shrink_control *shrinkctl,
- unsigned long nr_pages_scanned,
- unsigned long lru_pages)
- {
- struct shrinker *shrinker;
- unsigned long freed = 0;
- if (nr_pages_scanned == 0)
- nr_pages_scanned = SWAP_CLUSTER_MAX;
- if (!down_read_trylock(&shrinker_rwsem)) {
- /*
- * If we would return 0, our callers would understand that we
- * have nothing else to shrink and give up trying. By returning
- * 1 we keep it going and assume we'll be able to shrink next
- * time.
- */
- freed = 1;
- goto out;
- }
- list_for_each_entry(shrinker, &shrinker_list, list) {
- unsigned long long delta;
- long total_scan;
- long max_pass;
- long nr;
- long new_nr;
- long batch_size = shrinker->batch ? shrinker->batch
- : SHRINK_BATCH;
- if (shrinker->count_objects)
- max_pass = shrinker->count_objects(shrinker, shrinkctl);
- else
- max_pass = do_shrinker_shrink(shrinker, shrinkctl, 0);
- if (max_pass == 0)
- continue;
- /*
- * copy the current shrinker scan count into a local variable
- * and zero it so that other concurrent shrinker invocations
- * don't also do this scanning work.
- */
- nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
- total_scan = nr;
- delta = (4 * nr_pages_scanned) / shrinker->seeks;
- delta *= max_pass;
- do_div(delta, lru_pages + 1);
- total_scan += delta;
- if (total_scan < 0) {
- printk(KERN_ERR
- "shrink_slab: %pF negative objects to delete nr=%ld\n",
- shrinker->shrink, total_scan);
- total_scan = max_pass;
- }
- /*
- * We need to avoid excessive windup on filesystem shrinkers
- * due to large numbers of GFP_NOFS allocations causing the
- * shrinkers to return -1 all the time. This results in a large
- * nr being built up so when a shrink that can do some work
- * comes along it empties the entire cache due to nr >>>
- * max_pass. This is bad for sustaining a working set in
- * memory.
- *
- * Hence only allow the shrinker to scan the entire cache when
- * a large delta change is calculated directly.
- */
- if (delta < max_pass / 4)
- total_scan = min(total_scan, max_pass / 2);
- /*
- * Avoid risking looping forever due to too large nr value:
- * never try to free more than twice the estimate number of
- * freeable entries.
- */
- if (total_scan > max_pass * 2)
- total_scan = max_pass * 2;
- trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
- nr_pages_scanned, lru_pages,
- max_pass, delta, total_scan);
- while (total_scan >= batch_size) {
- if (shrinker->scan_objects) {
- unsigned long ret;
- shrinkctl->nr_to_scan = batch_size;
- ret = shrinker->scan_objects(shrinker, shrinkctl);
- if (ret == SHRINK_STOP)
- break;
- freed += ret;
- } else {
- int nr_before;
- long ret;
- nr_before = do_shrinker_shrink(shrinker, shrinkctl, 0);
- ret = do_shrinker_shrink(shrinker, shrinkctl,
- batch_size);
- if (ret == -1)
- break;
- if (ret < nr_before)
- freed += nr_before - ret;
- }
- count_vm_events(SLABS_SCANNED, batch_size);
- total_scan -= batch_size;
- cond_resched();
- }
- /*
- * move the unused scan count back into the shrinker in a
- * manner that handles concurrent updates. If we exhausted the
- * scan, there is no need to do an update.
- */
- if (total_scan > 0)
- new_nr = atomic_long_add_return(total_scan,
- &shrinker->nr_in_batch);
- else
- new_nr = atomic_long_read(&shrinker->nr_in_batch);
- trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
- }
- up_read(&shrinker_rwsem);
- out:
- cond_resched();
- return freed;
- }
- static inline int is_page_cache_freeable(struct page *page)
- {
- /*
- * A freeable page cache page is referenced only by the caller
- * that isolated the page, the page cache radix tree and
- * optional buffer heads at page->private.
- */
- return page_count(page) - page_has_private(page) == 2;
- }
- static int may_write_to_queue(struct backing_dev_info *bdi,
- struct scan_control *sc)
- {
- if (current->flags & PF_SWAPWRITE)
- return 1;
- if (!bdi_write_congested(bdi))
- return 1;
- if (bdi == current->backing_dev_info)
- return 1;
- return 0;
- }
- /*
- * We detected a synchronous write error writing a page out. Probably
- * -ENOSPC. We need to propagate that into the address_space for a subsequent
- * fsync(), msync() or close().
- *
- * The tricky part is that after writepage we cannot touch the mapping: nothing
- * prevents it from being freed up. But we have a ref on the page and once
- * that page is locked, the mapping is pinned.
- *
- * We're allowed to run sleeping lock_page() here because we know the caller has
- * __GFP_FS.
- */
- static void handle_write_error(struct address_space *mapping,
- struct page *page, int error)
- {
- lock_page(page);
- if (page_mapping(page) == mapping)
- mapping_set_error(mapping, error);
- unlock_page(page);
- }
- /* possible outcome of pageout() */
- typedef enum {
- /* failed to write page out, page is locked */
- PAGE_KEEP,
- /* move page to the active list, page is locked */
- PAGE_ACTIVATE,
- /* page has been sent to the disk successfully, page is unlocked */
- PAGE_SUCCESS,
- /* page is clean and locked */
- PAGE_CLEAN,
- } pageout_t;
- /*
- * pageout is called by shrink_page_list() for each dirty page.
- * Calls ->writepage().
- */
- static pageout_t pageout(struct page *page, struct address_space *mapping,
- struct scan_control *sc)
- {
- /*
- * If the page is dirty, only perform writeback if that write
- * will be non-blocking. To prevent this allocation from being
- * stalled by pagecache activity. But note that there may be
- * stalls if we need to run get_block(). We could test
- * PagePrivate for that.
- *
- * If this process is currently in __generic_file_aio_write() against
- * this page's queue, we can perform writeback even if that
- * will block.
- *
- * If the page is swapcache, write it back even if that would
- * block, for some throttling. This happens by accident, because
- * swap_backing_dev_info is bust: it doesn't reflect the
- * congestion state of the swapdevs. Easy to fix, if needed.
- */
- if (!is_page_cache_freeable(page))
- return PAGE_KEEP;
- if (!mapping) {
- /*
- * Some data journaling orphaned pages can have
- * page->mapping == NULL while being dirty with clean buffers.
- */
- if (page_has_private(page)) {
- if (try_to_free_buffers(page)) {
- ClearPageDirty(page);
- printk("%s: orphaned page\n", __func__);
- return PAGE_CLEAN;
- }
- }
- return PAGE_KEEP;
- }
- if (mapping->a_ops->writepage == NULL)
- return PAGE_ACTIVATE;
- if (!may_write_to_queue(mapping->backing_dev_info, sc))
- return PAGE_KEEP;
- if (clear_page_dirty_for_io(page)) {
- int res;
- struct writeback_control wbc = {
- .sync_mode = WB_SYNC_NONE,
- .nr_to_write = SWAP_CLUSTER_MAX,
- .range_start = 0,
- .range_end = LLONG_MAX,
- .for_reclaim = 1,
- };
- SetPageReclaim(page);
- res = mapping->a_ops->writepage(page, &wbc);
- if (res < 0)
- handle_write_error(mapping, page, res);
- if (res == AOP_WRITEPAGE_ACTIVATE) {
- ClearPageReclaim(page);
- return PAGE_ACTIVATE;
- }
- if (!PageWriteback(page)) {
- /* synchronous write or broken a_ops? */
- ClearPageReclaim(page);
- }
- trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
- inc_zone_page_state(page, NR_VMSCAN_WRITE);
- return PAGE_SUCCESS;
- }
- return PAGE_CLEAN;
- }
- /*
- * Same as remove_mapping, but if the page is removed from the mapping, it
- * gets returned with a refcount of 0.
- */
- static int __remove_mapping(struct address_space *mapping, struct page *page)
- {
- BUG_ON(!PageLocked(page));
- BUG_ON(mapping != page_mapping(page));
- spin_lock_irq(&mapping->tree_lock);
- /*
- * The non racy check for a busy page.
- *
- * Must be careful with the order of the tests. When someone has
- * a ref to the page, it may be possible that they dirty it then
- * drop the reference. So if PageDirty is tested before page_count
- * here, then the following race may occur:
- *
- * get_user_pages(&page);
- * [user mapping goes away]
- * write_to(page);
- * !PageDirty(page) [good]
- * SetPageDirty(page);
- * put_page(page);
- * !page_count(page) [good, discard it]
- *
- * [oops, our write_to data is lost]
- *
- * Reversing the order of the tests ensures such a situation cannot
- * escape unnoticed. The smp_rmb is needed to ensure the page->flags
- * load is not satisfied before that of page->_count.
- *
- * Note that if SetPageDirty is always performed via set_page_dirty,
- * and thus under tree_lock, then this ordering is not required.
- */
- if (!page_freeze_refs(page, 2))
- goto cannot_free;
- /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
- if (unlikely(PageDirty(page))) {
- page_unfreeze_refs(page, 2);
- goto cannot_free;
- }
- if (PageSwapCache(page)) {
- swp_entry_t swap = { .val = page_private(page) };
- __delete_from_swap_cache(page);
- spin_unlock_irq(&mapping->tree_lock);
- swapcache_free(swap, page);
- } else {
- void (*freepage)(struct page *);
- freepage = mapping->a_ops->freepage;
- __delete_from_page_cache(page);
- spin_unlock_irq(&mapping->tree_lock);
- mem_cgroup_uncharge_cache_page(page);
- if (freepage != NULL)
- freepage(page);
- }
- return 1;
- cannot_free:
- spin_unlock_irq(&mapping->tree_lock);
- return 0;
- }
- /*
- * Attempt to detach a locked page from its ->mapping. If it is dirty or if
- * someone else has a ref on the page, abort and return 0. If it was
- * successfully detached, return 1. Assumes the caller has a single ref on
- * this page.
- */
- int remove_mapping(struct address_space *mapping, struct page *page)
- {
- if (__remove_mapping(mapping, page)) {
- /*
- * Unfreezing the refcount with 1 rather than 2 effectively
- * drops the pagecache ref for us without requiring another
- * atomic operation.
- */
- page_unfreeze_refs(page, 1);
- return 1;
- }
- return 0;
- }
- /**
- * putback_lru_page - put previously isolated page onto appropriate LRU list
- * @page: page to be put back to appropriate lru list
- *
- * Add previously isolated @page to appropriate LRU list.
- * Page may still be unevictable for other reasons.
- *
- * lru_lock must not be held, interrupts must be enabled.
- */
- void putback_lru_page(struct page *page)
- {
- int lru;
- int active = !!TestClearPageActive(page);
- int was_unevictable = PageUnevictable(page);
- VM_BUG_ON(PageLRU(page));
- redo:
- ClearPageUnevictable(page);
- if (page_evictable(page)) {
- /*
- * For evictable pages, we can use the cache.
- * In event of a race, worst case is we end up with an
- * unevictable page on [in]active list.
- * We know how to handle that.
- */
- lru = active + page_lru_base_type(page);
- lru_cache_add_lru(page, lru);
- } else {
- /*
- * Put unevictable pages directly on zone's unevictable
- * list.
- */
- lru = LRU_UNEVICTABLE;
- add_page_to_unevictable_list(page);
- /*
- * When racing with an mlock or AS_UNEVICTABLE clearing
- * (page is unlocked) make sure that if the other thread
- * does not observe our setting of PG_lru and fails
- * isolation/check_move_unevictable_pages,
- * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
- * the page back to the evictable list.
- *
- * The other side is TestClearPageMlocked() or shmem_lock().
- */
- smp_mb();
- }
- /*
- * page's status can change while we move it among lru. If an evictable
- * page is on unevictable list, it never be freed. To avoid that,
- * check after we added it to the list, again.
- */
- if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
- if (!isolate_lru_page(page)) {
- put_page(page);
- goto redo;
- }
- /* This means someone else dropped this page from LRU
- * So, it will be freed or putback to LRU again. There is
- * nothing to do here.
- */
- }
- if (was_unevictable && lru != LRU_UNEVICTABLE)
- count_vm_event(UNEVICTABLE_PGRESCUED);
- else if (!was_unevictable && lru == LRU_UNEVICTABLE)
- count_vm_event(UNEVICTABLE_PGCULLED);
- put_page(page); /* drop ref from isolate */
- }
- enum page_references {
- PAGEREF_RECLAIM,
- PAGEREF_RECLAIM_CLEAN,
- PAGEREF_KEEP,
- PAGEREF_ACTIVATE,
- };
- static enum page_references page_check_references(struct page *page,
- struct scan_control *sc)
- {
- int referenced_ptes, referenced_page;
- unsigned long vm_flags;
- referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
- &vm_flags);
- referenced_page = TestClearPageReferenced(page);
- /*
- * Mlock lost the isolation race with us. Let try_to_unmap()
- * move the page to the unevictable list.
- */
- if (vm_flags & VM_LOCKED)
- return PAGEREF_RECLAIM;
- if (referenced_ptes) {
- if (PageSwapBacked(page))
- return PAGEREF_ACTIVATE;
- /*
- * All mapped pages start out with page table
- * references from the instantiating fault, so we need
- * to look twice if a mapped file page is used more
- * than once.
- *
- * Mark it and spare it for another trip around the
- * inactive list. Another page table reference will
- * lead to its activation.
- *
- * Note: the mark is set for activated pages as well
- * so that recently deactivated but used pages are
- * quickly recovered.
- */
- SetPageReferenced(page);
- if (referenced_page || referenced_ptes > 1)
- return PAGEREF_ACTIVATE;
- /*
- * Activate file-backed executable pages after first usage.
- */
- if (vm_flags & VM_EXEC)
- return PAGEREF_ACTIVATE;
- return PAGEREF_KEEP;
- }
- /* Reclaim if clean, defer dirty pages to writeback */
- if (referenced_page && !PageSwapBacked(page))
- return PAGEREF_RECLAIM_CLEAN;
- return PAGEREF_RECLAIM;
- }
- /*
- * shrink_page_list() returns the number of reclaimed pages
- */
- static unsigned long shrink_page_list(struct list_head *page_list,
- struct zone *zone,
- struct scan_control *sc,
- enum ttu_flags ttu_flags,
- unsigned long *ret_nr_dirty,
- unsigned long *ret_nr_writeback,
- bool ignore_references)
- {
- LIST_HEAD(ret_pages);
- LIST_HEAD(free_pages);
- int pgactivate = 0;
- unsigned long nr_dirty = 0;
- unsigned long nr_congested = 0;
- unsigned long nr_reclaimed = 0;
- unsigned long nr_writeback = 0;
- cond_resched();
- mem_cgroup_uncharge_start();
- while (!list_empty(page_list)) {
- struct address_space *mapping;
- struct page *page;
- int may_enter_fs;
- enum page_references references = PAGEREF_RECLAIM;
- cond_resched();
- page = lru_to_page(page_list);
- list_del(&page->lru);
- if (!trylock_page(page))
- goto keep;
- VM_BUG_ON(PageActive(page));
- VM_BUG_ON(page_zone(page) != zone);
- sc->nr_scanned++;
- if (unlikely(!page_evictable(page)))
- goto cull_mlocked;
- if (!sc->may_unmap && page_mapped(page))
- goto keep_locked;
- /* Double the slab pressure for mapped and swapcache pages */
- if (page_mapped(page) || PageSwapCache(page))
- sc->nr_scanned++;
- may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
- (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
- if (PageWriteback(page)) {
- /*
- * memcg doesn't have any dirty pages throttling so we
- * could easily OOM just because too many pages are in
- * writeback and there is nothing else to reclaim.
- *
- * Check __GFP_IO, certainly because a loop driver
- * thread might enter reclaim, and deadlock if it waits
- * on a page for which it is needed to do the write
- * (loop masks off __GFP_IO|__GFP_FS for this reason);
- * but more thought would probably show more reasons.
- *
- * Don't require __GFP_FS, since we're not going into
- * the FS, just waiting on its writeback completion.
- * Worryingly, ext4 gfs2 and xfs allocate pages with
- * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
- * testing may_enter_fs here is liable to OOM on them.
- */
- if (global_reclaim(sc) ||
- !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
- /*
- * This is slightly racy - end_page_writeback()
- * might have just cleared PageReclaim, then
- * setting PageReclaim here end up interpreted
- * as PageReadahead - but that does not matter
- * enough to care. What we do want is for this
- * page to have PageReclaim set next time memcg
- * reclaim reaches the tests above, so it will
- * then wait_on_page_writeback() to avoid OOM;
- * and it's also appropriate in global reclaim.
- */
- SetPageReclaim(page);
- nr_writeback++;
- goto keep_locked;
- }
- wait_on_page_writeback(page);
- }
- if (!ignore_references)
- references = page_check_references(page, sc);
- switch (references) {
- case PAGEREF_ACTIVATE:
- goto activate_locked;
- case PAGEREF_KEEP:
- goto keep_locked;
- case PAGEREF_RECLAIM:
- case PAGEREF_RECLAIM_CLEAN:
- ; /* try to reclaim the page below */
- }
- /*
- * Anonymous process memory has backing store?
- * Try to allocate it some swap space here.
- */
- if (PageAnon(page) && !PageSwapCache(page)) {
- if (!(sc->gfp_mask & __GFP_IO))
- goto keep_locked;
- if (!add_to_swap(page))
- goto activate_locked;
- may_enter_fs = 1;
- }
- mapping = page_mapping(page);
- /*
- * The page is mapped into the page tables of one or more
- * processes. Try to unmap it here.
- */
- if (page_mapped(page) && mapping) {
- switch (try_to_unmap(page, ttu_flags)) {
- case SWAP_FAIL:
- goto activate_locked;
- case SWAP_AGAIN:
- goto keep_locked;
- case SWAP_MLOCK:
- goto cull_mlocked;
- case SWAP_SUCCESS:
- ; /* try to free the page below */
- }
- }
- if (PageDirty(page)) {
- nr_dirty++;
- /*
- * Only kswapd can writeback filesystem pages to
- * avoid risk of stack overflow but do not writeback
- * unless under significant pressure.
- */
- if (page_is_file_cache(page) &&
- (!current_is_kswapd() ||
- sc->priority >= DEF_PRIORITY - 2)) {
- /*
- * Immediately reclaim when written back.
- * Similar in principal to deactivate_page()
- * except we already have the page isolated
- * and know it's dirty
- */
- inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
- SetPageReclaim(page);
- goto keep_locked;
- }
- if (references == PAGEREF_RECLAIM_CLEAN)
- goto keep_locked;
- if (!may_enter_fs)
- goto keep_locked;
- if (!sc->may_writepage)
- goto keep_locked;
- /* Page is dirty, try to write it out here */
- switch (pageout(page, mapping, sc)) {
- case PAGE_KEEP:
- nr_congested++;
- goto keep_locked;
- case PAGE_ACTIVATE:
- goto activate_locked;
- case PAGE_SUCCESS:
- if (PageWriteback(page))
- goto keep;
- if (PageDirty(page))
- goto keep;
- /*
- * A synchronous write - probably a ramdisk. Go
- * ahead and try to reclaim the page.
- */
- if (!trylock_page(page))
- goto keep;
- if (PageDirty(page) || PageWriteback(page))
- goto keep_locked;
- mapping = page_mapping(page);
- case PAGE_CLEAN:
- ; /* try to free the page below */
- }
- }
- /*
- * If the page has buffers, try to free the buffer mappings
- * associated with this page. If we succeed we try to free
- * the page as well.
- *
- * We do this even if the page is PageDirty().
- * try_to_release_page() does not perform I/O, but it is
- * possible for a page to have PageDirty set, but it is actually
- * clean (all its buffers are clean). This happens if the
- * buffers were written out directly, with submit_bh(). ext3
- * will do this, as well as the blockdev mapping.
- * try_to_release_page() will discover that cleanness and will
- * drop the buffers and mark the page clean - it can be freed.
- *
- * Rarely, pages can have buffers and no ->mapping. These are
- * the pages which were not successfully invalidated in
- * truncate_complete_page(). We try to drop those buffers here
- * and if that worked, and the page is no longer mapped into
- * process address space (page_count == 1) it can be freed.
- * Otherwise, leave the page on the LRU so it is swappable.
- */
- if (page_has_private(page)) {
- if (!try_to_release_page(page, sc->gfp_mask))
- goto activate_locked;
- if (!mapping && page_count(page) == 1) {
- unlock_page(page);
- if (put_page_testzero(page))
- goto free_it;
- else {
- /*
- * rare race with speculative reference.
- * the speculative reference will free
- * this page shortly, so we may
- * increment nr_reclaimed here (and
- * leave it off the LRU).
- */
- nr_reclaimed++;
- continue;
- }
- }
- }
- if (!mapping || !__remove_mapping(mapping, page))
- goto keep_locked;
- /*
- * At this point, we have no other references and there is
- * no way to pick any more up (removed from LRU, removed
- * from pagecache). Can use non-atomic bitops now (and
- * we obviously don't have to worry about waking up a process
- * waiting on the page lock, because there are no references.
- */
- __clear_page_locked(page);
- free_it:
- nr_reclaimed++;
- /*
- * Is there need to periodically free_page_list? It would
- * appear not as the counts should be low
- */
- list_add(&page->lru, &free_pages);
- continue;
- cull_mlocked:
- if (PageSwapCache(page))
- try_to_free_swap(page);
- unlock_page(page);
- putback_lru_page(page);
- continue;
- activate_locked:
- /* Not a candidate for swapping, so reclaim swap space. */
- if (PageSwapCache(page) && vm_swap_full(page_swap_info(page)))
- try_to_free_swap(page);
- VM_BUG_ON(PageActive(page));
- SetPageActive(page);
- pgactivate++;
- keep_locked:
- unlock_page(page);
- keep:
- list_add(&page->lru, &ret_pages);
- VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
- }
- /*
- * Tag a zone as congested if all the dirty pages encountered were
- * backed by a congested BDI. In this case, reclaimers should just
- * back off and wait for congestion to clear because further reclaim
- * will encounter the same problem
- */
- if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
- zone_set_flag(zone, ZONE_CONGESTED);
- free_hot_cold_page_list(&free_pages, 1);
- list_splice(&ret_pages, page_list);
- count_vm_events(PGACTIVATE, pgactivate);
- mem_cgroup_uncharge_end();
- *ret_nr_dirty += nr_dirty;
- *ret_nr_writeback += nr_writeback;
- return nr_reclaimed;
- }
- unsigned long reclaim_clean_pages_from_list(struct zone *zone,
- struct list_head *page_list)
- {
- struct scan_control sc = {
- .gfp_mask = GFP_KERNEL,
- .priority = DEF_PRIORITY,
- .may_unmap = 1,
- };
- unsigned long ret, dummy1, dummy2;
- struct page *page, *next;
- LIST_HEAD(clean_pages);
- list_for_each_entry_safe(page, next, page_list, lru) {
- if (page_is_file_cache(page) && !PageDirty(page)) {
- ClearPageActive(page);
- list_move(&page->lru, &clean_pages);
- }
- }
- ret = shrink_page_list(&clean_pages, zone, &sc,
- TTU_UNMAP|TTU_IGNORE_ACCESS,
- &dummy1, &dummy2, true);
- list_splice(&clean_pages, page_list);
- __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
- return ret;
- }
- /*
- * Attempt to remove the specified page from its LRU. Only take this page
- * if it is of the appropriate PageActive status. Pages which are being
- * freed elsewhere are also ignored.
- *
- * page: page to consider
- * mode: one of the LRU isolation modes defined above
- *
- * returns 0 on success, -ve errno on failure.
- */
- int __isolate_lru_page(struct page *page, isolate_mode_t mode)
- {
- int ret = -EINVAL;
- /* Only take pages on the LRU. */
- if (!PageLRU(page))
- return ret;
- /* Compaction should not handle unevictable pages but CMA can do so */
- if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
- return ret;
- ret = -EBUSY;
- /*
- * To minimise LRU disruption, the caller can indicate that it only
- * wants to isolate pages it will be able to operate on without
- * blocking - clean pages for the most part.
- *
- * ISOLATE_CLEAN means that only clean pages should be isolated. This
- * is used by reclaim when it is cannot write to backing storage
- *
- * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
- * that it is possible to migrate without blocking
- */
- if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
- /* All the caller can do on PageWriteback is block */
- if (PageWriteback(page))
- return ret;
- if (PageDirty(page)) {
- struct address_space *mapping;
- /* ISOLATE_CLEAN means only clean pages */
- if (mode & ISOLATE_CLEAN)
- return ret;
- /*
- * Only pages without mappings or that have a
- * ->migratepage callback are possible to migrate
- * without blocking
- */
- mapping = page_mapping(page);
- if (mapping && !mapping->a_ops->migratepage)
- return ret;
- }
- }
- if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
- return ret;
- if (likely(get_page_unless_zero(page))) {
- /*
- * Be careful not to clear PageLRU until after we're
- * sure the page is not being freed elsewhere -- the
- * page release code relies on it.
- */
- ClearPageLRU(page);
- ret = 0;
- }
- return ret;
- }
- /*
- * zone->lru_lock is heavily contended. Some of the functions that
- * shrink the lists perform better by taking out a batch of pages
- * and working on them outside the LRU lock.
- *
- * For pagecache intensive workloads, this function is the hottest
- * spot in the kernel (apart from copy_*_user functions).
- *
- * Appropriate locks must be held before calling this function.
- *
- * @nr_to_scan: The number of pages to look through on the list.
- * @lruvec: The LRU vector to pull pages from.
- * @dst: The temp list to put pages on to.
- * @nr_scanned: The number of pages that were scanned.
- * @sc: The scan_control struct for this reclaim session
- * @mode: One of the LRU isolation modes
- * @lru: LRU list id for isolating
- *
- * returns how many pages were moved onto *@dst.
- */
- static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
- struct lruvec *lruvec, struct list_head *dst,
- unsigned long *nr_scanned, struct scan_control *sc,
- isolate_mode_t mode, enum lru_list lru)
- {
- struct list_head *src;
- unsigned long nr_taken = 0;
- unsigned long scan;
- int file = is_file_lru(lru);
- src = &lruvec->lists[lru];
- for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
- struct page *page;
- page = lru_to_page(src);
- prefetchw_prev_lru_page(page, src, flags);
- VM_BUG_ON(!PageLRU(page));
- switch (__isolate_lru_page(page, mode)) {
- case 0:
- mem_cgroup_lru_del_list(page, lru);
- list_move(&page->lru, dst);
- nr_taken += hpage_nr_pages(page);
- #if defined(CONFIG_CMA_PAGE_COUNTING)
- if (PageCMA(page))
- __mod_zone_page_state(page_zone(page),
- NR_FREE_CMA_PAGES + 1 + lru, -1);
- #endif
- break;
- case -EBUSY:
- /* else it is being freed elsewhere */
- list_move(&page->lru, src);
- continue;
- default:
- BUG();
- }
- }
- *nr_scanned = scan;
- trace_mm_vmscan_lru_isolate(sc->order,
- nr_to_scan, scan,
- nr_taken,
- mode, file);
- return nr_taken;
- }
- /**
- * isolate_lru_page - tries to isolate a page from its LRU list
- * @page: page to isolate from its LRU list
- *
- * Isolates a @page from an LRU list, clears PageLRU and adjusts the
- * vmstat statistic corresponding to whatever LRU list the page was on.
- *
- * Returns 0 if the page was removed from an LRU list.
- * Returns -EBUSY if the page was not on an LRU list.
- *
- * The returned page will have PageLRU() cleared. If it was found on
- * the active list, it will have PageActive set. If it was found on
- * the unevictable list, it will have the PageUnevictable bit set. That flag
- * may need to be cleared by the caller before letting the page go.
- *
- * The vmstat statistic corresponding to the list on which the page was
- * found will be decremented.
- *
- * Restrictions:
- * (1) Must be called with an elevated refcount on the page. This is a
- * fundamentnal difference from isolate_lru_pages (which is called
- * without a stable reference).
- * (2) the lru_lock must not be held.
- * (3) interrupts must be enabled.
- */
- int isolate_lru_page(struct page *page)
- {
- int ret = -EBUSY;
- VM_BUG_ON(!page_count(page));
- if (PageLRU(page)) {
- struct zone *zone = page_zone(page);
- spin_lock_irq(&zone->lru_lock);
- if (PageLRU(page)) {
- int lru = page_lru(page);
- ret = 0;
- get_page(page);
- ClearPageLRU(page);
- del_page_from_lru_list(zone, page, lru);
- }
- spin_unlock_irq(&zone->lru_lock);
- }
- return ret;
- }
- static int __too_many_isolated(struct zone *zone, int file,
- struct scan_control *sc, int safe)
- {
- unsigned long inactive, isolated;
- if (file) {
- if (safe) {
- inactive = zone_page_state_snapshot(zone,
- NR_INACTIVE_FILE);
- isolated = zone_page_state_snapshot(zone,
- NR_ISOLATED_FILE);
- } else {
- inactive = zone_page_state(zone, NR_INACTIVE_FILE);
- isolated = zone_page_state(zone, NR_ISOLATED_FILE);
- }
- } else {
- if (safe) {
- inactive = zone_page_state_snapshot(zone,
- NR_INACTIVE_ANON);
- isolated = zone_page_state_snapshot(zone,
- NR_ISOLATED_ANON);
- } else {
- inactive = zone_page_state(zone, NR_INACTIVE_ANON);
- isolated = zone_page_state(zone, NR_ISOLATED_ANON);
- }
- }
- /*
- * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
- * won't get blocked by normal direct-reclaimers, forming a circular
- * deadlock.
- */
- if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
- inactive >>= 3;
- return isolated > inactive;
- }
- /*
- * Are there way too many processes in the direct reclaim path already?
- */
- static int too_many_isolated(struct zone *zone, int file,
- struct scan_control *sc, int safe)
- {
- #ifdef CONFIG_RUNTIME_COMPCACHE
- if (get_rtcc_status() == 1)
- return 0;
- #endif /* CONFIG_RUNTIME_COMPCACHE */
- if (current_is_kswapd())
- return 0;
- if (!global_reclaim(sc))
- return 0;
- if (unlikely(__too_many_isolated(zone, file, sc, 0))) {
- if (safe)
- return __too_many_isolated(zone, file, sc, safe);
- else
- return 1;
- }
- return 0;
- }
- static noinline_for_stack void
- putback_inactive_pages(struct mem_cgroup_zone *mz,
- struct list_head *page_list)
- {
- struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
- struct zone *zone = mz->zone;
- LIST_HEAD(pages_to_free);
- /*
- * Put back any unfreeable pages.
- */
- while (!list_empty(page_list)) {
- struct page *page = lru_to_page(page_list);
- int lru;
- int file;
- VM_BUG_ON(PageLRU(page));
- list_del(&page->lru);
- if (unlikely(!page_evictable(page))) {
- spin_unlock_irq(&zone->lru_lock);
- putback_lru_page(page);
- spin_lock_irq(&zone->lru_lock);
- continue;
- }
- SetPageLRU(page);
- lru = page_lru(page);
- add_page_to_lru_list(zone, page, lru);
- file = is_file_lru(lru);
- #if IS_ENABLED(CONFIG_ZCACHE)
- if (file)
- SetPageWasActive(page);
- #endif
- if (is_active_lru(lru)) {
- int numpages = hpage_nr_pages(page);
- reclaim_stat->recent_rotated[file] += numpages;
- }
- if (put_page_testzero(page)) {
- __ClearPageLRU(page);
- __ClearPageActive(page);
- del_page_from_lru_list(zone, page, lru);
- if (unlikely(PageCompound(page))) {
- spin_unlock_irq(&zone->lru_lock);
- (*get_compound_page_dtor(page))(page);
- spin_lock_irq(&zone->lru_lock);
- } else
- list_add(&page->lru, &pages_to_free);
- }
- }
- /*
- * To save our caller's stack, now use input list for pages to free.
- */
- list_splice(&pages_to_free, page_list);
- }
- /*
- * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
- * of reclaimed pages
- */
- static noinline_for_stack unsigned long
- shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
- struct scan_control *sc, enum lru_list lru)
- {
- LIST_HEAD(page_list);
- unsigned long nr_scanned;
- unsigned long nr_reclaimed = 0;
- unsigned long nr_taken;
- unsigned long nr_dirty = 0;
- unsigned long nr_writeback = 0;
- isolate_mode_t isolate_mode = 0;
- int file = is_file_lru(lru);
- int safe = 0;
- struct zone *zone = mz->zone;
- struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
- struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, mz->mem_cgroup);
- while (unlikely(too_many_isolated(zone, file, sc, safe))) {
- congestion_wait(BLK_RW_ASYNC, HZ/10);
- /* We are about to die and free our memory. Return now. */
- if (fatal_signal_pending(current))
- return SWAP_CLUSTER_MAX;
- safe = 1;
- }
- lru_add_drain();
- if (!sc->may_unmap)
- isolate_mode |= ISOLATE_UNMAPPED;
- if (!sc->may_writepage)
- isolate_mode |= ISOLATE_CLEAN;
- spin_lock_irq(&zone->lru_lock);
- nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
- &nr_scanned, sc, isolate_mode, lru);
- __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
- __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
- if (global_reclaim(sc)) {
- zone->pages_scanned += nr_scanned;
- if (current_is_kswapd())
- __count_zone_vm_events(PGSCAN_KSWAPD, zone,
- nr_scanned);
- else
- __count_zone_vm_events(PGSCAN_DIRECT, zone,
- nr_scanned);
- }
- spin_unlock_irq(&zone->lru_lock);
- if (nr_taken == 0)
- return 0;
- nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
- &nr_dirty, &nr_writeback, false);
- spin_lock_irq(&zone->lru_lock);
- reclaim_stat->recent_scanned[file] += nr_taken;
- if (global_reclaim(sc)) {
- if (current_is_kswapd())
- __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
- nr_reclaimed);
- else
- __count_zone_vm_events(PGSTEAL_DIRECT, zone,
- nr_reclaimed);
- }
- putback_inactive_pages(mz, &page_list);
- __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
- spin_unlock_irq(&zone->lru_lock);
- free_hot_cold_page_list(&page_list, 1);
- /*
- * If reclaim is isolating dirty pages under writeback, it implies
- * that the long-lived page allocation rate is exceeding the page
- * laundering rate. Either the global limits are not being effective
- * at throttling processes due to the page distribution throughout
- * zones or there is heavy usage of a slow backing device. The
- * only option is to throttle from reclaim context which is not ideal
- * as there is no guarantee the dirtying process is throttled in the
- * same way balance_dirty_pages() manages.
- *
- * This scales the number of dirty pages that must be under writeback
- * before throttling depending on priority. It is a simple backoff
- * function that has the most effect in the range DEF_PRIORITY to
- * DEF_PRIORITY-2 which is the priority reclaim is considered to be
- * in trouble and reclaim is considered to be in trouble.
- *
- * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
- * DEF_PRIORITY-1 50% must be PageWriteback
- * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
- * ...
- * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
- * isolated page is PageWriteback
- */
- if (nr_writeback && nr_writeback >=
- (nr_taken >> (DEF_PRIORITY - sc->priority)))
- wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
- #ifdef CONFIG_RUNTIME_COMPCACHE
- if (!file) {
- if (rtcc_reclaim(sc))
- sc->rc->nr_swapped += nr_reclaimed;
- else
- nr_kswapd_swapped += nr_reclaimed;
- }
- #endif /* CONFIG_RUNTIME_COMPCACHE */
- trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
- zone_idx(zone),
- nr_scanned, nr_reclaimed,
- sc->priority,
- trace_shrink_flags(file));
- return nr_reclaimed;
- }
- /*
- * This moves pages from the active list to the inactive list.
- *
- * We move them the other way if the page is referenced by one or more
- * processes, from rmap.
- *
- * If the pages are mostly unmapped, the processing is fast and it is
- * appropriate to hold zone->lru_lock across the whole operation. But if
- * the pages are mapped, the processing is slow (page_referenced()) so we
- * should drop zone->lru_lock around each page. It's impossible to balance
- * this, so instead we remove the pages from the LRU while processing them.
- * It is safe to rely on PG_active against the non-LRU pages in here because
- * nobody will play with that bit on a non-LRU page.
- *
- * The downside is that we have to touch page->_count against each page.
- * But we had to alter page->flags anyway.
- */
- static void move_active_pages_to_lru(struct zone *zone,
- struct list_head *list,
- struct list_head *pages_to_free,
- enum lru_list lru)
- {
- unsigned long pgmoved = 0;
- struct page *page;
- #if defined(CONFIG_CMA_PAGE_COUNTING)
- unsigned long nr_cma = 0;
- #endif
- while (!list_empty(list)) {
- struct lruvec *lruvec;
- page = lru_to_page(list);
- VM_BUG_ON(PageLRU(page));
- SetPageLRU(page);
- lruvec = mem_cgroup_lru_add_list(zone, page, lru);
- list_move(&page->lru, &lruvec->lists[lru]);
- pgmoved += hpage_nr_pages(page);
- #if defined(CONFIG_CMA_PAGE_COUNTING)
- if (PageCMA(page))
- nr_cma++;
- #endif
- if (put_page_testzero(page)) {
- __ClearPageLRU(page);
- __ClearPageActive(page);
- del_page_from_lru_list(zone, page, lru);
- if (unlikely(PageCompound(page))) {
- spin_unlock_irq(&zone->lru_lock);
- (*get_compound_page_dtor(page))(page);
- spin_lock_irq(&zone->lru_lock);
- } else
- list_add(&page->lru, pages_to_free);
- }
- }
- __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
- #if defined(CONFIG_CMA_PAGE_COUNTING)
- __mod_zone_page_state(zone, NR_FREE_CMA_PAGES + 1 + lru, nr_cma);
- #endif
- if (!is_active_lru(lru))
- __count_vm_events(PGDEACTIVATE, pgmoved);
- }
- static void shrink_active_list(unsigned long nr_to_scan,
- struct mem_cgroup_zone *mz,
- struct scan_control *sc,
- enum lru_list lru)
- {
- unsigned long nr_taken;
- unsigned long nr_scanned;
- unsigned long vm_flags;
- LIST_HEAD(l_hold); /* The pages which were snipped off */
- LIST_HEAD(l_active);
- LIST_HEAD(l_inactive);
- struct page *page;
- struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
- unsigned long nr_rotated = 0;
- isolate_mode_t isolate_mode = 0;
- int file = is_file_lru(lru);
- struct zone *zone = mz->zone;
- struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, mz->mem_cgroup);
- lru_add_drain();
- if (!sc->may_unmap)
- isolate_mode |= ISOLATE_UNMAPPED;
- if (!sc->may_writepage)
- isolate_mode |= ISOLATE_CLEAN;
- spin_lock_irq(&zone->lru_lock);
- nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
- &nr_scanned, sc, isolate_mode, lru);
- if (global_reclaim(sc))
- zone->pages_scanned += nr_scanned;
- reclaim_stat->recent_scanned[file] += nr_taken;
- __count_zone_vm_events(PGREFILL, zone, nr_scanned);
- __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
- __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
- spin_unlock_irq(&zone->lru_lock);
- while (!list_empty(&l_hold)) {
- cond_resched();
- page = lru_to_page(&l_hold);
- list_del(&page->lru);
- if (unlikely(!page_evictable(page))) {
- putback_lru_page(page);
- continue;
- }
- if (unlikely(buffer_heads_over_limit)) {
- if (page_has_private(page) && trylock_page(page)) {
- if (page_has_private(page))
- try_to_release_page(page, 0);
- unlock_page(page);
- }
- }
- if (page_referenced(page, 0, sc->target_mem_cgroup,
- &vm_flags)) {
- nr_rotated += hpage_nr_pages(page);
- /*
- * Identify referenced, file-backed active pages and
- * give them one more trip around the active list. So
- * that executable code get better chances to stay in
- * memory under moderate memory pressure. Anon pages
- * are not likely to be evicted by use-once streaming
- * IO, plus JVM can create lots of anon VM_EXEC pages,
- * so we ignore them here.
- */
- if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
- list_add(&page->lru, &l_active);
- continue;
- }
- }
- ClearPageActive(page); /* we are de-activating */
- #if IS_ENABLED(CONFIG_ZCACHE)
- /*
- * For zcache to know whether the page is from active
- * file list
- */
- SetPageWasActive(page);
- #endif
- list_add(&page->lru, &l_inactive);
- }
- /*
- * Move pages back to the lru list.
- */
- spin_lock_irq(&zone->lru_lock);
- /*
- * Count referenced pages from currently used mappings as rotated,
- * even though only some of them are actually re-activated. This
- * helps balance scan pressure between file and anonymous pages in
- * get_scan_ratio.
- */
- reclaim_stat->recent_rotated[file] += nr_rotated;
- move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
- move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
- __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
- spin_unlock_irq(&zone->lru_lock);
- free_hot_cold_page_list(&l_hold, 1);
- }
- #ifdef CONFIG_SWAP
- static int inactive_anon_is_low_global(struct zone *zone)
- {
- unsigned long active, inactive;
- active = zone_page_state(zone, NR_ACTIVE_ANON);
- inactive = zone_page_state(zone, NR_INACTIVE_ANON);
- if (inactive * zone->inactive_ratio < active)
- return 1;
- return 0;
- }
- /**
- * inactive_anon_is_low - check if anonymous pages need to be deactivated
- * @zone: zone to check
- * @sc: scan control of this context
- *
- * Returns true if the zone does not have enough inactive anon pages,
- * meaning some active anon pages need to be deactivated.
- */
- static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
- {
- /*
- * If we don't have swap space, anonymous page deactivation
- * is pointless.
- */
- if (!total_swap_pages)
- return 0;
- if (!mem_cgroup_disabled())
- return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
- mz->zone);
- return inactive_anon_is_low_global(mz->zone);
- }
- #else
- static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
- {
- return 0;
- }
- #endif
- static int inactive_file_is_low_global(struct zone *zone)
- {
- unsigned long active, inactive;
- active = zone_page_state(zone, NR_ACTIVE_FILE);
- inactive = zone_page_state(zone, NR_INACTIVE_FILE);
- return (active > inactive);
- }
- /**
- * inactive_file_is_low - check if file pages need to be deactivated
- * @mz: memory cgroup and zone to check
- *
- * When the system is doing streaming IO, memory pressure here
- * ensures that active file pages get deactivated, until more
- * than half of the file pages are on the inactive list.
- *
- * Once we get to that situation, protect the system's working
- * set from being evicted by disabling active file page aging.
- *
- * This uses a different ratio than the anonymous pages, because
- * the page cache uses a use-once replacement algorithm.
- */
- static int inactive_file_is_low(struct mem_cgroup_zone *mz)
- {
- if (!mem_cgroup_disabled())
- return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
- mz->zone);
- return inactive_file_is_low_global(mz->zone);
- }
- static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
- {
- if (file)
- return inactive_file_is_low(mz);
- else
- return inactive_anon_is_low(mz);
- }
- static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
- struct mem_cgroup_zone *mz,
- struct scan_control *sc)
- {
- int file = is_file_lru(lru);
- if (is_active_lru(lru)) {
- if (inactive_list_is_low(mz, file))
- shrink_active_list(nr_to_scan, mz, sc, lru);
- return 0;
- }
- return shrink_inactive_list(nr_to_scan, mz, sc, lru);
- }
- static int vmscan_swappiness(struct scan_control *sc)
- {
- #ifdef CONFIG_RUNTIME_COMPCACHE
- if (rtcc_reclaim(sc))
- return sc->rc->swappiness;
- #endif /* CONFIG_RUNTIME_COMPCACHE */
- if (global_reclaim(sc))
- return sc->swappiness;
- return mem_cgroup_swappiness(sc->target_mem_cgroup);
- }
- /*
- * Determine how aggressively the anon and file LRU lists should be
- * scanned. The relative value of each set of LRU lists is determined
- * by looking at the fraction of the pages scanned we did rotate back
- * onto the active list instead of evict.
- *
- * nr[0] = anon pages to scan; nr[1] = file pages to scan
- */
- static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
- unsigned long *nr)
- {
- unsigned long anon, file, free;
- unsigned long anon_prio, file_prio;
- unsigned long ap, fp;
- struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
- u64 fraction[2], denominator;
- enum lru_list lru;
- int noswap = 0;
- bool force_scan = false;
- bool some_scanned;
- int pass;
- /*
- * If the zone or memcg is small, nr[l] can be 0. This
- * results in no scanning on this priority and a potential
- * priority drop. Global direct reclaim can go to the next
- * zone and tends to have no problems. Global kswapd is for
- * zone balancing and it needs to scan a minimum amount. When
- * reclaiming for a memcg, a priority drop can cause high
- * latencies, so it's better to scan a minimum amount there as
- * well.
- */
- if (current_is_kswapd() && !zone_reclaimable(mz->zone))
- force_scan = true;
- if (!global_reclaim(sc))
- force_scan = true;
- /* If we have no swap space, do not bother scanning anon pages. */
- if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
- noswap = 1;
- fraction[0] = 0;
- fraction[1] = 1;
- denominator = 1;
- goto out;
- }
- anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
- zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
- file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
- zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
- if (global_reclaim(sc)) {
- free = zone_page_state(mz->zone, NR_FREE_PAGES);
- /* If we have very few page cache pages,
- force-scan anon pages. */
- if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
- fraction[0] = 1;
- fraction[1] = 0;
- denominator = 1;
- goto out;
- }
- }
- /*
- * With swappiness at 100, anonymous and file have the same priority.
- * This scanning priority is essentially the inverse of IO cost.
- */
- anon_prio = vmscan_swappiness(sc);
- #ifdef CONFIG_INCREASE_MAXIMUM_SWAPPINESS
- file_prio = max_swappiness - vmscan_swappiness(sc);
- #else
- file_prio = 200 - vmscan_swappiness(sc);
- #endif
- /*
- * OK, so we have swap space and a fair amount of page cache
- * pages. We use the recently rotated / recently scanned
- * ratios to determine how valuable each cache is.
- *
- * Because workloads change over time (and to avoid overflow)
- * we keep these statistics as a floating average, which ends
- * up weighing recent references more than old ones.
- *
- * anon in [0], file in [1]
- */
- spin_lock_irq(&mz->zone->lru_lock);
- if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
- reclaim_stat->recent_scanned[0] /= 2;
- reclaim_stat->recent_rotated[0] /= 2;
- }
- if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
- reclaim_stat->recent_scanned[1] /= 2;
- reclaim_stat->recent_rotated[1] /= 2;
- }
- /*
- * The amount of pressure on anon vs file pages is inversely
- * proportional to the fraction of recently scanned pages on
- * each list that were recently referenced and in active use.
- */
- ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
- ap /= reclaim_stat->recent_rotated[0] + 1;
- fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
- fp /= reclaim_stat->recent_rotated[1] + 1;
- spin_unlock_irq(&mz->zone->lru_lock);
- fraction[0] = ap;
- fraction[1] = fp;
- denominator = ap + fp + 1;
- out:
- some_scanned = false;
- /* Only use force_scan on second pass. */
- for (pass = 0; !some_scanned && pass < 2; pass++) {
- for_each_evictable_lru(lru) {
- int file = is_file_lru(lru);
- unsigned long scan;
- scan = zone_nr_lru_pages(mz, lru);
- if (sc->priority || noswap || !vmscan_swappiness(sc)) {
- scan >>= sc->priority;
- if (!scan && pass && force_scan)
- scan = SWAP_CLUSTER_MAX;
- scan = div64_u64(scan * fraction[file], denominator);
- }
- nr[lru] = scan;
- /*
- * Skip the second pass and don't force_scan,
- * if we found something to scan.
- */
- some_scanned |= !!scan;
- }
- }
- }
- /* Use reclaim/compaction for costly allocs or under memory pressure */
- static bool in_reclaim_compaction(struct scan_control *sc)
- {
- if (COMPACTION_BUILD && sc->order &&
- (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
- sc->priority < DEF_PRIORITY - 2))
- return true;
- return false;
- }
- /*
- * Reclaim/compaction is used for high-order allocation requests. It reclaims
- * order-0 pages before compacting the zone. should_continue_reclaim() returns
- * true if more pages should be reclaimed such that when the page allocator
- * calls try_to_compact_zone() that it will have enough free pages to succeed.
- * It will give up earlier than that if there is difficulty reclaiming pages.
- */
- static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
- unsigned long nr_reclaimed,
- unsigned long nr_scanned,
- struct scan_control *sc)
- {
- unsigned long pages_for_compaction;
- unsigned long inactive_lru_pages;
- /* If not in reclaim/compaction mode, stop */
- if (!in_reclaim_compaction(sc))
- return false;
- /* Consider stopping depending on scan and reclaim activity */
- if (sc->gfp_mask & __GFP_REPEAT) {
- /*
- * For __GFP_REPEAT allocations, stop reclaiming if the
- * full LRU list has been scanned and we are still failing
- * to reclaim pages. This full LRU scan is potentially
- * expensive but a __GFP_REPEAT caller really wants to succeed
- */
- if (!nr_reclaimed && !nr_scanned)
- return false;
- } else {
- /*
- * For non-__GFP_REPEAT allocations which can presumably
- * fail without consequence, stop if we failed to reclaim
- * any pages from the last SWAP_CLUSTER_MAX number of
- * pages that were scanned. This will return to the
- * caller faster at the risk reclaim/compaction and
- * the resulting allocation attempt fails
- */
- if (!nr_reclaimed)
- return false;
- }
- /*
- * If we have not reclaimed enough pages for compaction and the
- * inactive lists are large enough, continue reclaiming
- */
- pages_for_compaction = (2UL << sc->order);
- inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
- if (get_nr_swap_pages() > 0)
- inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
- if (sc->nr_reclaimed < pages_for_compaction &&
- inactive_lru_pages > pages_for_compaction)
- return true;
- /* If compaction would go ahead or the allocation would succeed, stop */
- switch (compaction_suitable(mz->zone, sc->order)) {
- case COMPACT_PARTIAL:
- case COMPACT_CONTINUE:
- return false;
- default:
- return true;
- }
- }
- /*
- * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
- */
- static void shrink_mem_cgroup_zone(struct mem_cgroup_zone *mz,
- struct scan_control *sc)
- {
- unsigned long nr[NR_LRU_LISTS];
- unsigned long nr_to_scan;
- enum lru_list lru;
- unsigned long nr_reclaimed, nr_scanned;
- unsigned long nr_to_reclaim = sc->nr_to_reclaim;
- struct blk_plug plug;
- #ifdef CONFIG_RUNTIME_COMPCACHE
- struct rtcc_control *rc = sc->rc;
- #endif /* CONFIG_RUNTIME_COMPCACHE */
- restart:
- nr_reclaimed = 0;
- nr_scanned = sc->nr_scanned;
- get_scan_count(mz, sc, nr);
- #ifdef CONFIG_RUNTIME_COMPCACHE
- if (rtcc_reclaim(sc))
- nr[LRU_INACTIVE_FILE] = nr[LRU_ACTIVE_FILE] = 0;
- #endif /* CONFIG_RUNTIME_COMPCACHE */
- blk_start_plug(&plug);
- while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
- nr[LRU_INACTIVE_FILE]) {
- #ifdef CONFIG_RUNTIME_COMPCACHE
- if (rtcc_reclaim(sc)) {
- if (rc->nr_swapped >= rc->nr_anon)
- nr[LRU_INACTIVE_ANON] = nr[LRU_ACTIVE_ANON] = 0;
- }
- #endif /* CONFIG_RUNTIME_COMPCACHE */
- for_each_evictable_lru(lru) {
- if (nr[lru]) {
- nr_to_scan = min_t(unsigned long,
- nr[lru], SWAP_CLUSTER_MAX);
- nr[lru] -= nr_to_scan;
- nr_reclaimed += shrink_list(lru, nr_to_scan,
- mz, sc);
- }
- }
- /*
- * On large memory systems, scan >> priority can become
- * really large. This is fine for the starting priority;
- * we want to put equal scanning pressure on each zone.
- * However, if the VM has a harder time of freeing pages,
- * with multiple processes reclaiming pages, the total
- * freeing target can get unreasonably large.
- */
- if (nr_reclaimed >= nr_to_reclaim &&
- sc->priority < DEF_PRIORITY)
- break;
- }
- blk_finish_plug(&plug);
- sc->nr_reclaimed += nr_reclaimed;
- /*
- * Even if we did not try to evict anon pages at all, we want to
- * rebalance the anon lru active/inactive ratio.
- */
- if (inactive_anon_is_low(mz))
- shrink_active_list(SWAP_CLUSTER_MAX, mz,
- sc, LRU_ACTIVE_ANON);
- /* reclaim/compaction might need reclaim to continue */
- if (should_continue_reclaim(mz, nr_reclaimed,
- sc->nr_scanned - nr_scanned, sc))
- goto restart;
- throttle_vm_writeout(sc->gfp_mask);
- }
- static void shrink_zone(struct zone *zone, struct scan_control *sc)
- {
- unsigned long nr_reclaimed, nr_scanned;
- struct mem_cgroup *root = sc->target_mem_cgroup;
- struct mem_cgroup_reclaim_cookie reclaim = {
- .zone = zone,
- .priority = sc->priority,
- };
- struct mem_cgroup *memcg;
- nr_reclaimed = sc->nr_reclaimed;
- nr_scanned = sc->nr_scanned;
- memcg = mem_cgroup_iter(root, NULL, &reclaim);
- do {
- struct mem_cgroup_zone mz = {
- .mem_cgroup = memcg,
- .zone = zone,
- };
- shrink_mem_cgroup_zone(&mz, sc);
- /*
- * Limit reclaim has historically picked one memcg and
- * scanned it with decreasing priority levels until
- * nr_to_reclaim had been reclaimed. This priority
- * cycle is thus over after a single memcg.
- *
- * Direct reclaim and kswapd, on the other hand, have
- * to scan all memory cgroups to fulfill the overall
- * scan target for the zone.
- */
- if (!global_reclaim(sc)) {
- mem_cgroup_iter_break(root, memcg);
- break;
- }
- memcg = mem_cgroup_iter(root, memcg, &reclaim);
- } while (memcg);
- vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
- sc->nr_scanned - nr_scanned,
- sc->nr_reclaimed - nr_reclaimed);
- }
- /* Returns true if compaction should go ahead for a high-order request */
- static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
- {
- unsigned long balance_gap, watermark;
- bool watermark_ok;
- /* Do not consider compaction for orders reclaim is meant to satisfy */
- if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
- return false;
- /*
- * Compaction takes time to run and there are potentially other
- * callers using the pages just freed. Continue reclaiming until
- * there is a buffer of free pages available to give compaction
- * a reasonable chance of completing and allocating the page
- */
- balance_gap = min(low_wmark_pages(zone),
- (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
- KSWAPD_ZONE_BALANCE_GAP_RATIO);
- watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
- watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
- /*
- * If compaction is deferred, reclaim up to a point where
- * compaction will have a chance of success when re-enabled
- */
- if (compaction_deferred(zone, sc->order))
- return watermark_ok;
- /* If compaction is not ready to start, keep reclaiming */
- if (!compaction_suitable(zone, sc->order))
- return false;
- return watermark_ok;
- }
- /*
- * This is the direct reclaim path, for page-allocating processes. We only
- * try to reclaim pages from zones which will satisfy the caller's allocation
- * request.
- *
- * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
- * Because:
- * a) The caller may be trying to free *extra* pages to satisfy a higher-order
- * allocation or
- * b) The target zone may be at high_wmark_pages(zone) but the lower zones
- * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
- * zone defense algorithm.
- *
- * If a zone is deemed to be full of pinned pages then just give it a light
- * scan then give up on it.
- *
- * This function returns true if a zone is being reclaimed for a costly
- * high-order allocation and compaction is ready to begin. This indicates to
- * the caller that it should consider retrying the allocation instead of
- * further reclaim.
- */
- static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
- {
- struct zoneref *z;
- struct zone *zone;
- unsigned long nr_soft_reclaimed;
- unsigned long nr_soft_scanned;
- bool aborted_reclaim = false;
- /*
- * If the number of buffer_heads in the machine exceeds the maximum
- * allowed level, force direct reclaim to scan the highmem zone as
- * highmem pages could be pinning lowmem pages storing buffer_heads
- */
- if (buffer_heads_over_limit)
- sc->gfp_mask |= __GFP_HIGHMEM;
- for_each_zone_zonelist_nodemask(zone, z, zonelist,
- gfp_zone(sc->gfp_mask), sc->nodemask) {
- if (!populated_zone(zone))
- continue;
- /*
- * Take care memory controller reclaiming has small influence
- * to global LRU.
- */
- if (global_reclaim(sc)) {
- if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
- continue;
- if (sc->priority != DEF_PRIORITY &&
- !zone_reclaimable(zone))
- continue; /* Let kswapd poll it */
- if (COMPACTION_BUILD) {
- /*
- * If we already have plenty of memory free for
- * compaction in this zone, don't free any more.
- * Even though compaction is invoked for any
- * non-zero order, only frequent costly order
- * reclamation is disruptive enough to become a
- * noticeable problem, like transparent huge
- * page allocations.
- */
- if (compaction_ready(zone, sc)) {
- aborted_reclaim = true;
- continue;
- }
- }
- /*
- * This steals pages from memory cgroups over softlimit
- * and returns the number of reclaimed pages and
- * scanned pages. This works for global memory pressure
- * and balancing, not for a memcg's limit.
- */
- nr_soft_scanned = 0;
- nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
- sc->order, sc->gfp_mask,
- &nr_soft_scanned);
- sc->nr_reclaimed += nr_soft_reclaimed;
- sc->nr_scanned += nr_soft_scanned;
- /* need some check for avoid more shrink_zone() */
- }
- shrink_zone(zone, sc);
- }
- return aborted_reclaim;
- }
- /* All zones in zonelist are unreclaimable? */
- static bool all_unreclaimable(struct zonelist *zonelist,
- struct scan_control *sc)
- {
- struct zoneref *z;
- struct zone *zone;
- for_each_zone_zonelist_nodemask(zone, z, zonelist,
- gfp_zone(sc->gfp_mask), sc->nodemask) {
- if (!populated_zone(zone))
- continue;
- if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
- continue;
- if (zone_reclaimable(zone))
- return false;
- }
- return true;
- }
- #ifdef CONFIG_RUNTIME_COMPCACHE
- /*
- * This is the main entry point to direct page reclaim for RTCC.
- *
- * If a full scan of the inactive list fails to free enough memory then we
- * are "out of memory" and something needs to be killed.
- *
- * If the caller is !__GFP_FS then the probability of a failure is reasonably
- * high - the zone may be full of dirty or under-writeback pages, which this
- * caller can't do much about. We kick the writeback threads and take explicit
- * naps in the hope that some of these pages can be written. But if the
- * allocating task holds filesystem locks which prevent writeout this might not
- * work, and the allocation attempt will fail.
- *
- * returns: 0, if no pages reclaimed
- * else, the number of pages reclaimed
- */
- static unsigned long rtcc_do_try_to_free_pages(struct zonelist *zonelist, struct scan_control *sc, struct shrink_control *shrink)
- {
- unsigned long total_scanned = 0;
- unsigned long writeback_threshold;
- bool aborted_reclaim;
- delayacct_freepages_start();
- if (global_reclaim(sc))
- count_vm_event(ALLOCSTALL);
- do {
- sc->nr_scanned = 0;
- aborted_reclaim = shrink_zones(zonelist, sc);
- total_scanned += sc->nr_scanned;
- if (sc->nr_reclaimed >= sc->nr_to_reclaim)
- goto out;
- /*
- * Try to write back as many pages as we just scanned. This
- * tends to cause slow streaming writers to write data to the
- * disk smoothly, at the dirtying rate, which is nice. But
- * that's undesirable in laptop mode, where we *want* lumpy
- * writeout. So in laptop mode, write out the whole world.
- */
- writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
- if (total_scanned > writeback_threshold) {
- wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
- WB_REASON_TRY_TO_FREE_PAGES);
- sc->may_writepage = 1;
- }
- /* Take a nap, wait for some writeback to complete */
- if (!sc->hibernation_mode && sc->nr_scanned &&
- sc->priority < DEF_PRIORITY - 2) {
- struct zone *preferred_zone;
- first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
- &cpuset_current_mems_allowed,
- &preferred_zone);
- wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
- }
- } while (--sc->priority >= 0);
- out:
- delayacct_freepages_end();
- if (sc->nr_reclaimed)
- return sc->nr_reclaimed;
- /*
- * As hibernation is going on, kswapd is freezed so that it can't mark
- * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
- * check.
- */
- if (oom_killer_disabled)
- return 0;
- /* Aborted reclaim to try compaction? don't OOM, then */
- if (aborted_reclaim)
- return 1;
- /* top priority shrink_zones still had more to do? don't OOM, then */
- if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
- return 1;
- return 0;
- }
- unsigned long rtcc_reclaim_pages(unsigned long nr_to_reclaim, int swappiness, unsigned long *nr_swapped)
- {
- struct reclaim_state reclaim_state;
- struct scan_control sc = {
- .gfp_mask = GFP_HIGHUSER_MOVABLE,
- .may_swap = 1,
- .may_unmap = 1,
- .may_writepage = 1,
- .nr_to_reclaim = nr_to_reclaim,
- .target_mem_cgroup = NULL,
- .order = 0,
- .priority = DEF_PRIORITY/2,
- };
- struct shrink_control shrink = {
- .gfp_mask = sc.gfp_mask,
- };
- struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
- struct task_struct *p = current;
- unsigned long nr_reclaimed;
- struct rtcc_control rc;
- rc.swappiness = swappiness;
- rc.nr_anon = nr_to_reclaim * swappiness / 200;
- rc.nr_file = nr_to_reclaim - rc.nr_anon;
- rc.nr_swapped = 0;
- sc.rc = &rc;
-
- if (swappiness <= 1)
- sc.may_swap = 0;
- p->flags |= PF_MEMALLOC;
- lockdep_set_current_reclaim_state(sc.gfp_mask);
- reclaim_state.reclaimed_slab = 0;
- p->reclaim_state = &reclaim_state;
- nr_reclaimed = rtcc_do_try_to_free_pages(zonelist, &sc, &shrink);
- *nr_swapped = rc.nr_swapped;
- p->reclaim_state = NULL;
- lockdep_clear_current_reclaim_state();
- p->flags &= ~PF_MEMALLOC;
- return nr_reclaimed;
- }
- #endif /* CONFIG_RUNTIME_COMPCACHE */
- /*
- * This is the main entry point to direct page reclaim.
- *
- * If a full scan of the inactive list fails to free enough memory then we
- * are "out of memory" and something needs to be killed.
- *
- * If the caller is !__GFP_FS then the probability of a failure is reasonably
- * high - the zone may be full of dirty or under-writeback pages, which this
- * caller can't do much about. We kick the writeback threads and take explicit
- * naps in the hope that some of these pages can be written. But if the
- * allocating task holds filesystem locks which prevent writeout this might not
- * work, and the allocation attempt will fail.
- *
- * returns: 0, if no pages reclaimed
- * else, the number of pages reclaimed
- */
- static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
- struct scan_control *sc,
- struct shrink_control *shrink)
- {
- unsigned long total_scanned = 0;
- struct reclaim_state *reclaim_state = current->reclaim_state;
- struct zoneref *z;
- struct zone *zone;
- unsigned long writeback_threshold;
- bool aborted_reclaim;
- delayacct_freepages_start();
- if (global_reclaim(sc))
- count_vm_event(ALLOCSTALL);
- do {
- sc->nr_scanned = 0;
- aborted_reclaim = shrink_zones(zonelist, sc);
- /*
- * Don't shrink slabs when reclaiming memory from
- * over limit cgroups
- */
- if (global_reclaim(sc)) {
- unsigned long lru_pages = 0;
- for_each_zone_zonelist(zone, z, zonelist,
- gfp_zone(sc->gfp_mask)) {
- if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
- continue;
- lru_pages += zone_reclaimable_pages(zone);
- }
- shrink->priority = sc->priority;
- shrink_slab(shrink, sc->nr_scanned, lru_pages);
- if (reclaim_state) {
- sc->nr_reclaimed += reclaim_state->reclaimed_slab;
- reclaim_state->reclaimed_slab = 0;
- }
- }
- total_scanned += sc->nr_scanned;
- if (sc->nr_reclaimed >= sc->nr_to_reclaim)
- goto out;
- /*
- * If we're getting trouble reclaiming, start doing
- * writepage even in laptop mode.
- */
- if (sc->priority < DEF_PRIORITY - 2)
- sc->may_writepage = 1;
- /*
- * Try to write back as many pages as we just scanned. This
- * tends to cause slow streaming writers to write data to the
- * disk smoothly, at the dirtying rate, which is nice. But
- * that's undesirable in laptop mode, where we *want* lumpy
- * writeout. So in laptop mode, write out the whole world.
- */
- writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
- if (total_scanned > writeback_threshold) {
- wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
- WB_REASON_TRY_TO_FREE_PAGES);
- sc->may_writepage = 1;
- }
- /* Take a nap, wait for some writeback to complete */
- if (!sc->hibernation_mode && sc->nr_scanned &&
- sc->priority < DEF_PRIORITY - 2) {
- struct zone *preferred_zone;
- first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
- &cpuset_current_mems_allowed,
- &preferred_zone);
- wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
- }
- } while (--sc->priority >= 0);
- out:
- delayacct_freepages_end();
- if (sc->nr_reclaimed)
- return sc->nr_reclaimed;
- /*
- * As hibernation is going on, kswapd is freezed so that it can't mark
- * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
- * check.
- */
- if (oom_killer_disabled)
- return 0;
- /* Aborted reclaim to try compaction? don't OOM, then */
- if (aborted_reclaim)
- return 1;
- /* top priority shrink_zones still had more to do? don't OOM, then */
- if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
- return 1;
- return 0;
- }
- unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
- gfp_t gfp_mask, nodemask_t *nodemask)
- {
- unsigned long nr_reclaimed;
- struct scan_control sc = {
- .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
- .may_writepage = !laptop_mode,
- .nr_to_reclaim = SWAP_CLUSTER_MAX,
- .may_unmap = 1,
- #if defined(CONFIG_DIRECT_RECLAIM_FILE_PAGES_ONLY) || defined(CONFIG_RUNTIME_COMPCACHE)
- .may_swap = 0,
- #else
- .may_swap = 1,
- #endif
- #ifdef CONFIG_ZSWAP
- .swappiness = vm_swappiness / 2,
- #else
- .swappiness = vm_swappiness,
- #endif
- .order = order,
- .priority = DEF_PRIORITY,
- .target_mem_cgroup = NULL,
- .nodemask = nodemask,
- };
- struct shrink_control shrink = {
- .gfp_mask = sc.gfp_mask,
- };
- trace_mm_vmscan_direct_reclaim_begin(order,
- sc.may_writepage,
- gfp_mask);
- nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
- trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
- return nr_reclaimed;
- }
- #ifdef CONFIG_MEMCG
- unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
- gfp_t gfp_mask, bool noswap,
- struct zone *zone,
- unsigned long *nr_scanned)
- {
- struct scan_control sc = {
- .nr_scanned = 0,
- .nr_to_reclaim = SWAP_CLUSTER_MAX,
- .may_writepage = !laptop_mode,
- .may_unmap = 1,
- .may_swap = !noswap,
- .order = 0,
- .swappiness = vm_swappiness,
- .priority = 0,
- .target_mem_cgroup = memcg,
- };
- struct mem_cgroup_zone mz = {
- .mem_cgroup = memcg,
- .zone = zone,
- };
- sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
- (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
- trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
- sc.may_writepage,
- sc.gfp_mask);
- /*
- * NOTE: Although we can get the priority field, using it
- * here is not a good idea, since it limits the pages we can scan.
- * if we don't reclaim here, the shrink_zone from balance_pgdat
- * will pick up pages from other mem cgroup's as well. We hack
- * the priority and make it zero.
- */
- shrink_mem_cgroup_zone(&mz, &sc);
- trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
- *nr_scanned = sc.nr_scanned;
- return sc.nr_reclaimed;
- }
- unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
- gfp_t gfp_mask,
- bool noswap)
- {
- struct zonelist *zonelist;
- unsigned long nr_reclaimed;
- int nid;
- struct scan_control sc = {
- .may_writepage = !laptop_mode,
- .may_unmap = 1,
- .may_swap = !noswap,
- .nr_to_reclaim = SWAP_CLUSTER_MAX,
- .order = 0,
- .swappiness = vm_swappiness,
- .priority = DEF_PRIORITY,
- .target_mem_cgroup = memcg,
- .nodemask = NULL, /* we don't care the placement */
- .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
- (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
- };
- struct shrink_control shrink = {
- .gfp_mask = sc.gfp_mask,
- };
- /*
- * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
- * take care of from where we get pages. So the node where we start the
- * scan does not need to be the current node.
- */
- nid = mem_cgroup_select_victim_node(memcg);
- zonelist = NODE_DATA(nid)->node_zonelists;
- trace_mm_vmscan_memcg_reclaim_begin(0,
- sc.may_writepage,
- sc.gfp_mask);
- nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
- trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
- return nr_reclaimed;
- }
- #endif
- static void age_active_anon(struct zone *zone, struct scan_control *sc)
- {
- struct mem_cgroup *memcg;
- if (!total_swap_pages)
- return;
- memcg = mem_cgroup_iter(NULL, NULL, NULL);
- do {
- struct mem_cgroup_zone mz = {
- .mem_cgroup = memcg,
- .zone = zone,
- };
- if (inactive_anon_is_low(&mz))
- shrink_active_list(SWAP_CLUSTER_MAX, &mz,
- sc, LRU_ACTIVE_ANON);
- memcg = mem_cgroup_iter(NULL, memcg, NULL);
- } while (memcg);
- }
- static bool zone_balanced(struct zone *zone, int order,
- unsigned long balance_gap, int classzone_idx)
- {
- if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
- balance_gap, classzone_idx, 0))
- return false;
- if (COMPACTION_BUILD && order && !compaction_suitable(zone, order))
- return false;
- return true;
- }
- /*
- * pgdat_balanced is used when checking if a node is balanced for high-order
- * allocations. Only zones that meet watermarks and are in a zone allowed
- * by the callers classzone_idx are added to balanced_pages. The total of
- * balanced pages must be at least 25% of the zones allowed by classzone_idx
- * for the node to be considered balanced. Forcing all zones to be balanced
- * for high orders can cause excessive reclaim when there are imbalanced zones.
- * The choice of 25% is due to
- * o a 16M DMA zone that is balanced will not balance a zone on any
- * reasonable sized machine
- * o On all other machines, the top zone must be at least a reasonable
- * percentage of the middle zones. For example, on 32-bit x86, highmem
- * would need to be at least 256M for it to be balance a whole node.
- * Similarly, on x86-64 the Normal zone would need to be at least 1G
- * to balance a node on its own. These seemed like reasonable ratios.
- */
- static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
- int classzone_idx)
- {
- unsigned long present_pages = 0;
- int i;
- for (i = 0; i <= classzone_idx; i++)
- present_pages += pgdat->node_zones[i].present_pages;
- #ifdef CONFIG_TIGHT_PGDAT_BALANCE
- return balanced_pages >= (present_pages >> 1);
- #else
- /* A special case here: if zone has no page, we think it's balanced */
- return balanced_pages >= (present_pages >> 2);
- #endif
- }
- /* is kswapd sleeping prematurely? */
- static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
- int classzone_idx)
- {
- int i;
- unsigned long balanced = 0;
- bool all_zones_ok = true;
- /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
- if (remaining)
- return true;
- /* Check the watermark levels */
- for (i = 0; i <= classzone_idx; i++) {
- struct zone *zone = pgdat->node_zones + i;
- if (!populated_zone(zone))
- continue;
- /*
- * balance_pgdat() skips over all_unreclaimable after
- * DEF_PRIORITY. Effectively, it considers them balanced so
- * they must be considered balanced here as well if kswapd
- * is to sleep
- */
- if (!zone_reclaimable(zone)) {
- balanced += zone->present_pages;
- continue;
- }
- if (!zone_balanced(zone, order, 0, i))
- all_zones_ok = false;
- else
- balanced += zone->present_pages;
- }
- /*
- * For high-order requests, the balanced zones must contain at least
- * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
- * must be balanced
- */
- if (order)
- return !pgdat_balanced(pgdat, balanced, classzone_idx);
- else
- return !all_zones_ok;
- }
- /*
- * For kswapd, balance_pgdat() will work across all this node's zones until
- * they are all at high_wmark_pages(zone).
- *
- * Returns the final order kswapd was reclaiming at
- *
- * There is special handling here for zones which are full of pinned pages.
- * This can happen if the pages are all mlocked, or if they are all used by
- * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
- * What we do is to detect the case where all pages in the zone have been
- * scanned twice and there has been zero successful reclaim. Mark the zone as
- * dead and from now on, only perform a short scan. Basically we're polling
- * the zone for when the problem goes away.
- *
- * kswapd scans the zones in the highmem->normal->dma direction. It skips
- * zones which have free_pages > high_wmark_pages(zone), but once a zone is
- * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
- * lower zones regardless of the number of free pages in the lower zones. This
- * interoperates with the page allocator fallback scheme to ensure that aging
- * of pages is balanced across the zones.
- */
- static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
- int *classzone_idx)
- {
- struct zone *unbalanced_zone;
- unsigned long balanced;
- int i;
- int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
- unsigned long total_scanned;
- struct reclaim_state *reclaim_state = current->reclaim_state;
- unsigned long nr_soft_reclaimed;
- unsigned long nr_soft_scanned;
- struct scan_control sc = {
- .gfp_mask = GFP_KERNEL,
- .may_unmap = 1,
- #ifndef CONFIG_KSWAPD_NOSWAP
- .may_swap = 1,
- #else
- .may_swap = 0,
- #endif /* CONFIG_KSWAPD_NOSWAP */
- /*
- * kswapd doesn't want to be bailed out while reclaim. because
- * we want to put equal scanning pressure on each zone.
- */
- .nr_to_reclaim = ULONG_MAX,
- .order = order,
- .swappiness = vm_swappiness,
- .target_mem_cgroup = NULL,
- };
- struct shrink_control shrink = {
- .gfp_mask = sc.gfp_mask,
- };
- loop_again:
- total_scanned = 0;
- sc.priority = DEF_PRIORITY;
- sc.nr_reclaimed = 0;
- sc.may_writepage = !laptop_mode;
- count_vm_event(PAGEOUTRUN);
- do {
- unsigned long lru_pages = 0;
- int has_under_min_watermark_zone = 0;
- unbalanced_zone = NULL;
- balanced = 0;
- /*
- * Scan in the highmem->dma direction for the highest
- * zone which needs scanning
- */
- for (i = pgdat->nr_zones - 1; i >= 0; i--) {
- struct zone *zone = pgdat->node_zones + i;
- if (!populated_zone(zone))
- continue;
- if (sc.priority != DEF_PRIORITY &&
- !zone_reclaimable(zone))
- continue;
- /*
- * Do some background aging of the anon list, to give
- * pages a chance to be referenced before reclaiming.
- */
- age_active_anon(zone, &sc);
- /*
- * If the number of buffer_heads in the machine
- * exceeds the maximum allowed level and this node
- * has a highmem zone, force kswapd to reclaim from
- * it to relieve lowmem pressure.
- */
- if (buffer_heads_over_limit && is_highmem_idx(i)) {
- end_zone = i;
- break;
- }
- if (!zone_balanced(zone, order, 0, 0)) {
- end_zone = i;
- break;
- } else {
- /* If balanced, clear the congested flag */
- zone_clear_flag(zone, ZONE_CONGESTED);
- }
- }
- if (i < 0)
- goto out;
- for (i = 0; i <= end_zone; i++) {
- struct zone *zone = pgdat->node_zones + i;
- lru_pages += zone_reclaimable_pages(zone);
- }
- /*
- * Now scan the zone in the dma->highmem direction, stopping
- * at the last zone which needs scanning.
- *
- * We do this because the page allocator works in the opposite
- * direction. This prevents the page allocator from allocating
- * pages behind kswapd's direction of progress, which would
- * cause too much scanning of the lower zones.
- */
- for (i = 0; i <= end_zone; i++) {
- struct zone *zone = pgdat->node_zones + i;
- int nr_slab, testorder;
- unsigned long balance_gap;
- if (!populated_zone(zone))
- continue;
- if (sc.priority != DEF_PRIORITY &&
- !zone_reclaimable(zone))
- continue;
- sc.nr_scanned = 0;
- nr_soft_scanned = 0;
- /*
- * Call soft limit reclaim before calling shrink_zone.
- */
- nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
- order, sc.gfp_mask,
- &nr_soft_scanned);
- sc.nr_reclaimed += nr_soft_reclaimed;
- total_scanned += nr_soft_scanned;
- /*
- * We put equal pressure on every zone, unless
- * one zone has way too many pages free
- * already. The "too many pages" is defined
- * as the high wmark plus a "gap" where the
- * gap is either the low watermark or 1%
- * of the zone, whichever is smaller.
- */
- balance_gap = min(low_wmark_pages(zone),
- (zone->present_pages +
- KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
- KSWAPD_ZONE_BALANCE_GAP_RATIO);
- /*
- * Kswapd reclaims only single pages with compaction
- * enabled. Trying too hard to reclaim until contiguous
- * free pages have become available can hurt performance
- * by evicting too much useful data from memory.
- * Do not reclaim more than needed for compaction.
- */
- testorder = order;
- if (COMPACTION_BUILD && order &&
- compaction_suitable(zone, order) !=
- COMPACT_SKIPPED)
- testorder = 0;
- if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
- !zone_balanced(zone, testorder,
- balance_gap, end_zone)) {
- shrink_zone(zone, &sc);
- reclaim_state->reclaimed_slab = 0;
- shrink.priority = sc.priority;
- nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
- sc.nr_reclaimed += reclaim_state->reclaimed_slab;
- total_scanned += sc.nr_scanned;
- }
- /*
- * If we're getting trouble reclaiming, start doing
- * writepage even in laptop mode.
- */
- if (sc.priority < DEF_PRIORITY - 2)
- sc.may_writepage = 1;
- if (!zone_reclaimable(zone)) {
- if (end_zone && end_zone == i)
- end_zone--;
- continue;
- }
- if (!zone_balanced(zone, testorder, 0, end_zone)) {
- unbalanced_zone = zone;
- /*
- * We are still under min water mark. This
- * means that we have a GFP_ATOMIC allocation
- * failure risk. Hurry up!
- */
- if (!zone_watermark_ok_safe(zone, order,
- min_wmark_pages(zone), end_zone, 0))
- has_under_min_watermark_zone = 1;
- } else {
- /*
- * If a zone reaches its high watermark,
- * consider it to be no longer congested. It's
- * possible there are dirty pages backed by
- * congested BDIs but as pressure is relieved,
- * spectulatively avoid congestion waits
- */
- zone_clear_flag(zone, ZONE_CONGESTED);
- if (i <= *classzone_idx)
- balanced += zone->present_pages;
- }
- }
- if (!unbalanced_zone || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
- break; /* kswapd: all done */
- /*
- * OK, kswapd is getting into trouble. Take a nap, then take
- * another pass across the zones.
- */
- if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
- if (has_under_min_watermark_zone)
- count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
- else if (unbalanced_zone)
- wait_iff_congested(unbalanced_zone, BLK_RW_ASYNC, HZ/10);
- }
- /*
- * We do this so kswapd doesn't build up large priorities for
- * example when it is freeing in parallel with allocators. It
- * matches the direct reclaim path behaviour in terms of impact
- * on zone->*_priority.
- */
- if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
- break;
- } while (--sc.priority >= 0);
- out:
- /*
- * order-0: All zones must meet high watermark for a balanced node
- * high-order: Balanced zones must make up at least 25% of the node
- * for the node to be balanced
- */
- if (unbalanced_zone && (!order || !pgdat_balanced(pgdat, balanced, *classzone_idx))) {
- cond_resched();
- try_to_freeze();
- /*
- * Fragmentation may mean that the system cannot be
- * rebalanced for high-order allocations in all zones.
- * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
- * it means the zones have been fully scanned and are still
- * not balanced. For high-order allocations, there is
- * little point trying all over again as kswapd may
- * infinite loop.
- *
- * Instead, recheck all watermarks at order-0 as they
- * are the most important. If watermarks are ok, kswapd will go
- * back to sleep. High-order users can still perform direct
- * reclaim if they wish.
- */
- if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
- order = sc.order = 0;
- goto loop_again;
- }
- /*
- * If kswapd was reclaiming at a higher order, it has the option of
- * sleeping without all zones being balanced. Before it does, it must
- * ensure that the watermarks for order-0 on *all* zones are met and
- * that the congestion flags are cleared. The congestion flag must
- * be cleared as kswapd is the only mechanism that clears the flag
- * and it is potentially going to sleep here.
- */
- if (order) {
- int zones_need_compaction = 1;
- for (i = 0; i <= end_zone; i++) {
- struct zone *zone = pgdat->node_zones + i;
- if (!populated_zone(zone))
- continue;
- /* Check if the memory needs to be defragmented. */
- if (zone_watermark_ok(zone, order,
- low_wmark_pages(zone), *classzone_idx, 0))
- zones_need_compaction = 0;
- }
- if (zones_need_compaction)
- compact_pgdat(pgdat, order);
- }
- /*
- * Return the order we were reclaiming at so sleeping_prematurely()
- * makes a decision on the order we were last reclaiming at. However,
- * if another caller entered the allocator slow path while kswapd
- * was awake, order will remain at the higher level
- */
- *classzone_idx = end_zone;
- return order;
- }
- static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
- {
- long remaining = 0;
- DEFINE_WAIT(wait);
- if (freezing(current) || kthread_should_stop())
- return;
- prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
- /* Try to sleep for a short interval */
- if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
- remaining = schedule_timeout(HZ/10);
- finish_wait(&pgdat->kswapd_wait, &wait);
- prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
- }
- /*
- * After a short sleep, check if it was a premature sleep. If not, then
- * go fully to sleep until explicitly woken up.
- */
- if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
- trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
- #ifdef CONFIG_RUNTIME_COMPCACHE
- atomic_set(&kswapd_running, 0);
- #endif /* CONFIG_RUNTIME_COMPCACHE */
- /*
- * vmstat counters are not perfectly accurate and the estimated
- * value for counters such as NR_FREE_PAGES can deviate from the
- * true value by nr_online_cpus * threshold. To avoid the zone
- * watermarks being breached while under pressure, we reduce the
- * per-cpu vmstat threshold while kswapd is awake and restore
- * them before going back to sleep.
- */
- set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
- /*
- * Compaction records what page blocks it recently failed to
- * isolate pages from and skips them in the future scanning.
- * When kswapd is going to sleep, it is reasonable to assume
- * that pages and compaction may succeed so reset the cache.
- */
- reset_isolation_suitable(pgdat);
- if (!kthread_should_stop())
- schedule();
- set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
- } else {
- if (remaining)
- count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
- else
- count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
- }
- finish_wait(&pgdat->kswapd_wait, &wait);
- }
- /*
- * The background pageout daemon, started as a kernel thread
- * from the init process.
- *
- * This basically trickles out pages so that we have _some_
- * free memory available even if there is no other activity
- * that frees anything up. This is needed for things like routing
- * etc, where we otherwise might have all activity going on in
- * asynchronous contexts that cannot page things out.
- *
- * If there are applications that are active memory-allocators
- * (most normal use), this basically shouldn't matter.
- */
- static int kswapd(void *p)
- {
- unsigned long order, new_order;
- unsigned balanced_order;
- int classzone_idx, new_classzone_idx;
- int balanced_classzone_idx;
- pg_data_t *pgdat = (pg_data_t*)p;
- struct task_struct *tsk = current;
- struct reclaim_state reclaim_state = {
- .reclaimed_slab = 0,
- };
- const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
- lockdep_set_current_reclaim_state(GFP_KERNEL);
- if (!cpumask_empty(cpumask))
- set_cpus_allowed_ptr(tsk, cpumask);
- current->reclaim_state = &reclaim_state;
- /*
- * Tell the memory management that we're a "memory allocator",
- * and that if we need more memory we should get access to it
- * regardless (see "__alloc_pages()"). "kswapd" should
- * never get caught in the normal page freeing logic.
- *
- * (Kswapd normally doesn't need memory anyway, but sometimes
- * you need a small amount of memory in order to be able to
- * page out something else, and this flag essentially protects
- * us from recursively trying to free more memory as we're
- * trying to free the first piece of memory in the first place).
- */
- tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
- set_freezable();
- order = new_order = 0;
- balanced_order = 0;
- classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
- balanced_classzone_idx = classzone_idx;
- for ( ; ; ) {
- bool ret;
- /*
- * If the last balance_pgdat was unsuccessful it's unlikely a
- * new request of a similar or harder type will succeed soon
- * so consider going to sleep on the basis we reclaimed at
- */
- if (balanced_classzone_idx >= new_classzone_idx &&
- balanced_order == new_order) {
- new_order = pgdat->kswapd_max_order;
- new_classzone_idx = pgdat->classzone_idx;
- pgdat->kswapd_max_order = 0;
- pgdat->classzone_idx = pgdat->nr_zones - 1;
- }
- if (order < new_order || classzone_idx > new_classzone_idx) {
- /*
- * Don't sleep if someone wants a larger 'order'
- * allocation or has tigher zone constraints
- */
- order = new_order;
- classzone_idx = new_classzone_idx;
- } else {
- kswapd_try_to_sleep(pgdat, balanced_order,
- balanced_classzone_idx);
- order = pgdat->kswapd_max_order;
- classzone_idx = pgdat->classzone_idx;
- new_order = order;
- new_classzone_idx = classzone_idx;
- pgdat->kswapd_max_order = 0;
- pgdat->classzone_idx = pgdat->nr_zones - 1;
- }
- ret = try_to_freeze();
- if (kthread_should_stop())
- break;
- #ifdef CONFIG_RUNTIME_COMPCACHE
- atomic_set(&kswapd_running, 1);
- #endif /* CONFIG_RUNTIME_COMPCACHE */
- /*
- * We can speed up thawing tasks if we don't call balance_pgdat
- * after returning from the refrigerator
- */
- if (!ret) {
- trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
- balanced_classzone_idx = classzone_idx;
- balanced_order = balance_pgdat(pgdat, order,
- &balanced_classzone_idx);
- }
- }
- tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
- current->reclaim_state = NULL;
- lockdep_clear_current_reclaim_state();
- return 0;
- }
- /*
- * A zone is low on free memory, so wake its kswapd task to service it.
- */
- void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
- {
- pg_data_t *pgdat;
- if (!populated_zone(zone))
- return;
- if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
- return;
- pgdat = zone->zone_pgdat;
- if (pgdat->kswapd_max_order < order) {
- pgdat->kswapd_max_order = order;
- pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
- }
- if (!waitqueue_active(&pgdat->kswapd_wait))
- return;
- if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
- return;
- trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
- wake_up_interruptible(&pgdat->kswapd_wait);
- }
- #ifdef CONFIG_HIBERNATION
- /*
- * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
- * freed pages.
- *
- * Rather than trying to age LRUs the aim is to preserve the overall
- * LRU order by reclaiming preferentially
- * inactive > active > active referenced > active mapped
- */
- unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
- {
- struct reclaim_state reclaim_state;
- struct scan_control sc = {
- .gfp_mask = GFP_HIGHUSER_MOVABLE,
- .may_swap = 1,
- .may_unmap = 1,
- .may_writepage = 1,
- .nr_to_reclaim = nr_to_reclaim,
- .hibernation_mode = 1,
- .order = 0,
- .swappiness = vm_swappiness,
- .priority = DEF_PRIORITY,
- };
- struct shrink_control shrink = {
- .gfp_mask = sc.gfp_mask,
- };
- struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
- struct task_struct *p = current;
- unsigned long nr_reclaimed;
- p->flags |= PF_MEMALLOC;
- lockdep_set_current_reclaim_state(sc.gfp_mask);
- reclaim_state.reclaimed_slab = 0;
- p->reclaim_state = &reclaim_state;
- nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
- p->reclaim_state = NULL;
- lockdep_clear_current_reclaim_state();
- p->flags &= ~PF_MEMALLOC;
- return nr_reclaimed;
- }
- #endif /* CONFIG_HIBERNATION */
- /* It's optimal to keep kswapds on the same CPUs as their memory, but
- not required for correctness. So if the last cpu in a node goes
- away, we get changed to run anywhere: as the first one comes back,
- restore their cpu bindings. */
- static int cpu_callback(struct notifier_block *nfb, unsigned long action,
- void *hcpu)
- {
- int nid;
- if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
- for_each_node_state(nid, N_MEMORY) {
- pg_data_t *pgdat = NODE_DATA(nid);
- const struct cpumask *mask;
- mask = cpumask_of_node(pgdat->node_id);
- if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
- /* One of our CPUs online: restore mask */
- set_cpus_allowed_ptr(pgdat->kswapd, mask);
- }
- }
- return NOTIFY_OK;
- }
- /*
- * This kswapd start function will be called by init and node-hot-add.
- * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
- */
- int kswapd_run(int nid)
- {
- pg_data_t *pgdat = NODE_DATA(nid);
- int ret = 0;
- if (pgdat->kswapd)
- return 0;
- pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
- if (IS_ERR(pgdat->kswapd)) {
- /* failure at boot is fatal */
- BUG_ON(system_state == SYSTEM_BOOTING);
- pgdat->kswapd = NULL;
- pr_err("Failed to start kswapd on node %d\n", nid);
- ret = PTR_ERR(pgdat->kswapd);
- }
- return ret;
- }
- /*
- * Called by memory hotplug when all memory in a node is offlined. Caller must
- * hold lock_memory_hotplug().
- */
- void kswapd_stop(int nid)
- {
- struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
- if (kswapd) {
- kthread_stop(kswapd);
- NODE_DATA(nid)->kswapd = NULL;
- }
- }
- static int __init kswapd_init(void)
- {
- int nid;
- swap_setup();
- for_each_node_state(nid, N_MEMORY)
- kswapd_run(nid);
- hotcpu_notifier(cpu_callback, 0);
- return 0;
- }
- module_init(kswapd_init)
- #ifdef CONFIG_NUMA
- /*
- * Zone reclaim mode
- *
- * If non-zero call zone_reclaim when the number of free pages falls below
- * the watermarks.
- */
- int zone_reclaim_mode __read_mostly;
- #define RECLAIM_OFF 0
- #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
- #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
- #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
- /*
- * Priority for ZONE_RECLAIM. This determines the fraction of pages
- * of a node considered for each zone_reclaim. 4 scans 1/16th of
- * a zone.
- */
- #define ZONE_RECLAIM_PRIORITY 4
- /*
- * Percentage of pages in a zone that must be unmapped for zone_reclaim to
- * occur.
- */
- int sysctl_min_unmapped_ratio = 1;
- /*
- * If the number of slab pages in a zone grows beyond this percentage then
- * slab reclaim needs to occur.
- */
- int sysctl_min_slab_ratio = 5;
- static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
- {
- unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
- unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
- zone_page_state(zone, NR_ACTIVE_FILE);
- /*
- * It's possible for there to be more file mapped pages than
- * accounted for by the pages on the file LRU lists because
- * tmpfs pages accounted for as ANON can also be FILE_MAPPED
- */
- return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
- }
- /* Work out how many page cache pages we can reclaim in this reclaim_mode */
- static unsigned long zone_pagecache_reclaimable(struct zone *zone)
- {
- unsigned long nr_pagecache_reclaimable;
- unsigned long delta = 0;
- /*
- * If RECLAIM_SWAP is set, then all file pages are considered
- * potentially reclaimable. Otherwise, we have to worry about
- * pages like swapcache and zone_unmapped_file_pages() provides
- * a better estimate
- */
- if (zone_reclaim_mode & RECLAIM_SWAP)
- nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
- else
- nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
- /* If we can't clean pages, remove dirty pages from consideration */
- if (!(zone_reclaim_mode & RECLAIM_WRITE))
- delta += zone_page_state(zone, NR_FILE_DIRTY);
- /* Watch for any possible underflows due to delta */
- if (unlikely(delta > nr_pagecache_reclaimable))
- delta = nr_pagecache_reclaimable;
- return nr_pagecache_reclaimable - delta;
- }
- /*
- * Try to free up some pages from this zone through reclaim.
- */
- static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
- {
- /* Minimum pages needed in order to stay on node */
- const unsigned long nr_pages = 1 << order;
- struct task_struct *p = current;
- struct reclaim_state reclaim_state;
- struct scan_control sc = {
- .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
- .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
- #ifdef CONFIG_RUNTIME_COMPCACHE
- .may_swap = 0,
- #else
- .may_swap = 1,
- #endif /* CONFIG_RUNTIME_COMPCACHE */
- .nr_to_reclaim = max_t(unsigned long, nr_pages,
- SWAP_CLUSTER_MAX),
- .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
- .order = order,
- .swappiness = vm_swappiness,
- .priority = ZONE_RECLAIM_PRIORITY,
- };
- struct shrink_control shrink = {
- .gfp_mask = sc.gfp_mask,
- };
- unsigned long nr_slab_pages0, nr_slab_pages1;
- cond_resched();
- /*
- * We need to be able to allocate from the reserves for RECLAIM_SWAP
- * and we also need to be able to write out pages for RECLAIM_WRITE
- * and RECLAIM_SWAP.
- */
- p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
- lockdep_set_current_reclaim_state(gfp_mask);
- reclaim_state.reclaimed_slab = 0;
- p->reclaim_state = &reclaim_state;
- if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
- /*
- * Free memory by calling shrink zone with increasing
- * priorities until we have enough memory freed.
- */
- do {
- shrink_zone(zone, &sc);
- } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
- }
- nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
- if (nr_slab_pages0 > zone->min_slab_pages) {
- /*
- * shrink_slab() does not currently allow us to determine how
- * many pages were freed in this zone. So we take the current
- * number of slab pages and shake the slab until it is reduced
- * by the same nr_pages that we used for reclaiming unmapped
- * pages.
- *
- * Note that shrink_slab will free memory on all zones and may
- * take a long time.
- */
- for (;;) {
- unsigned long lru_pages = zone_reclaimable_pages(zone);
- /* No reclaimable slab or very low memory pressure */
- shrink.priority = sc.priority;
- if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
- break;
- /* Freed enough memory */
- nr_slab_pages1 = zone_page_state(zone,
- NR_SLAB_RECLAIMABLE);
- if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
- break;
- }
- /*
- * Update nr_reclaimed by the number of slab pages we
- * reclaimed from this zone.
- */
- nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
- if (nr_slab_pages1 < nr_slab_pages0)
- sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
- }
- p->reclaim_state = NULL;
- current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
- lockdep_clear_current_reclaim_state();
- return sc.nr_reclaimed >= nr_pages;
- }
- int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
- {
- int node_id;
- int ret;
- /*
- * Zone reclaim reclaims unmapped file backed pages and
- * slab pages if we are over the defined limits.
- *
- * A small portion of unmapped file backed pages is needed for
- * file I/O otherwise pages read by file I/O will be immediately
- * thrown out if the zone is overallocated. So we do not reclaim
- * if less than a specified percentage of the zone is used by
- * unmapped file backed pages.
- */
- if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
- zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
- return ZONE_RECLAIM_FULL;
- if (!zone_reclaimable(zone))
- return ZONE_RECLAIM_FULL;
- /*
- * Do not scan if the allocation should not be delayed.
- */
- if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
- return ZONE_RECLAIM_NOSCAN;
- /*
- * Only run zone reclaim on the local zone or on zones that do not
- * have associated processors. This will favor the local processor
- * over remote processors and spread off node memory allocations
- * as wide as possible.
- */
- node_id = zone_to_nid(zone);
- if (node_state(node_id, N_CPU) && node_id != numa_node_id())
- return ZONE_RECLAIM_NOSCAN;
- if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
- return ZONE_RECLAIM_NOSCAN;
- ret = __zone_reclaim(zone, gfp_mask, order);
- zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
- if (!ret)
- count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
- return ret;
- }
- #endif
- /*
- * page_evictable - test whether a page is evictable
- * @page: the page to test
- *
- * Test whether page is evictable--i.e., should be placed on active/inactive
- * lists vs unevictable list.
- *
- * Reasons page might not be evictable:
- * (1) page's mapping marked unevictable
- * (2) page is part of an mlocked VMA
- *
- */
- int page_evictable(struct page *page)
- {
- return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
- }
- #ifdef CONFIG_SHMEM
- /**
- * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
- * @pages: array of pages to check
- * @nr_pages: number of pages to check
- *
- * Checks pages for evictability and moves them to the appropriate lru list.
- *
- * This function is only used for SysV IPC SHM_UNLOCK.
- */
- void check_move_unevictable_pages(struct page **pages, int nr_pages)
- {
- struct lruvec *lruvec;
- struct zone *zone = NULL;
- int pgscanned = 0;
- int pgrescued = 0;
- int i;
- for (i = 0; i < nr_pages; i++) {
- struct page *page = pages[i];
- struct zone *pagezone;
- pgscanned++;
- pagezone = page_zone(page);
- if (pagezone != zone) {
- if (zone)
- spin_unlock_irq(&zone->lru_lock);
- zone = pagezone;
- spin_lock_irq(&zone->lru_lock);
- }
- if (!PageLRU(page) || !PageUnevictable(page))
- continue;
- if (page_evictable(page)) {
- enum lru_list lru = page_lru_base_type(page);
- VM_BUG_ON(PageActive(page));
- ClearPageUnevictable(page);
- __dec_zone_state(zone, NR_UNEVICTABLE);
- lruvec = mem_cgroup_lru_move_lists(zone, page,
- LRU_UNEVICTABLE, lru);
- list_move(&page->lru, &lruvec->lists[lru]);
- __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
- #if defined(CONFIG_CMA_PAGE_COUNTING)
- if (PageCMA(page))
- __inc_zone_state(zone,
- NR_FREE_CMA_PAGES + 1 + lru);
- #endif
- pgrescued++;
- }
- }
- if (zone) {
- __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
- __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
- spin_unlock_irq(&zone->lru_lock);
- }
- }
- #endif /* CONFIG_SHMEM */
- static void warn_scan_unevictable_pages(void)
- {
- printk_once(KERN_WARNING
- "%s: The scan_unevictable_pages sysctl/node-interface has been "
- "disabled for lack of a legitimate use case. If you have "
- "one, please send an email to linux-mm@kvack.org.\n",
- current->comm);
- }
- /*
- * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
- * all nodes' unevictable lists for evictable pages
- */
- unsigned long scan_unevictable_pages;
- int scan_unevictable_handler(struct ctl_table *table, int write,
- void __user *buffer,
- size_t *length, loff_t *ppos)
- {
- warn_scan_unevictable_pages();
- proc_doulongvec_minmax(table, write, buffer, length, ppos);
- scan_unevictable_pages = 0;
- return 0;
- }
- #ifdef CONFIG_NUMA
- /*
- * per node 'scan_unevictable_pages' attribute. On demand re-scan of
- * a specified node's per zone unevictable lists for evictable pages.
- */
- static ssize_t read_scan_unevictable_node(struct device *dev,
- struct device_attribute *attr,
- char *buf)
- {
- warn_scan_unevictable_pages();
- return sprintf(buf, "0\n"); /* always zero; should fit... */
- }
- static ssize_t write_scan_unevictable_node(struct device *dev,
- struct device_attribute *attr,
- const char *buf, size_t count)
- {
- warn_scan_unevictable_pages();
- return 1;
- }
- static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
- read_scan_unevictable_node,
- write_scan_unevictable_node);
- int scan_unevictable_register_node(struct node *node)
- {
- return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
- }
- void scan_unevictable_unregister_node(struct node *node)
- {
- device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
- }
- #endif
|