swap_state.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446
  1. /*
  2. * linux/mm/swap_state.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. * Swap reorganised 29.12.95, Stephen Tweedie
  6. *
  7. * Rewritten to use page cache, (C) 1998 Stephen Tweedie
  8. */
  9. #include <linux/mm.h>
  10. #include <linux/gfp.h>
  11. #include <linux/kernel_stat.h>
  12. #include <linux/swap.h>
  13. #include <linux/swapops.h>
  14. #include <linux/init.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/pagevec.h>
  19. #include <linux/migrate.h>
  20. #include <linux/page_cgroup.h>
  21. #include <asm/pgtable.h>
  22. #include "internal.h"
  23. /*
  24. * swapper_space is a fiction, retained to simplify the path through
  25. * vmscan's shrink_page_list.
  26. */
  27. static const struct address_space_operations swap_aops = {
  28. .writepage = swap_writepage,
  29. .set_page_dirty = __set_page_dirty_no_writeback,
  30. .migratepage = migrate_page,
  31. };
  32. static struct backing_dev_info swap_backing_dev_info = {
  33. .name = "swap",
  34. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
  35. };
  36. struct address_space swapper_spaces[MAX_SWAPFILES] = {
  37. [0 ... MAX_SWAPFILES - 1] = {
  38. .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
  39. .i_mmap_writable = ATOMIC_INIT(0),
  40. .a_ops = &swap_aops,
  41. .backing_dev_info = &swap_backing_dev_info,
  42. }
  43. };
  44. #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
  45. static struct {
  46. unsigned long add_total;
  47. unsigned long del_total;
  48. unsigned long find_success;
  49. unsigned long find_total;
  50. } swap_cache_info;
  51. unsigned long total_swapcache_pages(void)
  52. {
  53. int i;
  54. unsigned long ret = 0;
  55. for (i = 0; i < MAX_SWAPFILES; i++)
  56. ret += swapper_spaces[i].nrpages;
  57. return ret;
  58. }
  59. void show_swap_cache_info(void)
  60. {
  61. printk("%lu pages in swap cache\n", total_swapcache_pages());
  62. printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
  63. swap_cache_info.add_total, swap_cache_info.del_total,
  64. swap_cache_info.find_success, swap_cache_info.find_total);
  65. printk("Free swap = %ldkB\n",
  66. get_nr_swap_pages() << (PAGE_SHIFT - 10));
  67. printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
  68. }
  69. /*
  70. * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
  71. * but sets SwapCache flag and private instead of mapping and index.
  72. */
  73. int __add_to_swap_cache(struct page *page, swp_entry_t entry)
  74. {
  75. int error;
  76. struct address_space *address_space;
  77. VM_BUG_ON(!PageLocked(page));
  78. VM_BUG_ON(PageSwapCache(page));
  79. VM_BUG_ON(!PageSwapBacked(page));
  80. page_cache_get(page);
  81. SetPageSwapCache(page);
  82. set_page_private(page, entry.val);
  83. address_space = swap_address_space(entry);
  84. spin_lock_irq(&address_space->tree_lock);
  85. error = radix_tree_insert(&address_space->page_tree,
  86. entry.val, page);
  87. if (likely(!error)) {
  88. address_space->nrpages++;
  89. __inc_zone_page_state(page, NR_FILE_PAGES);
  90. __inc_zone_page_state(page, NR_SWAPCACHE);
  91. INC_CACHE_INFO(add_total);
  92. }
  93. spin_unlock_irq(&address_space->tree_lock);
  94. if (unlikely(error)) {
  95. /*
  96. * Only the context which have set SWAP_HAS_CACHE flag
  97. * would call add_to_swap_cache().
  98. * So add_to_swap_cache() doesn't returns -EEXIST.
  99. */
  100. VM_BUG_ON(error == -EEXIST);
  101. set_page_private(page, 0UL);
  102. ClearPageSwapCache(page);
  103. page_cache_release(page);
  104. }
  105. return error;
  106. }
  107. int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
  108. {
  109. int error;
  110. error = radix_tree_maybe_preload(gfp_mask);
  111. if (!error) {
  112. error = __add_to_swap_cache(page, entry);
  113. radix_tree_preload_end();
  114. }
  115. return error;
  116. }
  117. /*
  118. * This must be called only on pages that have
  119. * been verified to be in the swap cache.
  120. */
  121. void __delete_from_swap_cache(struct page *page)
  122. {
  123. swp_entry_t entry;
  124. struct address_space *address_space;
  125. VM_BUG_ON(!PageLocked(page));
  126. VM_BUG_ON(!PageSwapCache(page));
  127. VM_BUG_ON(PageWriteback(page));
  128. entry.val = page_private(page);
  129. address_space = swap_address_space(entry);
  130. radix_tree_delete(&address_space->page_tree, page_private(page));
  131. set_page_private(page, 0);
  132. ClearPageSwapCache(page);
  133. address_space->nrpages--;
  134. __dec_zone_page_state(page, NR_FILE_PAGES);
  135. __dec_zone_page_state(page, NR_SWAPCACHE);
  136. INC_CACHE_INFO(del_total);
  137. }
  138. /**
  139. * add_to_swap - allocate swap space for a page
  140. * @page: page we want to move to swap
  141. *
  142. * Allocate swap space for the page and add the page to the
  143. * swap cache. Caller needs to hold the page lock.
  144. */
  145. int add_to_swap(struct page *page)
  146. {
  147. swp_entry_t entry;
  148. int err;
  149. VM_BUG_ON(!PageLocked(page));
  150. VM_BUG_ON(!PageUptodate(page));
  151. entry = get_swap_page();
  152. if (!entry.val)
  153. return 0;
  154. if (unlikely(PageTransHuge(page)))
  155. if (unlikely(split_huge_page(page))) {
  156. swapcache_free(entry, NULL);
  157. return 0;
  158. }
  159. /*
  160. * Radix-tree node allocations from PF_MEMALLOC contexts could
  161. * completely exhaust the page allocator. __GFP_NOMEMALLOC
  162. * stops emergency reserves from being allocated.
  163. *
  164. * TODO: this could cause a theoretical memory reclaim
  165. * deadlock in the swap out path.
  166. */
  167. /*
  168. * Add it to the swap cache and mark it dirty
  169. */
  170. err = add_to_swap_cache(page, entry,
  171. __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
  172. if (!err) { /* Success */
  173. SetPageDirty(page);
  174. return 1;
  175. } else { /* -ENOMEM radix-tree allocation failure */
  176. /*
  177. * add_to_swap_cache() doesn't return -EEXIST, so we can safely
  178. * clear SWAP_HAS_CACHE flag.
  179. */
  180. swapcache_free(entry, NULL);
  181. return 0;
  182. }
  183. }
  184. /*
  185. * This must be called only on pages that have
  186. * been verified to be in the swap cache and locked.
  187. * It will never put the page into the free list,
  188. * the caller has a reference on the page.
  189. */
  190. void delete_from_swap_cache(struct page *page)
  191. {
  192. swp_entry_t entry;
  193. struct address_space *address_space;
  194. entry.val = page_private(page);
  195. address_space = swap_address_space(entry);
  196. spin_lock_irq(&address_space->tree_lock);
  197. __delete_from_swap_cache(page);
  198. spin_unlock_irq(&address_space->tree_lock);
  199. swapcache_free(entry, page);
  200. page_cache_release(page);
  201. }
  202. /*
  203. * If we are the only user, then try to free up the swap cache.
  204. *
  205. * Its ok to check for PageSwapCache without the page lock
  206. * here because we are going to recheck again inside
  207. * try_to_free_swap() _with_ the lock.
  208. * - Marcelo
  209. */
  210. static inline void free_swap_cache(struct page *page)
  211. {
  212. if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
  213. try_to_free_swap(page);
  214. unlock_page(page);
  215. }
  216. }
  217. /*
  218. * Perform a free_page(), also freeing any swap cache associated with
  219. * this page if it is the last user of the page.
  220. */
  221. void free_page_and_swap_cache(struct page *page)
  222. {
  223. free_swap_cache(page);
  224. page_cache_release(page);
  225. }
  226. /*
  227. * Passed an array of pages, drop them all from swapcache and then release
  228. * them. They are removed from the LRU and freed if this is their last use.
  229. */
  230. void free_pages_and_swap_cache(struct page **pages, int nr)
  231. {
  232. struct page **pagep = pages;
  233. lru_add_drain();
  234. while (nr) {
  235. int todo = min(nr, PAGEVEC_SIZE);
  236. int i;
  237. for (i = 0; i < todo; i++)
  238. free_swap_cache(pagep[i]);
  239. release_pages(pagep, todo, 0);
  240. pagep += todo;
  241. nr -= todo;
  242. }
  243. }
  244. /*
  245. * Lookup a swap entry in the swap cache. A found page will be returned
  246. * unlocked and with its refcount incremented - we rely on the kernel
  247. * lock getting page table operations atomic even if we drop the page
  248. * lock before returning.
  249. */
  250. struct page * lookup_swap_cache(swp_entry_t entry)
  251. {
  252. struct page *page;
  253. page = find_get_page(swap_address_space(entry), entry.val);
  254. if (page)
  255. INC_CACHE_INFO(find_success);
  256. INC_CACHE_INFO(find_total);
  257. return page;
  258. }
  259. /*
  260. * Locate a page of swap in physical memory, reserving swap cache space
  261. * and reading the disk if it is not already cached.
  262. * A failure return means that either the page allocation failed or that
  263. * the swap entry is no longer in use.
  264. */
  265. struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
  266. struct vm_area_struct *vma, unsigned long addr)
  267. {
  268. struct page *found_page, *new_page = NULL;
  269. int err;
  270. do {
  271. /*
  272. * First check the swap cache. Since this is normally
  273. * called after lookup_swap_cache() failed, re-calling
  274. * that would confuse statistics.
  275. */
  276. found_page = find_get_page(swap_address_space(entry),
  277. entry.val);
  278. if (found_page)
  279. break;
  280. /*
  281. * Get a new page to read into from swap.
  282. */
  283. if (!new_page) {
  284. new_page = alloc_page_vma(gfp_mask, vma, addr);
  285. if (!new_page)
  286. break; /* Out of memory */
  287. }
  288. /*
  289. * call radix_tree_preload() while we can wait.
  290. */
  291. err = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
  292. if (err)
  293. break;
  294. /*
  295. * Swap entry may have been freed since our caller observed it.
  296. */
  297. err = swapcache_prepare(entry);
  298. if (err == -EEXIST) {
  299. radix_tree_preload_end();
  300. /*
  301. * We might race against get_swap_page() and stumble
  302. * across a SWAP_HAS_CACHE swap_map entry whose page
  303. * has not been brought into the swapcache yet, while
  304. * the other end is scheduled away waiting on discard
  305. * I/O completion at scan_swap_map().
  306. *
  307. * In order to avoid turning this transitory state
  308. * into a permanent loop around this -EEXIST case
  309. * if !CONFIG_PREEMPT and the I/O completion happens
  310. * to be waiting on the CPU waitqueue where we are now
  311. * busy looping, we just conditionally invoke the
  312. * scheduler here, if there are some more important
  313. * tasks to run.
  314. */
  315. cond_resched();
  316. continue;
  317. }
  318. if (err) { /* swp entry is obsolete ? */
  319. radix_tree_preload_end();
  320. break;
  321. }
  322. /* May fail (-ENOMEM) if radix-tree node allocation failed. */
  323. __set_page_locked(new_page);
  324. SetPageSwapBacked(new_page);
  325. err = __add_to_swap_cache(new_page, entry);
  326. if (likely(!err)) {
  327. radix_tree_preload_end();
  328. /*
  329. * Initiate read into locked page and return.
  330. */
  331. lru_cache_add_anon(new_page);
  332. swap_readpage(new_page);
  333. return new_page;
  334. }
  335. radix_tree_preload_end();
  336. ClearPageSwapBacked(new_page);
  337. __clear_page_locked(new_page);
  338. /*
  339. * add_to_swap_cache() doesn't return -EEXIST, so we can safely
  340. * clear SWAP_HAS_CACHE flag.
  341. */
  342. swapcache_free(entry, NULL);
  343. } while (err != -ENOMEM);
  344. if (new_page)
  345. page_cache_release(new_page);
  346. return found_page;
  347. }
  348. /**
  349. * swapin_readahead - swap in pages in hope we need them soon
  350. * @entry: swap entry of this memory
  351. * @gfp_mask: memory allocation flags
  352. * @vma: user vma this address belongs to
  353. * @addr: target address for mempolicy
  354. *
  355. * Returns the struct page for entry and addr, after queueing swapin.
  356. *
  357. * Primitive swap readahead code. We simply read an aligned block of
  358. * (1 << page_cluster) entries in the swap area. This method is chosen
  359. * because it doesn't cost us any seek time. We also make sure to queue
  360. * the 'original' request together with the readahead ones...
  361. *
  362. * This has been extended to use the NUMA policies from the mm triggering
  363. * the readahead.
  364. *
  365. * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
  366. */
  367. struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
  368. struct vm_area_struct *vma, unsigned long addr)
  369. {
  370. #ifdef CONFIG_SWAP_ENABLE_READAHEAD
  371. struct page *page;
  372. unsigned long offset = swp_offset(entry);
  373. unsigned long start_offset, end_offset;
  374. unsigned long mask = is_swap_fast(entry) ? 0 : (1UL << page_cluster) - 1;
  375. struct blk_plug plug;
  376. /* Read a page_cluster sized and aligned cluster around offset. */
  377. start_offset = offset & ~mask;
  378. end_offset = offset | mask;
  379. if (!start_offset) /* First page is swap header. */
  380. start_offset++;
  381. blk_start_plug(&plug);
  382. for (offset = start_offset; offset <= end_offset ; offset++) {
  383. /* Ok, do the async read-ahead now */
  384. page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
  385. gfp_mask, vma, addr);
  386. if (!page)
  387. continue;
  388. page_cache_release(page);
  389. }
  390. blk_finish_plug(&plug);
  391. lru_add_drain(); /* Push any new pages onto the LRU now */
  392. #endif /* CONFIG_SWAP_ENABLE_READAHEAD */
  393. return read_swap_cache_async(entry, gfp_mask, vma, addr);
  394. }