page-writeback.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/export.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  35. #include <linux/pagevec.h>
  36. #include <linux/mm_inline.h>
  37. #include <trace/events/writeback.h>
  38. #include "internal.h"
  39. /*
  40. * Sleep at most 200ms at a time in balance_dirty_pages().
  41. */
  42. #define MAX_PAUSE max(HZ/5, 1)
  43. /*
  44. * Try to keep balance_dirty_pages() call intervals higher than this many pages
  45. * by raising pause time to max_pause when falls below it.
  46. */
  47. #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
  48. /*
  49. * Estimate write bandwidth at 200ms intervals.
  50. */
  51. #define BANDWIDTH_INTERVAL max(HZ/5, 1)
  52. #define RATELIMIT_CALC_SHIFT 10
  53. /*
  54. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  55. * will look to see if it needs to force writeback or throttling.
  56. */
  57. static long ratelimit_pages = 32;
  58. /* The following parameters are exported via /proc/sys/vm */
  59. /*
  60. * Start background writeback (via writeback threads) at this percentage
  61. */
  62. int dirty_background_ratio = 10;
  63. /*
  64. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  65. * dirty_background_ratio * the amount of dirtyable memory
  66. */
  67. unsigned long dirty_background_bytes;
  68. /*
  69. * free highmem will not be subtracted from the total free memory
  70. * for calculating free ratios if vm_highmem_is_dirtyable is true
  71. */
  72. int vm_highmem_is_dirtyable;
  73. /*
  74. * The generator of dirty data starts writeback at this percentage
  75. */
  76. int vm_dirty_ratio = 20;
  77. /*
  78. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  79. * vm_dirty_ratio * the amount of dirtyable memory
  80. */
  81. unsigned long vm_dirty_bytes;
  82. /*
  83. * The interval between `kupdate'-style writebacks
  84. */
  85. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  86. EXPORT_SYMBOL_GPL(dirty_writeback_interval);
  87. /*
  88. * The longest time for which data is allowed to remain dirty
  89. */
  90. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  91. /*
  92. * Flag that makes the machine dump writes/reads and block dirtyings.
  93. */
  94. int block_dump;
  95. /*
  96. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  97. * a full sync is triggered after this time elapses without any disk activity.
  98. */
  99. int laptop_mode;
  100. EXPORT_SYMBOL(laptop_mode);
  101. /* End of sysctl-exported parameters */
  102. unsigned long global_dirty_limit;
  103. /*
  104. * Scale the writeback cache size proportional to the relative writeout speeds.
  105. *
  106. * We do this by keeping a floating proportion between BDIs, based on page
  107. * writeback completions [end_page_writeback()]. Those devices that write out
  108. * pages fastest will get the larger share, while the slower will get a smaller
  109. * share.
  110. *
  111. * We use page writeout completions because we are interested in getting rid of
  112. * dirty pages. Having them written out is the primary goal.
  113. *
  114. * We introduce a concept of time, a period over which we measure these events,
  115. * because demand can/will vary over time. The length of this period itself is
  116. * measured in page writeback completions.
  117. *
  118. */
  119. static struct prop_descriptor vm_completions;
  120. /*
  121. * Work out the current dirty-memory clamping and background writeout
  122. * thresholds.
  123. *
  124. * The main aim here is to lower them aggressively if there is a lot of mapped
  125. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  126. * pages. It is better to clamp down on writers than to start swapping, and
  127. * performing lots of scanning.
  128. *
  129. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  130. *
  131. * We don't permit the clamping level to fall below 5% - that is getting rather
  132. * excessive.
  133. *
  134. * We make sure that the background writeout level is below the adjusted
  135. * clamping level.
  136. */
  137. /*
  138. * In a memory zone, there is a certain amount of pages we consider
  139. * available for the page cache, which is essentially the number of
  140. * free and reclaimable pages, minus some zone reserves to protect
  141. * lowmem and the ability to uphold the zone's watermarks without
  142. * requiring writeback.
  143. *
  144. * This number of dirtyable pages is the base value of which the
  145. * user-configurable dirty ratio is the effictive number of pages that
  146. * are allowed to be actually dirtied. Per individual zone, or
  147. * globally by using the sum of dirtyable pages over all zones.
  148. *
  149. * Because the user is allowed to specify the dirty limit globally as
  150. * absolute number of bytes, calculating the per-zone dirty limit can
  151. * require translating the configured limit into a percentage of
  152. * global dirtyable memory first.
  153. */
  154. /**
  155. * zone_dirtyable_memory - number of dirtyable pages in a zone
  156. * @zone: the zone
  157. *
  158. * Returns the zone's number of pages potentially available for dirty
  159. * page cache. This is the base value for the per-zone dirty limits.
  160. */
  161. static unsigned long zone_dirtyable_memory(struct zone *zone)
  162. {
  163. unsigned long nr_pages;
  164. nr_pages = zone_page_state(zone, NR_FREE_PAGES);
  165. nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
  166. nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
  167. nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
  168. return nr_pages;
  169. }
  170. static unsigned long highmem_dirtyable_memory(unsigned long total)
  171. {
  172. #ifdef CONFIG_HIGHMEM
  173. int node;
  174. unsigned long x = 0;
  175. for_each_node_state(node, N_HIGH_MEMORY) {
  176. struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  177. x += zone_dirtyable_memory(z);
  178. }
  179. /*
  180. * Unreclaimable memory (kernel memory or anonymous memory
  181. * without swap) can bring down the dirtyable pages below
  182. * the zone's dirty balance reserve and the above calculation
  183. * will underflow. However we still want to add in nodes
  184. * which are below threshold (negative values) to get a more
  185. * accurate calculation but make sure that the total never
  186. * underflows.
  187. */
  188. if ((long)x < 0)
  189. x = 0;
  190. /*
  191. * Make sure that the number of highmem pages is never larger
  192. * than the number of the total dirtyable memory. This can only
  193. * occur in very strange VM situations but we want to make sure
  194. * that this does not occur.
  195. */
  196. return min(x, total);
  197. #else
  198. return 0;
  199. #endif
  200. }
  201. /**
  202. * global_dirtyable_memory - number of globally dirtyable pages
  203. *
  204. * Returns the global number of pages potentially available for dirty
  205. * page cache. This is the base value for the global dirty limits.
  206. */
  207. unsigned long global_dirtyable_memory(void)
  208. {
  209. unsigned long x;
  210. x = global_page_state(NR_FREE_PAGES);
  211. x -= min(x, dirty_balance_reserve);
  212. x += global_page_state(NR_INACTIVE_FILE);
  213. x += global_page_state(NR_ACTIVE_FILE);
  214. if (!vm_highmem_is_dirtyable)
  215. x -= highmem_dirtyable_memory(x);
  216. return x + 1; /* Ensure that we never return 0 */
  217. }
  218. /*
  219. * global_dirty_limits - background-writeback and dirty-throttling thresholds
  220. *
  221. * Calculate the dirty thresholds based on sysctl parameters
  222. * - vm.dirty_background_ratio or vm.dirty_background_bytes
  223. * - vm.dirty_ratio or vm.dirty_bytes
  224. * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  225. * real-time tasks.
  226. */
  227. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  228. {
  229. unsigned long background;
  230. unsigned long dirty;
  231. unsigned long uninitialized_var(available_memory);
  232. struct task_struct *tsk;
  233. if (!vm_dirty_bytes || !dirty_background_bytes)
  234. available_memory = global_dirtyable_memory();
  235. if (vm_dirty_bytes)
  236. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
  237. else
  238. dirty = (vm_dirty_ratio * available_memory) / 100;
  239. if (dirty_background_bytes)
  240. background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
  241. else
  242. background = (dirty_background_ratio * available_memory) / 100;
  243. #if defined(CONFIG_MIN_DIRTY_THRESH_PAGES) && CONFIG_MIN_DIRTY_THRESH_PAGES > 0
  244. if (!vm_dirty_bytes && dirty < CONFIG_MIN_DIRTY_THRESH_PAGES) {
  245. dirty = CONFIG_MIN_DIRTY_THRESH_PAGES;
  246. if (!dirty_background_bytes) {
  247. unsigned long min_background;
  248. min_background = dirty * dirty_background_ratio * 100 /
  249. vm_dirty_ratio / 100;
  250. if (background < min_background)
  251. background = min_background;
  252. }
  253. }
  254. #endif
  255. if (background >= dirty)
  256. background = dirty / 2;
  257. tsk = current;
  258. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  259. background += background / 4;
  260. dirty += dirty / 4;
  261. }
  262. *pbackground = background;
  263. *pdirty = dirty;
  264. trace_global_dirty_state(background, dirty);
  265. }
  266. /**
  267. * zone_dirty_limit - maximum number of dirty pages allowed in a zone
  268. * @zone: the zone
  269. *
  270. * Returns the maximum number of dirty pages allowed in a zone, based
  271. * on the zone's dirtyable memory.
  272. */
  273. static unsigned long zone_dirty_limit(struct zone *zone)
  274. {
  275. unsigned long zone_memory = zone_dirtyable_memory(zone);
  276. struct task_struct *tsk = current;
  277. unsigned long dirty;
  278. if (vm_dirty_bytes)
  279. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
  280. zone_memory / global_dirtyable_memory();
  281. else
  282. dirty = vm_dirty_ratio * zone_memory / 100;
  283. #if defined(CONFIG_MIN_DIRTY_THRESH_PAGES) && CONFIG_MIN_DIRTY_THRESH_PAGES > 0
  284. if (!vm_dirty_bytes) {
  285. unsigned long min_zone_dirty;
  286. min_zone_dirty = CONFIG_MIN_DIRTY_THRESH_PAGES *
  287. zone_memory / global_dirtyable_memory();
  288. if (dirty < min_zone_dirty)
  289. dirty = min_zone_dirty;
  290. }
  291. #endif
  292. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
  293. dirty += dirty / 4;
  294. return dirty;
  295. }
  296. /**
  297. * zone_dirty_ok - tells whether a zone is within its dirty limits
  298. * @zone: the zone to check
  299. *
  300. * Returns %true when the dirty pages in @zone are within the zone's
  301. * dirty limit, %false if the limit is exceeded.
  302. */
  303. bool zone_dirty_ok(struct zone *zone)
  304. {
  305. unsigned long limit = zone_dirty_limit(zone);
  306. return zone_page_state(zone, NR_FILE_DIRTY) +
  307. zone_page_state(zone, NR_UNSTABLE_NFS) +
  308. zone_page_state(zone, NR_WRITEBACK) <= limit;
  309. }
  310. /*
  311. * couple the period to the dirty_ratio:
  312. *
  313. * period/2 ~ roundup_pow_of_two(dirty limit)
  314. */
  315. static int calc_period_shift(void)
  316. {
  317. unsigned long dirty_total;
  318. if (vm_dirty_bytes)
  319. dirty_total = vm_dirty_bytes / PAGE_SIZE;
  320. else
  321. dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
  322. 100;
  323. #if defined(CONFIG_MIN_DIRTY_THRESH_PAGES) && CONFIG_MIN_DIRTY_THRESH_PAGES > 0
  324. if (!vm_dirty_bytes && dirty_total < CONFIG_MIN_DIRTY_THRESH_PAGES)
  325. dirty_total = CONFIG_MIN_DIRTY_THRESH_PAGES;
  326. #endif
  327. return 2 + ilog2(dirty_total - 1);
  328. }
  329. /*
  330. * update the period when the dirty threshold changes.
  331. */
  332. static void update_completion_period(void)
  333. {
  334. int shift = calc_period_shift();
  335. prop_change_shift(&vm_completions, shift);
  336. writeback_set_ratelimit();
  337. }
  338. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  339. void __user *buffer, size_t *lenp,
  340. loff_t *ppos)
  341. {
  342. int ret;
  343. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  344. if (ret == 0 && write)
  345. dirty_background_bytes = 0;
  346. return ret;
  347. }
  348. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  349. void __user *buffer, size_t *lenp,
  350. loff_t *ppos)
  351. {
  352. int ret;
  353. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  354. if (ret == 0 && write)
  355. dirty_background_ratio = 0;
  356. return ret;
  357. }
  358. int dirty_ratio_handler(struct ctl_table *table, int write,
  359. void __user *buffer, size_t *lenp,
  360. loff_t *ppos)
  361. {
  362. int old_ratio = vm_dirty_ratio;
  363. int ret;
  364. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  365. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  366. update_completion_period();
  367. vm_dirty_bytes = 0;
  368. }
  369. return ret;
  370. }
  371. int dirty_bytes_handler(struct ctl_table *table, int write,
  372. void __user *buffer, size_t *lenp,
  373. loff_t *ppos)
  374. {
  375. unsigned long old_bytes = vm_dirty_bytes;
  376. int ret;
  377. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  378. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  379. update_completion_period();
  380. vm_dirty_ratio = 0;
  381. }
  382. return ret;
  383. }
  384. /*
  385. * Increment the BDI's writeout completion count and the global writeout
  386. * completion count. Called from test_clear_page_writeback().
  387. */
  388. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  389. {
  390. __inc_bdi_stat(bdi, BDI_WRITTEN);
  391. __prop_inc_percpu_max(&vm_completions, &bdi->completions,
  392. bdi->max_prop_frac);
  393. }
  394. void bdi_writeout_inc(struct backing_dev_info *bdi)
  395. {
  396. unsigned long flags;
  397. local_irq_save(flags);
  398. __bdi_writeout_inc(bdi);
  399. local_irq_restore(flags);
  400. }
  401. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  402. /*
  403. * Obtain an accurate fraction of the BDI's portion.
  404. */
  405. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  406. long *numerator, long *denominator)
  407. {
  408. prop_fraction_percpu(&vm_completions, &bdi->completions,
  409. numerator, denominator);
  410. }
  411. /*
  412. * bdi_min_ratio keeps the sum of the minimum dirty shares of all
  413. * registered backing devices, which, for obvious reasons, can not
  414. * exceed 100%.
  415. */
  416. static unsigned int bdi_min_ratio;
  417. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  418. {
  419. int ret = 0;
  420. spin_lock_bh(&bdi_lock);
  421. if (min_ratio > bdi->max_ratio) {
  422. ret = -EINVAL;
  423. } else {
  424. min_ratio -= bdi->min_ratio;
  425. if (bdi_min_ratio + min_ratio < 100) {
  426. bdi_min_ratio += min_ratio;
  427. bdi->min_ratio += min_ratio;
  428. } else {
  429. ret = -EINVAL;
  430. }
  431. }
  432. spin_unlock_bh(&bdi_lock);
  433. return ret;
  434. }
  435. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  436. {
  437. int ret = 0;
  438. if (max_ratio > 100)
  439. return -EINVAL;
  440. spin_lock_bh(&bdi_lock);
  441. if (bdi->min_ratio > max_ratio) {
  442. ret = -EINVAL;
  443. } else {
  444. bdi->max_ratio = max_ratio;
  445. bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
  446. }
  447. spin_unlock_bh(&bdi_lock);
  448. return ret;
  449. }
  450. EXPORT_SYMBOL(bdi_set_max_ratio);
  451. static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  452. unsigned long bg_thresh)
  453. {
  454. return (thresh + bg_thresh) / 2;
  455. }
  456. static unsigned long hard_dirty_limit(unsigned long thresh)
  457. {
  458. return max(thresh, global_dirty_limit);
  459. }
  460. /**
  461. * bdi_dirty_limit - @bdi's share of dirty throttling threshold
  462. * @bdi: the backing_dev_info to query
  463. * @dirty: global dirty limit in pages
  464. *
  465. * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
  466. * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  467. *
  468. * Note that balance_dirty_pages() will only seriously take it as a hard limit
  469. * when sleeping max_pause per page is not enough to keep the dirty pages under
  470. * control. For example, when the device is completely stalled due to some error
  471. * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
  472. * In the other normal situations, it acts more gently by throttling the tasks
  473. * more (rather than completely block them) when the bdi dirty pages go high.
  474. *
  475. * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  476. * - starving fast devices
  477. * - piling up dirty pages (that will take long time to sync) on slow devices
  478. *
  479. * The bdi's share of dirty limit will be adapting to its throughput and
  480. * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  481. */
  482. unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
  483. {
  484. u64 bdi_dirty;
  485. long numerator, denominator;
  486. /*
  487. * Calculate this BDI's share of the dirty ratio.
  488. */
  489. bdi_writeout_fraction(bdi, &numerator, &denominator);
  490. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  491. bdi_dirty *= numerator;
  492. do_div(bdi_dirty, denominator);
  493. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  494. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  495. bdi_dirty = dirty * bdi->max_ratio / 100;
  496. return bdi_dirty;
  497. }
  498. /*
  499. * setpoint - dirty 3
  500. * f(dirty) := 1.0 + (----------------)
  501. * limit - setpoint
  502. *
  503. * it's a 3rd order polynomial that subjects to
  504. *
  505. * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
  506. * (2) f(setpoint) = 1.0 => the balance point
  507. * (3) f(limit) = 0 => the hard limit
  508. * (4) df/dx <= 0 => negative feedback control
  509. * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  510. * => fast response on large errors; small oscillation near setpoint
  511. */
  512. static inline long long pos_ratio_polynom(unsigned long setpoint,
  513. unsigned long dirty,
  514. unsigned long limit)
  515. {
  516. long long pos_ratio;
  517. long x;
  518. x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
  519. limit - setpoint + 1);
  520. pos_ratio = x;
  521. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  522. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  523. pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  524. return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
  525. }
  526. /*
  527. * Dirty position control.
  528. *
  529. * (o) global/bdi setpoints
  530. *
  531. * We want the dirty pages be balanced around the global/bdi setpoints.
  532. * When the number of dirty pages is higher/lower than the setpoint, the
  533. * dirty position control ratio (and hence task dirty ratelimit) will be
  534. * decreased/increased to bring the dirty pages back to the setpoint.
  535. *
  536. * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  537. *
  538. * if (dirty < setpoint) scale up pos_ratio
  539. * if (dirty > setpoint) scale down pos_ratio
  540. *
  541. * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
  542. * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
  543. *
  544. * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  545. *
  546. * (o) global control line
  547. *
  548. * ^ pos_ratio
  549. * |
  550. * | |<===== global dirty control scope ======>|
  551. * 2.0 .............*
  552. * | .*
  553. * | . *
  554. * | . *
  555. * | . *
  556. * | . *
  557. * | . *
  558. * 1.0 ................................*
  559. * | . . *
  560. * | . . *
  561. * | . . *
  562. * | . . *
  563. * | . . *
  564. * 0 +------------.------------------.----------------------*------------->
  565. * freerun^ setpoint^ limit^ dirty pages
  566. *
  567. * (o) bdi control line
  568. *
  569. * ^ pos_ratio
  570. * |
  571. * | *
  572. * | *
  573. * | *
  574. * | *
  575. * | * |<=========== span ============>|
  576. * 1.0 .......................*
  577. * | . *
  578. * | . *
  579. * | . *
  580. * | . *
  581. * | . *
  582. * | . *
  583. * | . *
  584. * | . *
  585. * | . *
  586. * | . *
  587. * | . *
  588. * 1/4 ...............................................* * * * * * * * * * * *
  589. * | . .
  590. * | . .
  591. * | . .
  592. * 0 +----------------------.-------------------------------.------------->
  593. * bdi_setpoint^ x_intercept^
  594. *
  595. * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
  596. * be smoothly throttled down to normal if it starts high in situations like
  597. * - start writing to a slow SD card and a fast disk at the same time. The SD
  598. * card's bdi_dirty may rush to many times higher than bdi_setpoint.
  599. * - the bdi dirty thresh drops quickly due to change of JBOD workload
  600. */
  601. static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
  602. unsigned long thresh,
  603. unsigned long bg_thresh,
  604. unsigned long dirty,
  605. unsigned long bdi_thresh,
  606. unsigned long bdi_dirty)
  607. {
  608. unsigned long write_bw = bdi->avg_write_bandwidth;
  609. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  610. unsigned long limit = hard_dirty_limit(thresh);
  611. unsigned long x_intercept;
  612. unsigned long setpoint; /* dirty pages' target balance point */
  613. unsigned long bdi_setpoint;
  614. unsigned long span;
  615. long long pos_ratio; /* for scaling up/down the rate limit */
  616. long x;
  617. if (unlikely(dirty >= limit))
  618. return 0;
  619. /*
  620. * global setpoint
  621. *
  622. * See comment for pos_ratio_polynom().
  623. */
  624. setpoint = (freerun + limit) / 2;
  625. pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
  626. /*
  627. * The strictlimit feature is a tool preventing mistrusted filesystems
  628. * from growing a large number of dirty pages before throttling. For
  629. * such filesystems balance_dirty_pages always checks bdi counters
  630. * against bdi limits. Even if global "nr_dirty" is under "freerun".
  631. * This is especially important for fuse which sets bdi->max_ratio to
  632. * 1% by default. Without strictlimit feature, fuse writeback may
  633. * consume arbitrary amount of RAM because it is accounted in
  634. * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
  635. *
  636. * Here, in bdi_position_ratio(), we calculate pos_ratio based on
  637. * two values: bdi_dirty and bdi_thresh. Let's consider an example:
  638. * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
  639. * limits are set by default to 10% and 20% (background and throttle).
  640. * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
  641. * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is
  642. * about ~6K pages (as the average of background and throttle bdi
  643. * limits). The 3rd order polynomial will provide positive feedback if
  644. * bdi_dirty is under bdi_setpoint and vice versa.
  645. *
  646. * Note, that we cannot use global counters in these calculations
  647. * because we want to throttle process writing to a strictlimit BDI
  648. * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
  649. * in the example above).
  650. */
  651. if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
  652. long long bdi_pos_ratio;
  653. unsigned long bdi_bg_thresh;
  654. if (bdi_dirty < 8)
  655. return min_t(long long, pos_ratio * 2,
  656. 2 << RATELIMIT_CALC_SHIFT);
  657. if (bdi_dirty >= bdi_thresh)
  658. return 0;
  659. bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh);
  660. bdi_setpoint = dirty_freerun_ceiling(bdi_thresh,
  661. bdi_bg_thresh);
  662. if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh)
  663. return 0;
  664. bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty,
  665. bdi_thresh);
  666. /*
  667. * Typically, for strictlimit case, bdi_setpoint << setpoint
  668. * and pos_ratio >> bdi_pos_ratio. In the other words global
  669. * state ("dirty") is not limiting factor and we have to
  670. * make decision based on bdi counters. But there is an
  671. * important case when global pos_ratio should get precedence:
  672. * global limits are exceeded (e.g. due to activities on other
  673. * BDIs) while given strictlimit BDI is below limit.
  674. *
  675. * "pos_ratio * bdi_pos_ratio" would work for the case above,
  676. * but it would look too non-natural for the case of all
  677. * activity in the system coming from a single strictlimit BDI
  678. * with bdi->max_ratio == 100%.
  679. *
  680. * Note that min() below somewhat changes the dynamics of the
  681. * control system. Normally, pos_ratio value can be well over 3
  682. * (when globally we are at freerun and bdi is well below bdi
  683. * setpoint). Now the maximum pos_ratio in the same situation
  684. * is 2. We might want to tweak this if we observe the control
  685. * system is too slow to adapt.
  686. */
  687. return min(pos_ratio, bdi_pos_ratio);
  688. }
  689. /*
  690. * We have computed basic pos_ratio above based on global situation. If
  691. * the bdi is over/under its share of dirty pages, we want to scale
  692. * pos_ratio further down/up. That is done by the following mechanism.
  693. */
  694. /*
  695. * bdi setpoint
  696. *
  697. * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
  698. *
  699. * x_intercept - bdi_dirty
  700. * := --------------------------
  701. * x_intercept - bdi_setpoint
  702. *
  703. * The main bdi control line is a linear function that subjects to
  704. *
  705. * (1) f(bdi_setpoint) = 1.0
  706. * (2) k = - 1 / (8 * write_bw) (in single bdi case)
  707. * or equally: x_intercept = bdi_setpoint + 8 * write_bw
  708. *
  709. * For single bdi case, the dirty pages are observed to fluctuate
  710. * regularly within range
  711. * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
  712. * for various filesystems, where (2) can yield in a reasonable 12.5%
  713. * fluctuation range for pos_ratio.
  714. *
  715. * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
  716. * own size, so move the slope over accordingly and choose a slope that
  717. * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
  718. */
  719. if (unlikely(bdi_thresh > thresh))
  720. bdi_thresh = thresh;
  721. /*
  722. * It's very possible that bdi_thresh is close to 0 not because the
  723. * device is slow, but that it has remained inactive for long time.
  724. * Honour such devices a reasonable good (hopefully IO efficient)
  725. * threshold, so that the occasional writes won't be blocked and active
  726. * writes can rampup the threshold quickly.
  727. */
  728. bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
  729. /*
  730. * scale global setpoint to bdi's:
  731. * bdi_setpoint = setpoint * bdi_thresh / thresh
  732. */
  733. x = div_u64((u64)bdi_thresh << 16, thresh | 1);
  734. bdi_setpoint = setpoint * (u64)x >> 16;
  735. /*
  736. * Use span=(8*write_bw) in single bdi case as indicated by
  737. * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
  738. *
  739. * bdi_thresh thresh - bdi_thresh
  740. * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
  741. * thresh thresh
  742. */
  743. span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
  744. x_intercept = bdi_setpoint + span;
  745. if (bdi_dirty < x_intercept - span / 4) {
  746. pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
  747. x_intercept - bdi_setpoint + 1);
  748. } else
  749. pos_ratio /= 4;
  750. /*
  751. * bdi reserve area, safeguard against dirty pool underrun and disk idle
  752. * It may push the desired control point of global dirty pages higher
  753. * than setpoint.
  754. */
  755. x_intercept = bdi_thresh / 2;
  756. if (bdi_dirty < x_intercept) {
  757. if (bdi_dirty > x_intercept / 8)
  758. pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
  759. else
  760. pos_ratio *= 8;
  761. }
  762. return pos_ratio;
  763. }
  764. static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
  765. unsigned long elapsed,
  766. unsigned long written)
  767. {
  768. const unsigned long period = roundup_pow_of_two(3 * HZ);
  769. unsigned long avg = bdi->avg_write_bandwidth;
  770. unsigned long old = bdi->write_bandwidth;
  771. u64 bw;
  772. /*
  773. * bw = written * HZ / elapsed
  774. *
  775. * bw * elapsed + write_bandwidth * (period - elapsed)
  776. * write_bandwidth = ---------------------------------------------------
  777. * period
  778. *
  779. * @written may have decreased due to account_page_redirty().
  780. * Avoid underflowing @bw calculation.
  781. */
  782. bw = written - min(written, bdi->written_stamp);
  783. bw *= HZ;
  784. if (unlikely(elapsed > period)) {
  785. do_div(bw, elapsed);
  786. avg = bw;
  787. goto out;
  788. }
  789. bw += (u64)bdi->write_bandwidth * (period - elapsed);
  790. bw >>= ilog2(period);
  791. /*
  792. * one more level of smoothing, for filtering out sudden spikes
  793. */
  794. if (avg > old && old >= (unsigned long)bw)
  795. avg -= (avg - old) >> 3;
  796. if (avg < old && old <= (unsigned long)bw)
  797. avg += (old - avg) >> 3;
  798. out:
  799. bdi->write_bandwidth = bw;
  800. bdi->avg_write_bandwidth = avg;
  801. }
  802. /*
  803. * The global dirtyable memory and dirty threshold could be suddenly knocked
  804. * down by a large amount (eg. on the startup of KVM in a swapless system).
  805. * This may throw the system into deep dirty exceeded state and throttle
  806. * heavy/light dirtiers alike. To retain good responsiveness, maintain
  807. * global_dirty_limit for tracking slowly down to the knocked down dirty
  808. * threshold.
  809. */
  810. static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
  811. {
  812. unsigned long limit = global_dirty_limit;
  813. /*
  814. * Follow up in one step.
  815. */
  816. if (limit < thresh) {
  817. limit = thresh;
  818. goto update;
  819. }
  820. /*
  821. * Follow down slowly. Use the higher one as the target, because thresh
  822. * may drop below dirty. This is exactly the reason to introduce
  823. * global_dirty_limit which is guaranteed to lie above the dirty pages.
  824. */
  825. thresh = max(thresh, dirty);
  826. if (limit > thresh) {
  827. limit -= (limit - thresh) >> 5;
  828. goto update;
  829. }
  830. return;
  831. update:
  832. global_dirty_limit = limit;
  833. }
  834. static void global_update_bandwidth(unsigned long thresh,
  835. unsigned long dirty,
  836. unsigned long now)
  837. {
  838. static DEFINE_SPINLOCK(dirty_lock);
  839. static unsigned long update_time = INITIAL_JIFFIES;
  840. /*
  841. * check locklessly first to optimize away locking for the most time
  842. */
  843. if (time_before(now, update_time + BANDWIDTH_INTERVAL))
  844. return;
  845. spin_lock(&dirty_lock);
  846. if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
  847. update_dirty_limit(thresh, dirty);
  848. update_time = now;
  849. }
  850. spin_unlock(&dirty_lock);
  851. }
  852. /*
  853. * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
  854. *
  855. * Normal bdi tasks will be curbed at or below it in long term.
  856. * Obviously it should be around (write_bw / N) when there are N dd tasks.
  857. */
  858. static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
  859. unsigned long thresh,
  860. unsigned long bg_thresh,
  861. unsigned long dirty,
  862. unsigned long bdi_thresh,
  863. unsigned long bdi_dirty,
  864. unsigned long dirtied,
  865. unsigned long elapsed)
  866. {
  867. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  868. unsigned long limit = hard_dirty_limit(thresh);
  869. unsigned long setpoint = (freerun + limit) / 2;
  870. unsigned long write_bw = bdi->avg_write_bandwidth;
  871. unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
  872. unsigned long dirty_rate;
  873. unsigned long task_ratelimit;
  874. unsigned long balanced_dirty_ratelimit;
  875. unsigned long pos_ratio;
  876. unsigned long step;
  877. unsigned long x;
  878. /*
  879. * The dirty rate will match the writeout rate in long term, except
  880. * when dirty pages are truncated by userspace or re-dirtied by FS.
  881. */
  882. dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
  883. pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
  884. bdi_thresh, bdi_dirty);
  885. /*
  886. * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  887. */
  888. task_ratelimit = (u64)dirty_ratelimit *
  889. pos_ratio >> RATELIMIT_CALC_SHIFT;
  890. task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  891. /*
  892. * A linear estimation of the "balanced" throttle rate. The theory is,
  893. * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
  894. * dirty_rate will be measured to be (N * task_ratelimit). So the below
  895. * formula will yield the balanced rate limit (write_bw / N).
  896. *
  897. * Note that the expanded form is not a pure rate feedback:
  898. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
  899. * but also takes pos_ratio into account:
  900. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
  901. *
  902. * (1) is not realistic because pos_ratio also takes part in balancing
  903. * the dirty rate. Consider the state
  904. * pos_ratio = 0.5 (3)
  905. * rate = 2 * (write_bw / N) (4)
  906. * If (1) is used, it will stuck in that state! Because each dd will
  907. * be throttled at
  908. * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
  909. * yielding
  910. * dirty_rate = N * task_ratelimit = write_bw (6)
  911. * put (6) into (1) we get
  912. * rate_(i+1) = rate_(i) (7)
  913. *
  914. * So we end up using (2) to always keep
  915. * rate_(i+1) ~= (write_bw / N) (8)
  916. * regardless of the value of pos_ratio. As long as (8) is satisfied,
  917. * pos_ratio is able to drive itself to 1.0, which is not only where
  918. * the dirty count meet the setpoint, but also where the slope of
  919. * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  920. */
  921. balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  922. dirty_rate | 1);
  923. /*
  924. * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
  925. */
  926. if (unlikely(balanced_dirty_ratelimit > write_bw))
  927. balanced_dirty_ratelimit = write_bw;
  928. /*
  929. * We could safely do this and return immediately:
  930. *
  931. * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
  932. *
  933. * However to get a more stable dirty_ratelimit, the below elaborated
  934. * code makes use of task_ratelimit to filter out singular points and
  935. * limit the step size.
  936. *
  937. * The below code essentially only uses the relative value of
  938. *
  939. * task_ratelimit - dirty_ratelimit
  940. * = (pos_ratio - 1) * dirty_ratelimit
  941. *
  942. * which reflects the direction and size of dirty position error.
  943. */
  944. /*
  945. * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  946. * task_ratelimit is on the same side of dirty_ratelimit, too.
  947. * For example, when
  948. * - dirty_ratelimit > balanced_dirty_ratelimit
  949. * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  950. * lowering dirty_ratelimit will help meet both the position and rate
  951. * control targets. Otherwise, don't update dirty_ratelimit if it will
  952. * only help meet the rate target. After all, what the users ultimately
  953. * feel and care are stable dirty rate and small position error.
  954. *
  955. * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  956. * and filter out the singular points of balanced_dirty_ratelimit. Which
  957. * keeps jumping around randomly and can even leap far away at times
  958. * due to the small 200ms estimation period of dirty_rate (we want to
  959. * keep that period small to reduce time lags).
  960. */
  961. step = 0;
  962. /*
  963. * For strictlimit case, calculations above were based on bdi counters
  964. * and limits (starting from pos_ratio = bdi_position_ratio() and up to
  965. * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
  966. * Hence, to calculate "step" properly, we have to use bdi_dirty as
  967. * "dirty" and bdi_setpoint as "setpoint".
  968. *
  969. * We rampup dirty_ratelimit forcibly if bdi_dirty is low because
  970. * it's possible that bdi_thresh is close to zero due to inactivity
  971. * of backing device (see the implementation of bdi_dirty_limit()).
  972. */
  973. if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
  974. dirty = bdi_dirty;
  975. if (bdi_dirty < 8)
  976. setpoint = bdi_dirty + 1;
  977. else
  978. setpoint = (bdi_thresh +
  979. bdi_dirty_limit(bdi, bg_thresh)) / 2;
  980. }
  981. if (dirty < setpoint) {
  982. x = min(bdi->balanced_dirty_ratelimit,
  983. min(balanced_dirty_ratelimit, task_ratelimit));
  984. if (dirty_ratelimit < x)
  985. step = x - dirty_ratelimit;
  986. } else {
  987. x = max(bdi->balanced_dirty_ratelimit,
  988. max(balanced_dirty_ratelimit, task_ratelimit));
  989. if (dirty_ratelimit > x)
  990. step = dirty_ratelimit - x;
  991. }
  992. /*
  993. * Don't pursue 100% rate matching. It's impossible since the balanced
  994. * rate itself is constantly fluctuating. So decrease the track speed
  995. * when it gets close to the target. Helps eliminate pointless tremors.
  996. */
  997. step >>= dirty_ratelimit / (2 * step + 1);
  998. /*
  999. * Limit the tracking speed to avoid overshooting.
  1000. */
  1001. step = (step + 7) / 8;
  1002. if (dirty_ratelimit < balanced_dirty_ratelimit)
  1003. dirty_ratelimit += step;
  1004. else
  1005. dirty_ratelimit -= step;
  1006. bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
  1007. bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
  1008. trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
  1009. }
  1010. void __bdi_update_bandwidth(struct backing_dev_info *bdi,
  1011. unsigned long thresh,
  1012. unsigned long bg_thresh,
  1013. unsigned long dirty,
  1014. unsigned long bdi_thresh,
  1015. unsigned long bdi_dirty,
  1016. unsigned long start_time)
  1017. {
  1018. unsigned long now = jiffies;
  1019. unsigned long elapsed = now - bdi->bw_time_stamp;
  1020. unsigned long dirtied;
  1021. unsigned long written;
  1022. /*
  1023. * rate-limit, only update once every 200ms.
  1024. */
  1025. if (elapsed < BANDWIDTH_INTERVAL)
  1026. return;
  1027. dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
  1028. written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
  1029. /*
  1030. * Skip quiet periods when disk bandwidth is under-utilized.
  1031. * (at least 1s idle time between two flusher runs)
  1032. */
  1033. if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
  1034. goto snapshot;
  1035. if (thresh) {
  1036. global_update_bandwidth(thresh, dirty, now);
  1037. bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
  1038. bdi_thresh, bdi_dirty,
  1039. dirtied, elapsed);
  1040. }
  1041. bdi_update_write_bandwidth(bdi, elapsed, written);
  1042. snapshot:
  1043. bdi->dirtied_stamp = dirtied;
  1044. bdi->written_stamp = written;
  1045. bdi->bw_time_stamp = now;
  1046. }
  1047. static void bdi_update_bandwidth(struct backing_dev_info *bdi,
  1048. unsigned long thresh,
  1049. unsigned long bg_thresh,
  1050. unsigned long dirty,
  1051. unsigned long bdi_thresh,
  1052. unsigned long bdi_dirty,
  1053. unsigned long start_time)
  1054. {
  1055. if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
  1056. return;
  1057. spin_lock(&bdi->wb.list_lock);
  1058. __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
  1059. bdi_thresh, bdi_dirty, start_time);
  1060. spin_unlock(&bdi->wb.list_lock);
  1061. }
  1062. /*
  1063. * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
  1064. * will look to see if it needs to start dirty throttling.
  1065. *
  1066. * If dirty_poll_interval is too low, big NUMA machines will call the expensive
  1067. * global_page_state() too often. So scale it near-sqrt to the safety margin
  1068. * (the number of pages we may dirty without exceeding the dirty limits).
  1069. */
  1070. static unsigned long dirty_poll_interval(unsigned long dirty,
  1071. unsigned long thresh)
  1072. {
  1073. if (thresh > dirty)
  1074. return 1UL << (ilog2(thresh - dirty) >> 1);
  1075. return 1;
  1076. }
  1077. static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
  1078. unsigned long bdi_dirty)
  1079. {
  1080. unsigned long bw = bdi->avg_write_bandwidth;
  1081. unsigned long t;
  1082. /*
  1083. * Limit pause time for small memory systems. If sleeping for too long
  1084. * time, a small pool of dirty/writeback pages may go empty and disk go
  1085. * idle.
  1086. *
  1087. * 8 serves as the safety ratio.
  1088. */
  1089. t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
  1090. t++;
  1091. return min_t(unsigned long, t, MAX_PAUSE);
  1092. }
  1093. static long bdi_min_pause(struct backing_dev_info *bdi,
  1094. long max_pause,
  1095. unsigned long task_ratelimit,
  1096. unsigned long dirty_ratelimit,
  1097. int *nr_dirtied_pause)
  1098. {
  1099. long hi = ilog2(bdi->avg_write_bandwidth);
  1100. long lo = ilog2(bdi->dirty_ratelimit);
  1101. long t; /* target pause */
  1102. long pause; /* estimated next pause */
  1103. int pages; /* target nr_dirtied_pause */
  1104. /* target for 10ms pause on 1-dd case */
  1105. t = max(1, HZ / 100);
  1106. /*
  1107. * Scale up pause time for concurrent dirtiers in order to reduce CPU
  1108. * overheads.
  1109. *
  1110. * (N * 10ms) on 2^N concurrent tasks.
  1111. */
  1112. if (hi > lo)
  1113. t += (hi - lo) * (10 * HZ) / 1024;
  1114. /*
  1115. * This is a bit convoluted. We try to base the next nr_dirtied_pause
  1116. * on the much more stable dirty_ratelimit. However the next pause time
  1117. * will be computed based on task_ratelimit and the two rate limits may
  1118. * depart considerably at some time. Especially if task_ratelimit goes
  1119. * below dirty_ratelimit/2 and the target pause is max_pause, the next
  1120. * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
  1121. * result task_ratelimit won't be executed faithfully, which could
  1122. * eventually bring down dirty_ratelimit.
  1123. *
  1124. * We apply two rules to fix it up:
  1125. * 1) try to estimate the next pause time and if necessary, use a lower
  1126. * nr_dirtied_pause so as not to exceed max_pause. When this happens,
  1127. * nr_dirtied_pause will be "dancing" with task_ratelimit.
  1128. * 2) limit the target pause time to max_pause/2, so that the normal
  1129. * small fluctuations of task_ratelimit won't trigger rule (1) and
  1130. * nr_dirtied_pause will remain as stable as dirty_ratelimit.
  1131. */
  1132. t = min(t, 1 + max_pause / 2);
  1133. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1134. /*
  1135. * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
  1136. * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
  1137. * When the 16 consecutive reads are often interrupted by some dirty
  1138. * throttling pause during the async writes, cfq will go into idles
  1139. * (deadline is fine). So push nr_dirtied_pause as high as possible
  1140. * until reaches DIRTY_POLL_THRESH=32 pages.
  1141. */
  1142. if (pages < DIRTY_POLL_THRESH) {
  1143. t = max_pause;
  1144. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1145. if (pages > DIRTY_POLL_THRESH) {
  1146. pages = DIRTY_POLL_THRESH;
  1147. t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
  1148. }
  1149. }
  1150. pause = HZ * pages / (task_ratelimit + 1);
  1151. if (pause > max_pause) {
  1152. t = max_pause;
  1153. pages = task_ratelimit * t / roundup_pow_of_two(HZ);
  1154. }
  1155. *nr_dirtied_pause = pages;
  1156. /*
  1157. * The minimal pause time will normally be half the target pause time.
  1158. */
  1159. return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
  1160. }
  1161. static inline void bdi_dirty_limits(struct backing_dev_info *bdi,
  1162. unsigned long dirty_thresh,
  1163. unsigned long background_thresh,
  1164. unsigned long *bdi_dirty,
  1165. unsigned long *bdi_thresh,
  1166. unsigned long *bdi_bg_thresh)
  1167. {
  1168. unsigned long bdi_reclaimable;
  1169. /*
  1170. * bdi_thresh is not treated as some limiting factor as
  1171. * dirty_thresh, due to reasons
  1172. * - in JBOD setup, bdi_thresh can fluctuate a lot
  1173. * - in a system with HDD and USB key, the USB key may somehow
  1174. * go into state (bdi_dirty >> bdi_thresh) either because
  1175. * bdi_dirty starts high, or because bdi_thresh drops low.
  1176. * In this case we don't want to hard throttle the USB key
  1177. * dirtiers for 100 seconds until bdi_dirty drops under
  1178. * bdi_thresh. Instead the auxiliary bdi control line in
  1179. * bdi_position_ratio() will let the dirtier task progress
  1180. * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
  1181. */
  1182. *bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
  1183. if (bdi_bg_thresh)
  1184. *bdi_bg_thresh = dirty_thresh ? div_u64((u64)*bdi_thresh *
  1185. background_thresh,
  1186. dirty_thresh) : 0;
  1187. /*
  1188. * In order to avoid the stacked BDI deadlock we need
  1189. * to ensure we accurately count the 'dirty' pages when
  1190. * the threshold is low.
  1191. *
  1192. * Otherwise it would be possible to get thresh+n pages
  1193. * reported dirty, even though there are thresh-m pages
  1194. * actually dirty; with m+n sitting in the percpu
  1195. * deltas.
  1196. */
  1197. if (*bdi_thresh < 2 * bdi_stat_error(bdi)) {
  1198. bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  1199. *bdi_dirty = bdi_reclaimable +
  1200. bdi_stat_sum(bdi, BDI_WRITEBACK);
  1201. } else {
  1202. bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  1203. *bdi_dirty = bdi_reclaimable +
  1204. bdi_stat(bdi, BDI_WRITEBACK);
  1205. }
  1206. }
  1207. /*
  1208. * balance_dirty_pages() must be called by processes which are generating dirty
  1209. * data. It looks at the number of dirty pages in the machine and will force
  1210. * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  1211. * If we're over `background_thresh' then the writeback threads are woken to
  1212. * perform some writeout.
  1213. */
  1214. static void balance_dirty_pages(struct address_space *mapping,
  1215. unsigned long pages_dirtied)
  1216. {
  1217. unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
  1218. unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
  1219. unsigned long background_thresh;
  1220. unsigned long dirty_thresh;
  1221. long period;
  1222. long pause;
  1223. long max_pause;
  1224. long min_pause;
  1225. int nr_dirtied_pause;
  1226. bool dirty_exceeded = false;
  1227. unsigned long task_ratelimit;
  1228. unsigned long dirty_ratelimit;
  1229. unsigned long pos_ratio;
  1230. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1231. bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
  1232. unsigned long start_time = jiffies;
  1233. for (;;) {
  1234. unsigned long now = jiffies;
  1235. unsigned long uninitialized_var(bdi_thresh);
  1236. unsigned long thresh;
  1237. unsigned long uninitialized_var(bdi_dirty);
  1238. unsigned long dirty;
  1239. unsigned long bg_thresh;
  1240. /*
  1241. * Unstable writes are a feature of certain networked
  1242. * filesystems (i.e. NFS) in which data may have been
  1243. * written to the server's write cache, but has not yet
  1244. * been flushed to permanent storage.
  1245. */
  1246. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  1247. global_page_state(NR_UNSTABLE_NFS);
  1248. nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
  1249. global_dirty_limits(&background_thresh, &dirty_thresh);
  1250. if (unlikely(strictlimit)) {
  1251. bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
  1252. &bdi_dirty, &bdi_thresh, &bg_thresh);
  1253. dirty = bdi_dirty;
  1254. thresh = bdi_thresh;
  1255. } else {
  1256. dirty = nr_dirty;
  1257. thresh = dirty_thresh;
  1258. bg_thresh = background_thresh;
  1259. }
  1260. /*
  1261. * Throttle it only when the background writeback cannot
  1262. * catch-up. This avoids (excessively) small writeouts
  1263. * when the bdi limits are ramping up in case of !strictlimit.
  1264. *
  1265. * In strictlimit case make decision based on the bdi counters
  1266. * and limits. Small writeouts when the bdi limits are ramping
  1267. * up are the price we consciously pay for strictlimit-ing.
  1268. */
  1269. if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
  1270. current->dirty_paused_when = now;
  1271. current->nr_dirtied = 0;
  1272. current->nr_dirtied_pause =
  1273. dirty_poll_interval(dirty, thresh);
  1274. break;
  1275. }
  1276. if (unlikely(!writeback_in_progress(bdi)))
  1277. bdi_start_background_writeback(bdi);
  1278. if (!strictlimit)
  1279. bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
  1280. &bdi_dirty, &bdi_thresh, NULL);
  1281. dirty_exceeded = (bdi_dirty > bdi_thresh) &&
  1282. ((nr_dirty > dirty_thresh) || strictlimit);
  1283. if (dirty_exceeded && !bdi->dirty_exceeded)
  1284. bdi->dirty_exceeded = 1;
  1285. bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
  1286. nr_dirty, bdi_thresh, bdi_dirty,
  1287. start_time);
  1288. dirty_ratelimit = bdi->dirty_ratelimit;
  1289. pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
  1290. background_thresh, nr_dirty,
  1291. bdi_thresh, bdi_dirty);
  1292. task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
  1293. RATELIMIT_CALC_SHIFT;
  1294. max_pause = bdi_max_pause(bdi, bdi_dirty);
  1295. min_pause = bdi_min_pause(bdi, max_pause,
  1296. task_ratelimit, dirty_ratelimit,
  1297. &nr_dirtied_pause);
  1298. if (unlikely(task_ratelimit == 0)) {
  1299. period = max_pause;
  1300. pause = max_pause;
  1301. goto pause;
  1302. }
  1303. period = HZ * pages_dirtied / task_ratelimit;
  1304. pause = period;
  1305. if (current->dirty_paused_when)
  1306. pause -= now - current->dirty_paused_when;
  1307. /*
  1308. * For less than 1s think time (ext3/4 may block the dirtier
  1309. * for up to 800ms from time to time on 1-HDD; so does xfs,
  1310. * however at much less frequency), try to compensate it in
  1311. * future periods by updating the virtual time; otherwise just
  1312. * do a reset, as it may be a light dirtier.
  1313. */
  1314. if (pause < min_pause) {
  1315. trace_balance_dirty_pages(bdi,
  1316. dirty_thresh,
  1317. background_thresh,
  1318. nr_dirty,
  1319. bdi_thresh,
  1320. bdi_dirty,
  1321. dirty_ratelimit,
  1322. task_ratelimit,
  1323. pages_dirtied,
  1324. period,
  1325. min(pause, 0L),
  1326. start_time);
  1327. if (pause < -HZ) {
  1328. current->dirty_paused_when = now;
  1329. current->nr_dirtied = 0;
  1330. } else if (period) {
  1331. current->dirty_paused_when += period;
  1332. current->nr_dirtied = 0;
  1333. } else if (current->nr_dirtied_pause <= pages_dirtied)
  1334. current->nr_dirtied_pause += pages_dirtied;
  1335. break;
  1336. }
  1337. if (unlikely(pause > max_pause)) {
  1338. /* for occasional dropped task_ratelimit */
  1339. now += min(pause - max_pause, max_pause);
  1340. pause = max_pause;
  1341. }
  1342. pause:
  1343. trace_balance_dirty_pages(bdi,
  1344. dirty_thresh,
  1345. background_thresh,
  1346. nr_dirty,
  1347. bdi_thresh,
  1348. bdi_dirty,
  1349. dirty_ratelimit,
  1350. task_ratelimit,
  1351. pages_dirtied,
  1352. period,
  1353. pause,
  1354. start_time);
  1355. __set_current_state(TASK_KILLABLE);
  1356. io_schedule_timeout(pause);
  1357. current->dirty_paused_when = now + pause;
  1358. current->nr_dirtied = 0;
  1359. current->nr_dirtied_pause = nr_dirtied_pause;
  1360. /*
  1361. * This is typically equal to (nr_dirty < dirty_thresh) and can
  1362. * also keep "1000+ dd on a slow USB stick" under control.
  1363. */
  1364. if (task_ratelimit)
  1365. break;
  1366. /*
  1367. * In the case of an unresponding NFS server and the NFS dirty
  1368. * pages exceeds dirty_thresh, give the other good bdi's a pipe
  1369. * to go through, so that tasks on them still remain responsive.
  1370. *
  1371. * In theory 1 page is enough to keep the comsumer-producer
  1372. * pipe going: the flusher cleans 1 page => the task dirties 1
  1373. * more page. However bdi_dirty has accounting errors. So use
  1374. * the larger and more IO friendly bdi_stat_error.
  1375. */
  1376. if (bdi_dirty <= bdi_stat_error(bdi))
  1377. break;
  1378. if (fatal_signal_pending(current))
  1379. break;
  1380. }
  1381. if (!dirty_exceeded && bdi->dirty_exceeded)
  1382. bdi->dirty_exceeded = 0;
  1383. if (writeback_in_progress(bdi))
  1384. return;
  1385. /*
  1386. * In laptop mode, we wait until hitting the higher threshold before
  1387. * starting background writeout, and then write out all the way down
  1388. * to the lower threshold. So slow writers cause minimal disk activity.
  1389. *
  1390. * In normal mode, we start background writeout at the lower
  1391. * background_thresh, to keep the amount of dirty memory low.
  1392. */
  1393. if (laptop_mode)
  1394. return;
  1395. if (nr_reclaimable > background_thresh)
  1396. bdi_start_background_writeback(bdi);
  1397. }
  1398. static DEFINE_PER_CPU(int, bdp_ratelimits);
  1399. /*
  1400. * Normal tasks are throttled by
  1401. * loop {
  1402. * dirty tsk->nr_dirtied_pause pages;
  1403. * take a snap in balance_dirty_pages();
  1404. * }
  1405. * However there is a worst case. If every task exit immediately when dirtied
  1406. * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
  1407. * called to throttle the page dirties. The solution is to save the not yet
  1408. * throttled page dirties in dirty_throttle_leaks on task exit and charge them
  1409. * randomly into the running tasks. This works well for the above worst case,
  1410. * as the new task will pick up and accumulate the old task's leaked dirty
  1411. * count and eventually get throttled.
  1412. */
  1413. DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
  1414. /**
  1415. * balance_dirty_pages_ratelimited_nr - balance dirty memory state
  1416. * @mapping: address_space which was dirtied
  1417. * @nr_pages_dirtied: number of pages which the caller has just dirtied
  1418. *
  1419. * Processes which are dirtying memory should call in here once for each page
  1420. * which was newly dirtied. The function will periodically check the system's
  1421. * dirty state and will initiate writeback if needed.
  1422. *
  1423. * On really big machines, get_writeback_state is expensive, so try to avoid
  1424. * calling it too often (ratelimiting). But once we're over the dirty memory
  1425. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  1426. * from overshooting the limit by (ratelimit_pages) each.
  1427. */
  1428. void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
  1429. unsigned long nr_pages_dirtied)
  1430. {
  1431. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1432. int ratelimit;
  1433. int *p;
  1434. if (!bdi_cap_account_dirty(bdi))
  1435. return;
  1436. ratelimit = current->nr_dirtied_pause;
  1437. if (bdi->dirty_exceeded)
  1438. ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
  1439. preempt_disable();
  1440. /*
  1441. * This prevents one CPU to accumulate too many dirtied pages without
  1442. * calling into balance_dirty_pages(), which can happen when there are
  1443. * 1000+ tasks, all of them start dirtying pages at exactly the same
  1444. * time, hence all honoured too large initial task->nr_dirtied_pause.
  1445. */
  1446. p = &__get_cpu_var(bdp_ratelimits);
  1447. if (unlikely(current->nr_dirtied >= ratelimit))
  1448. *p = 0;
  1449. else if (unlikely(*p >= ratelimit_pages)) {
  1450. *p = 0;
  1451. ratelimit = 0;
  1452. }
  1453. /*
  1454. * Pick up the dirtied pages by the exited tasks. This avoids lots of
  1455. * short-lived tasks (eg. gcc invocations in a kernel build) escaping
  1456. * the dirty throttling and livelock other long-run dirtiers.
  1457. */
  1458. p = &__get_cpu_var(dirty_throttle_leaks);
  1459. if (*p > 0 && current->nr_dirtied < ratelimit) {
  1460. nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
  1461. *p -= nr_pages_dirtied;
  1462. current->nr_dirtied += nr_pages_dirtied;
  1463. }
  1464. preempt_enable();
  1465. if (unlikely(current->nr_dirtied >= ratelimit))
  1466. balance_dirty_pages(mapping, current->nr_dirtied);
  1467. }
  1468. EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
  1469. void throttle_vm_writeout(gfp_t gfp_mask)
  1470. {
  1471. unsigned long background_thresh;
  1472. unsigned long dirty_thresh;
  1473. for ( ; ; ) {
  1474. global_dirty_limits(&background_thresh, &dirty_thresh);
  1475. dirty_thresh = hard_dirty_limit(dirty_thresh);
  1476. /*
  1477. * Boost the allowable dirty threshold a bit for page
  1478. * allocators so they don't get DoS'ed by heavy writers
  1479. */
  1480. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  1481. if (global_page_state(NR_UNSTABLE_NFS) +
  1482. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  1483. break;
  1484. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1485. /*
  1486. * The caller might hold locks which can prevent IO completion
  1487. * or progress in the filesystem. So we cannot just sit here
  1488. * waiting for IO to complete.
  1489. */
  1490. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  1491. break;
  1492. }
  1493. }
  1494. /*
  1495. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  1496. */
  1497. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  1498. void __user *buffer, size_t *length, loff_t *ppos)
  1499. {
  1500. proc_dointvec(table, write, buffer, length, ppos);
  1501. bdi_arm_supers_timer();
  1502. return 0;
  1503. }
  1504. #ifdef CONFIG_BLOCK
  1505. void laptop_mode_timer_fn(unsigned long data)
  1506. {
  1507. struct request_queue *q = (struct request_queue *)data;
  1508. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  1509. global_page_state(NR_UNSTABLE_NFS);
  1510. /*
  1511. * We want to write everything out, not just down to the dirty
  1512. * threshold
  1513. */
  1514. if (bdi_has_dirty_io(&q->backing_dev_info))
  1515. bdi_start_writeback(&q->backing_dev_info, nr_pages,
  1516. WB_REASON_LAPTOP_TIMER);
  1517. }
  1518. /*
  1519. * We've spun up the disk and we're in laptop mode: schedule writeback
  1520. * of all dirty data a few seconds from now. If the flush is already scheduled
  1521. * then push it back - the user is still using the disk.
  1522. */
  1523. void laptop_io_completion(struct backing_dev_info *info)
  1524. {
  1525. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  1526. }
  1527. /*
  1528. * We're in laptop mode and we've just synced. The sync's writes will have
  1529. * caused another writeback to be scheduled by laptop_io_completion.
  1530. * Nothing needs to be written back anymore, so we unschedule the writeback.
  1531. */
  1532. void laptop_sync_completion(void)
  1533. {
  1534. struct backing_dev_info *bdi;
  1535. rcu_read_lock();
  1536. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1537. del_timer(&bdi->laptop_mode_wb_timer);
  1538. rcu_read_unlock();
  1539. }
  1540. #endif
  1541. /*
  1542. * If ratelimit_pages is too high then we can get into dirty-data overload
  1543. * if a large number of processes all perform writes at the same time.
  1544. * If it is too low then SMP machines will call the (expensive)
  1545. * get_writeback_state too often.
  1546. *
  1547. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  1548. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  1549. * thresholds.
  1550. */
  1551. void writeback_set_ratelimit(void)
  1552. {
  1553. unsigned long background_thresh;
  1554. unsigned long dirty_thresh;
  1555. global_dirty_limits(&background_thresh, &dirty_thresh);
  1556. ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
  1557. if (ratelimit_pages < 16)
  1558. ratelimit_pages = 16;
  1559. }
  1560. static int __cpuinit
  1561. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  1562. {
  1563. writeback_set_ratelimit();
  1564. return NOTIFY_DONE;
  1565. }
  1566. static struct notifier_block __cpuinitdata ratelimit_nb = {
  1567. .notifier_call = ratelimit_handler,
  1568. .next = NULL,
  1569. };
  1570. /*
  1571. * Called early on to tune the page writeback dirty limits.
  1572. *
  1573. * We used to scale dirty pages according to how total memory
  1574. * related to pages that could be allocated for buffers (by
  1575. * comparing nr_free_buffer_pages() to vm_total_pages.
  1576. *
  1577. * However, that was when we used "dirty_ratio" to scale with
  1578. * all memory, and we don't do that any more. "dirty_ratio"
  1579. * is now applied to total non-HIGHPAGE memory (by subtracting
  1580. * totalhigh_pages from vm_total_pages), and as such we can't
  1581. * get into the old insane situation any more where we had
  1582. * large amounts of dirty pages compared to a small amount of
  1583. * non-HIGHMEM memory.
  1584. *
  1585. * But we might still want to scale the dirty_ratio by how
  1586. * much memory the box has..
  1587. */
  1588. void __init page_writeback_init(void)
  1589. {
  1590. int shift;
  1591. writeback_set_ratelimit();
  1592. register_cpu_notifier(&ratelimit_nb);
  1593. shift = calc_period_shift();
  1594. prop_descriptor_init(&vm_completions, shift);
  1595. }
  1596. /**
  1597. * tag_pages_for_writeback - tag pages to be written by write_cache_pages
  1598. * @mapping: address space structure to write
  1599. * @start: starting page index
  1600. * @end: ending page index (inclusive)
  1601. *
  1602. * This function scans the page range from @start to @end (inclusive) and tags
  1603. * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
  1604. * that write_cache_pages (or whoever calls this function) will then use
  1605. * TOWRITE tag to identify pages eligible for writeback. This mechanism is
  1606. * used to avoid livelocking of writeback by a process steadily creating new
  1607. * dirty pages in the file (thus it is important for this function to be quick
  1608. * so that it can tag pages faster than a dirtying process can create them).
  1609. */
  1610. /*
  1611. * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
  1612. */
  1613. void tag_pages_for_writeback(struct address_space *mapping,
  1614. pgoff_t start, pgoff_t end)
  1615. {
  1616. #define WRITEBACK_TAG_BATCH 4096
  1617. unsigned long tagged;
  1618. do {
  1619. spin_lock_irq(&mapping->tree_lock);
  1620. tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
  1621. &start, end, WRITEBACK_TAG_BATCH,
  1622. PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
  1623. spin_unlock_irq(&mapping->tree_lock);
  1624. WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
  1625. cond_resched();
  1626. /* We check 'start' to handle wrapping when end == ~0UL */
  1627. } while (tagged >= WRITEBACK_TAG_BATCH && start);
  1628. }
  1629. EXPORT_SYMBOL(tag_pages_for_writeback);
  1630. /**
  1631. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  1632. * @mapping: address space structure to write
  1633. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1634. * @writepage: function called for each page
  1635. * @data: data passed to writepage function
  1636. *
  1637. * If a page is already under I/O, write_cache_pages() skips it, even
  1638. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  1639. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  1640. * and msync() need to guarantee that all the data which was dirty at the time
  1641. * the call was made get new I/O started against them. If wbc->sync_mode is
  1642. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  1643. * existing IO to complete.
  1644. *
  1645. * To avoid livelocks (when other process dirties new pages), we first tag
  1646. * pages which should be written back with TOWRITE tag and only then start
  1647. * writing them. For data-integrity sync we have to be careful so that we do
  1648. * not miss some pages (e.g., because some other process has cleared TOWRITE
  1649. * tag we set). The rule we follow is that TOWRITE tag can be cleared only
  1650. * by the process clearing the DIRTY tag (and submitting the page for IO).
  1651. */
  1652. int write_cache_pages(struct address_space *mapping,
  1653. struct writeback_control *wbc, writepage_t writepage,
  1654. void *data)
  1655. {
  1656. int ret = 0;
  1657. int done = 0;
  1658. struct pagevec pvec;
  1659. int nr_pages;
  1660. pgoff_t uninitialized_var(writeback_index);
  1661. pgoff_t index;
  1662. pgoff_t end; /* Inclusive */
  1663. pgoff_t done_index;
  1664. int cycled;
  1665. int range_whole = 0;
  1666. int tag;
  1667. pagevec_init(&pvec, 0);
  1668. if (wbc->range_cyclic) {
  1669. writeback_index = mapping->writeback_index; /* prev offset */
  1670. index = writeback_index;
  1671. if (index == 0)
  1672. cycled = 1;
  1673. else
  1674. cycled = 0;
  1675. end = -1;
  1676. } else {
  1677. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1678. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1679. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1680. range_whole = 1;
  1681. cycled = 1; /* ignore range_cyclic tests */
  1682. }
  1683. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1684. tag = PAGECACHE_TAG_TOWRITE;
  1685. else
  1686. tag = PAGECACHE_TAG_DIRTY;
  1687. retry:
  1688. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1689. tag_pages_for_writeback(mapping, index, end);
  1690. done_index = index;
  1691. while (!done && (index <= end)) {
  1692. int i;
  1693. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1694. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1695. if (nr_pages == 0)
  1696. break;
  1697. for (i = 0; i < nr_pages; i++) {
  1698. struct page *page = pvec.pages[i];
  1699. /*
  1700. * At this point, the page may be truncated or
  1701. * invalidated (changing page->mapping to NULL), or
  1702. * even swizzled back from swapper_space to tmpfs file
  1703. * mapping. However, page->index will not change
  1704. * because we have a reference on the page.
  1705. */
  1706. if (page->index > end) {
  1707. /*
  1708. * can't be range_cyclic (1st pass) because
  1709. * end == -1 in that case.
  1710. */
  1711. done = 1;
  1712. break;
  1713. }
  1714. done_index = page->index;
  1715. lock_page(page);
  1716. /*
  1717. * Page truncated or invalidated. We can freely skip it
  1718. * then, even for data integrity operations: the page
  1719. * has disappeared concurrently, so there could be no
  1720. * real expectation of this data interity operation
  1721. * even if there is now a new, dirty page at the same
  1722. * pagecache address.
  1723. */
  1724. if (unlikely(page->mapping != mapping)) {
  1725. continue_unlock:
  1726. unlock_page(page);
  1727. continue;
  1728. }
  1729. if (!PageDirty(page)) {
  1730. /* someone wrote it for us */
  1731. goto continue_unlock;
  1732. }
  1733. if (PageWriteback(page)) {
  1734. if (wbc->sync_mode != WB_SYNC_NONE)
  1735. wait_on_page_writeback(page);
  1736. else
  1737. goto continue_unlock;
  1738. }
  1739. BUG_ON(PageWriteback(page));
  1740. if (!clear_page_dirty_for_io(page))
  1741. goto continue_unlock;
  1742. trace_wbc_writepage(wbc, mapping->backing_dev_info);
  1743. ret = (*writepage)(page, wbc, data);
  1744. if (unlikely(ret)) {
  1745. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1746. unlock_page(page);
  1747. ret = 0;
  1748. } else {
  1749. /*
  1750. * done_index is set past this page,
  1751. * so media errors will not choke
  1752. * background writeout for the entire
  1753. * file. This has consequences for
  1754. * range_cyclic semantics (ie. it may
  1755. * not be suitable for data integrity
  1756. * writeout).
  1757. */
  1758. done_index = page->index + 1;
  1759. done = 1;
  1760. break;
  1761. }
  1762. }
  1763. /*
  1764. * We stop writing back only if we are not doing
  1765. * integrity sync. In case of integrity sync we have to
  1766. * keep going until we have written all the pages
  1767. * we tagged for writeback prior to entering this loop.
  1768. */
  1769. if (--wbc->nr_to_write <= 0 &&
  1770. wbc->sync_mode == WB_SYNC_NONE) {
  1771. done = 1;
  1772. break;
  1773. }
  1774. }
  1775. pagevec_release(&pvec);
  1776. cond_resched();
  1777. }
  1778. if (!cycled && !done) {
  1779. /*
  1780. * range_cyclic:
  1781. * We hit the last page and there is more work to be done: wrap
  1782. * back to the start of the file
  1783. */
  1784. cycled = 1;
  1785. index = 0;
  1786. end = writeback_index - 1;
  1787. goto retry;
  1788. }
  1789. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1790. mapping->writeback_index = done_index;
  1791. return ret;
  1792. }
  1793. EXPORT_SYMBOL(write_cache_pages);
  1794. /*
  1795. * Function used by generic_writepages to call the real writepage
  1796. * function and set the mapping flags on error
  1797. */
  1798. static int __writepage(struct page *page, struct writeback_control *wbc,
  1799. void *data)
  1800. {
  1801. struct address_space *mapping = data;
  1802. int ret = mapping->a_ops->writepage(page, wbc);
  1803. mapping_set_error(mapping, ret);
  1804. return ret;
  1805. }
  1806. /**
  1807. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  1808. * @mapping: address space structure to write
  1809. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1810. *
  1811. * This is a library function, which implements the writepages()
  1812. * address_space_operation.
  1813. */
  1814. int generic_writepages(struct address_space *mapping,
  1815. struct writeback_control *wbc)
  1816. {
  1817. struct blk_plug plug;
  1818. int ret;
  1819. /* deal with chardevs and other special file */
  1820. if (!mapping->a_ops->writepage)
  1821. return 0;
  1822. blk_start_plug(&plug);
  1823. ret = write_cache_pages(mapping, wbc, __writepage, mapping);
  1824. blk_finish_plug(&plug);
  1825. return ret;
  1826. }
  1827. EXPORT_SYMBOL(generic_writepages);
  1828. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  1829. {
  1830. int ret;
  1831. if (wbc->nr_to_write <= 0)
  1832. return 0;
  1833. if (mapping->a_ops->writepages)
  1834. ret = mapping->a_ops->writepages(mapping, wbc);
  1835. else
  1836. ret = generic_writepages(mapping, wbc);
  1837. return ret;
  1838. }
  1839. /**
  1840. * write_one_page - write out a single page and optionally wait on I/O
  1841. * @page: the page to write
  1842. * @wait: if true, wait on writeout
  1843. *
  1844. * The page must be locked by the caller and will be unlocked upon return.
  1845. *
  1846. * write_one_page() returns a negative error code if I/O failed.
  1847. */
  1848. int write_one_page(struct page *page, int wait)
  1849. {
  1850. struct address_space *mapping = page->mapping;
  1851. int ret = 0;
  1852. struct writeback_control wbc = {
  1853. .sync_mode = WB_SYNC_ALL,
  1854. .nr_to_write = 1,
  1855. };
  1856. BUG_ON(!PageLocked(page));
  1857. if (wait)
  1858. wait_on_page_writeback(page);
  1859. if (clear_page_dirty_for_io(page)) {
  1860. page_cache_get(page);
  1861. ret = mapping->a_ops->writepage(page, &wbc);
  1862. if (ret == 0 && wait) {
  1863. wait_on_page_writeback(page);
  1864. if (PageError(page))
  1865. ret = -EIO;
  1866. }
  1867. page_cache_release(page);
  1868. } else {
  1869. unlock_page(page);
  1870. }
  1871. return ret;
  1872. }
  1873. EXPORT_SYMBOL(write_one_page);
  1874. /*
  1875. * For address_spaces which do not use buffers nor write back.
  1876. */
  1877. int __set_page_dirty_no_writeback(struct page *page)
  1878. {
  1879. if (!PageDirty(page))
  1880. return !TestSetPageDirty(page);
  1881. return 0;
  1882. }
  1883. /*
  1884. * Helper function for set_page_dirty family.
  1885. * NOTE: This relies on being atomic wrt interrupts.
  1886. */
  1887. void account_page_dirtied(struct page *page, struct address_space *mapping)
  1888. {
  1889. if (mapping_cap_account_dirty(mapping)) {
  1890. __inc_zone_page_state(page, NR_FILE_DIRTY);
  1891. __inc_zone_page_state(page, NR_DIRTIED);
  1892. __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  1893. __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1894. task_io_account_write(PAGE_CACHE_SIZE);
  1895. current->nr_dirtied++;
  1896. this_cpu_inc(bdp_ratelimits);
  1897. }
  1898. }
  1899. EXPORT_SYMBOL(account_page_dirtied);
  1900. /*
  1901. * Helper function for set_page_writeback family.
  1902. * NOTE: Unlike account_page_dirtied this does not rely on being atomic
  1903. * wrt interrupts.
  1904. */
  1905. void account_page_writeback(struct page *page)
  1906. {
  1907. inc_zone_page_state(page, NR_WRITEBACK);
  1908. }
  1909. EXPORT_SYMBOL(account_page_writeback);
  1910. /*
  1911. * For address_spaces which do not use buffers. Just tag the page as dirty in
  1912. * its radix tree.
  1913. *
  1914. * This is also used when a single buffer is being dirtied: we want to set the
  1915. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  1916. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  1917. *
  1918. * The caller must ensure this doesn't race with truncation. Most will simply
  1919. * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
  1920. * the pte lock held, which also locks out truncat
  1921. */
  1922. int __set_page_dirty_nobuffers(struct page *page)
  1923. {
  1924. if (!TestSetPageDirty(page)) {
  1925. struct address_space *mapping = page_mapping(page);
  1926. unsigned long flags;
  1927. if (!mapping)
  1928. return 1;
  1929. spin_lock_irqsave(&mapping->tree_lock, flags);
  1930. BUG_ON(page_mapping(page) != mapping);
  1931. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  1932. account_page_dirtied(page, mapping);
  1933. radix_tree_tag_set(&mapping->page_tree, page_index(page),
  1934. PAGECACHE_TAG_DIRTY);
  1935. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1936. if (mapping->host) {
  1937. /* !PageAnon && !swapper_space */
  1938. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1939. }
  1940. return 1;
  1941. }
  1942. return 0;
  1943. }
  1944. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  1945. /*
  1946. * Call this whenever redirtying a page, to de-account the dirty counters
  1947. * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
  1948. * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
  1949. * systematic errors in balanced_dirty_ratelimit and the dirty pages position
  1950. * control.
  1951. */
  1952. void account_page_redirty(struct page *page)
  1953. {
  1954. struct address_space *mapping = page->mapping;
  1955. if (mapping && mapping_cap_account_dirty(mapping)) {
  1956. current->nr_dirtied--;
  1957. dec_zone_page_state(page, NR_DIRTIED);
  1958. dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1959. }
  1960. }
  1961. EXPORT_SYMBOL(account_page_redirty);
  1962. /*
  1963. * When a writepage implementation decides that it doesn't want to write this
  1964. * page for some reason, it should redirty the locked page via
  1965. * redirty_page_for_writepage() and it should then unlock the page and return 0
  1966. */
  1967. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  1968. {
  1969. wbc->pages_skipped++;
  1970. account_page_redirty(page);
  1971. return __set_page_dirty_nobuffers(page);
  1972. }
  1973. EXPORT_SYMBOL(redirty_page_for_writepage);
  1974. /*
  1975. * Dirty a page.
  1976. *
  1977. * For pages with a mapping this should be done under the page lock
  1978. * for the benefit of asynchronous memory errors who prefer a consistent
  1979. * dirty state. This rule can be broken in some special cases,
  1980. * but should be better not to.
  1981. *
  1982. * If the mapping doesn't provide a set_page_dirty a_op, then
  1983. * just fall through and assume that it wants buffer_heads.
  1984. */
  1985. int set_page_dirty(struct page *page)
  1986. {
  1987. struct address_space *mapping = page_mapping(page);
  1988. if (likely(mapping)) {
  1989. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  1990. /*
  1991. * readahead/lru_deactivate_page could remain
  1992. * PG_readahead/PG_reclaim due to race with end_page_writeback
  1993. * About readahead, if the page is written, the flags would be
  1994. * reset. So no problem.
  1995. * About lru_deactivate_page, if the page is redirty, the flag
  1996. * will be reset. So no problem. but if the page is used by readahead
  1997. * it will confuse readahead and make it restart the size rampup
  1998. * process. But it's a trivial problem.
  1999. */
  2000. ClearPageReclaim(page);
  2001. #ifdef CONFIG_BLOCK
  2002. if (!spd)
  2003. spd = __set_page_dirty_buffers;
  2004. #endif
  2005. return (*spd)(page);
  2006. }
  2007. if (!PageDirty(page)) {
  2008. if (!TestSetPageDirty(page))
  2009. return 1;
  2010. }
  2011. return 0;
  2012. }
  2013. EXPORT_SYMBOL(set_page_dirty);
  2014. /*
  2015. * set_page_dirty() is racy if the caller has no reference against
  2016. * page->mapping->host, and if the page is unlocked. This is because another
  2017. * CPU could truncate the page off the mapping and then free the mapping.
  2018. *
  2019. * Usually, the page _is_ locked, or the caller is a user-space process which
  2020. * holds a reference on the inode by having an open file.
  2021. *
  2022. * In other cases, the page should be locked before running set_page_dirty().
  2023. */
  2024. int set_page_dirty_lock(struct page *page)
  2025. {
  2026. int ret;
  2027. lock_page(page);
  2028. ret = set_page_dirty(page);
  2029. unlock_page(page);
  2030. return ret;
  2031. }
  2032. EXPORT_SYMBOL(set_page_dirty_lock);
  2033. /*
  2034. * Clear a page's dirty flag, while caring for dirty memory accounting.
  2035. * Returns true if the page was previously dirty.
  2036. *
  2037. * This is for preparing to put the page under writeout. We leave the page
  2038. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  2039. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  2040. * implementation will run either set_page_writeback() or set_page_dirty(),
  2041. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  2042. * back into sync.
  2043. *
  2044. * This incoherency between the page's dirty flag and radix-tree tag is
  2045. * unfortunate, but it only exists while the page is locked.
  2046. */
  2047. int clear_page_dirty_for_io(struct page *page)
  2048. {
  2049. struct address_space *mapping = page_mapping(page);
  2050. BUG_ON(!PageLocked(page));
  2051. if (mapping && mapping_cap_account_dirty(mapping)) {
  2052. /*
  2053. * Yes, Virginia, this is indeed insane.
  2054. *
  2055. * We use this sequence to make sure that
  2056. * (a) we account for dirty stats properly
  2057. * (b) we tell the low-level filesystem to
  2058. * mark the whole page dirty if it was
  2059. * dirty in a pagetable. Only to then
  2060. * (c) clean the page again and return 1 to
  2061. * cause the writeback.
  2062. *
  2063. * This way we avoid all nasty races with the
  2064. * dirty bit in multiple places and clearing
  2065. * them concurrently from different threads.
  2066. *
  2067. * Note! Normally the "set_page_dirty(page)"
  2068. * has no effect on the actual dirty bit - since
  2069. * that will already usually be set. But we
  2070. * need the side effects, and it can help us
  2071. * avoid races.
  2072. *
  2073. * We basically use the page "master dirty bit"
  2074. * as a serialization point for all the different
  2075. * threads doing their things.
  2076. */
  2077. if (page_mkclean(page))
  2078. set_page_dirty(page);
  2079. /*
  2080. * We carefully synchronise fault handlers against
  2081. * installing a dirty pte and marking the page dirty
  2082. * at this point. We do this by having them hold the
  2083. * page lock while dirtying the page, and pages are
  2084. * always locked coming in here, so we get the desired
  2085. * exclusion.
  2086. */
  2087. if (TestClearPageDirty(page)) {
  2088. dec_zone_page_state(page, NR_FILE_DIRTY);
  2089. dec_bdi_stat(mapping->backing_dev_info,
  2090. BDI_RECLAIMABLE);
  2091. return 1;
  2092. }
  2093. return 0;
  2094. }
  2095. return TestClearPageDirty(page);
  2096. }
  2097. EXPORT_SYMBOL(clear_page_dirty_for_io);
  2098. int test_clear_page_writeback(struct page *page)
  2099. {
  2100. struct address_space *mapping = page_mapping(page);
  2101. int ret;
  2102. if (mapping) {
  2103. struct backing_dev_info *bdi = mapping->backing_dev_info;
  2104. unsigned long flags;
  2105. spin_lock_irqsave(&mapping->tree_lock, flags);
  2106. ret = TestClearPageWriteback(page);
  2107. if (ret) {
  2108. radix_tree_tag_clear(&mapping->page_tree,
  2109. page_index(page),
  2110. PAGECACHE_TAG_WRITEBACK);
  2111. if (bdi_cap_account_writeback(bdi)) {
  2112. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  2113. __bdi_writeout_inc(bdi);
  2114. }
  2115. }
  2116. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2117. } else {
  2118. ret = TestClearPageWriteback(page);
  2119. }
  2120. if (ret) {
  2121. dec_zone_page_state(page, NR_WRITEBACK);
  2122. inc_zone_page_state(page, NR_WRITTEN);
  2123. }
  2124. return ret;
  2125. }
  2126. int test_set_page_writeback(struct page *page)
  2127. {
  2128. struct address_space *mapping = page_mapping(page);
  2129. int ret;
  2130. if (mapping) {
  2131. struct backing_dev_info *bdi = mapping->backing_dev_info;
  2132. unsigned long flags;
  2133. spin_lock_irqsave(&mapping->tree_lock, flags);
  2134. ret = TestSetPageWriteback(page);
  2135. if (!ret) {
  2136. radix_tree_tag_set(&mapping->page_tree,
  2137. page_index(page),
  2138. PAGECACHE_TAG_WRITEBACK);
  2139. if (bdi_cap_account_writeback(bdi))
  2140. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  2141. }
  2142. if (!PageDirty(page))
  2143. radix_tree_tag_clear(&mapping->page_tree,
  2144. page_index(page),
  2145. PAGECACHE_TAG_DIRTY);
  2146. radix_tree_tag_clear(&mapping->page_tree,
  2147. page_index(page),
  2148. PAGECACHE_TAG_TOWRITE);
  2149. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2150. } else {
  2151. ret = TestSetPageWriteback(page);
  2152. }
  2153. if (!ret)
  2154. account_page_writeback(page);
  2155. return ret;
  2156. }
  2157. EXPORT_SYMBOL(test_set_page_writeback);
  2158. /*
  2159. * Return true if any of the pages in the mapping are marked with the
  2160. * passed tag.
  2161. */
  2162. int mapping_tagged(struct address_space *mapping, int tag)
  2163. {
  2164. return radix_tree_tagged(&mapping->page_tree, tag);
  2165. }
  2166. EXPORT_SYMBOL(mapping_tagged);
  2167. /**
  2168. * wait_for_stable_page() - wait for writeback to finish, if necessary.
  2169. * @page: The page to wait on.
  2170. *
  2171. * This function determines if the given page is related to a backing device
  2172. * that requires page contents to be held stable during writeback. If so, then
  2173. * it will wait for any pending writeback to complete.
  2174. */
  2175. void wait_for_stable_page(struct page *page)
  2176. {
  2177. struct address_space *mapping = page_mapping(page);
  2178. struct backing_dev_info *bdi = mapping->backing_dev_info;
  2179. if (!bdi_cap_stable_pages_required(bdi))
  2180. return;
  2181. #ifdef CONFIG_NEED_BOUNCE_POOL
  2182. if (mapping->host->i_sb->s_flags & MS_SNAP_STABLE)
  2183. return;
  2184. #endif /* CONFIG_NEED_BOUNCE_POOL */
  2185. wait_on_page_writeback(page);
  2186. }
  2187. EXPORT_SYMBOL_GPL(wait_for_stable_page);