12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610 |
- /*
- * Copyright (C) 2008, 2009 Intel Corporation
- * Authors: Andi Kleen, Fengguang Wu
- *
- * This software may be redistributed and/or modified under the terms of
- * the GNU General Public License ("GPL") version 2 only as published by the
- * Free Software Foundation.
- *
- * High level machine check handler. Handles pages reported by the
- * hardware as being corrupted usually due to a multi-bit ECC memory or cache
- * failure.
- *
- * In addition there is a "soft offline" entry point that allows stop using
- * not-yet-corrupted-by-suspicious pages without killing anything.
- *
- * Handles page cache pages in various states. The tricky part
- * here is that we can access any page asynchronously in respect to
- * other VM users, because memory failures could happen anytime and
- * anywhere. This could violate some of their assumptions. This is why
- * this code has to be extremely careful. Generally it tries to use
- * normal locking rules, as in get the standard locks, even if that means
- * the error handling takes potentially a long time.
- *
- * There are several operations here with exponential complexity because
- * of unsuitable VM data structures. For example the operation to map back
- * from RMAP chains to processes has to walk the complete process list and
- * has non linear complexity with the number. But since memory corruptions
- * are rare we hope to get away with this. This avoids impacting the core
- * VM.
- */
- /*
- * Notebook:
- * - hugetlb needs more code
- * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
- * - pass bad pages to kdump next kernel
- */
- #include <linux/kernel.h>
- #include <linux/mm.h>
- #include <linux/page-flags.h>
- #include <linux/kernel-page-flags.h>
- #include <linux/sched.h>
- #include <linux/ksm.h>
- #include <linux/rmap.h>
- #include <linux/export.h>
- #include <linux/pagemap.h>
- #include <linux/swap.h>
- #include <linux/backing-dev.h>
- #include <linux/migrate.h>
- #include <linux/page-isolation.h>
- #include <linux/suspend.h>
- #include <linux/slab.h>
- #include <linux/swapops.h>
- #include <linux/hugetlb.h>
- #include <linux/memory_hotplug.h>
- #include <linux/mm_inline.h>
- #include <linux/kfifo.h>
- #include "internal.h"
- int sysctl_memory_failure_early_kill __read_mostly = 0;
- int sysctl_memory_failure_recovery __read_mostly = 1;
- atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
- #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
- u32 hwpoison_filter_enable = 0;
- u32 hwpoison_filter_dev_major = ~0U;
- u32 hwpoison_filter_dev_minor = ~0U;
- u64 hwpoison_filter_flags_mask;
- u64 hwpoison_filter_flags_value;
- EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
- EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
- EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
- EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
- EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
- static int hwpoison_filter_dev(struct page *p)
- {
- struct address_space *mapping;
- dev_t dev;
- if (hwpoison_filter_dev_major == ~0U &&
- hwpoison_filter_dev_minor == ~0U)
- return 0;
- /*
- * page_mapping() does not accept slab pages.
- */
- if (PageSlab(p))
- return -EINVAL;
- mapping = page_mapping(p);
- if (mapping == NULL || mapping->host == NULL)
- return -EINVAL;
- dev = mapping->host->i_sb->s_dev;
- if (hwpoison_filter_dev_major != ~0U &&
- hwpoison_filter_dev_major != MAJOR(dev))
- return -EINVAL;
- if (hwpoison_filter_dev_minor != ~0U &&
- hwpoison_filter_dev_minor != MINOR(dev))
- return -EINVAL;
- return 0;
- }
- static int hwpoison_filter_flags(struct page *p)
- {
- if (!hwpoison_filter_flags_mask)
- return 0;
- if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
- hwpoison_filter_flags_value)
- return 0;
- else
- return -EINVAL;
- }
- /*
- * This allows stress tests to limit test scope to a collection of tasks
- * by putting them under some memcg. This prevents killing unrelated/important
- * processes such as /sbin/init. Note that the target task may share clean
- * pages with init (eg. libc text), which is harmless. If the target task
- * share _dirty_ pages with another task B, the test scheme must make sure B
- * is also included in the memcg. At last, due to race conditions this filter
- * can only guarantee that the page either belongs to the memcg tasks, or is
- * a freed page.
- */
- #ifdef CONFIG_MEMCG_SWAP
- u64 hwpoison_filter_memcg;
- EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
- static int hwpoison_filter_task(struct page *p)
- {
- struct mem_cgroup *mem;
- struct cgroup_subsys_state *css;
- unsigned long ino;
- if (!hwpoison_filter_memcg)
- return 0;
- mem = try_get_mem_cgroup_from_page(p);
- if (!mem)
- return -EINVAL;
- css = mem_cgroup_css(mem);
- /* root_mem_cgroup has NULL dentries */
- if (!css->cgroup->dentry)
- return -EINVAL;
- ino = css->cgroup->dentry->d_inode->i_ino;
- css_put(css);
- if (ino != hwpoison_filter_memcg)
- return -EINVAL;
- return 0;
- }
- #else
- static int hwpoison_filter_task(struct page *p) { return 0; }
- #endif
- int hwpoison_filter(struct page *p)
- {
- if (!hwpoison_filter_enable)
- return 0;
- if (hwpoison_filter_dev(p))
- return -EINVAL;
- if (hwpoison_filter_flags(p))
- return -EINVAL;
- if (hwpoison_filter_task(p))
- return -EINVAL;
- return 0;
- }
- #else
- int hwpoison_filter(struct page *p)
- {
- return 0;
- }
- #endif
- EXPORT_SYMBOL_GPL(hwpoison_filter);
- /*
- * Send all the processes who have the page mapped a signal.
- * ``action optional'' if they are not immediately affected by the error
- * ``action required'' if error happened in current execution context
- */
- static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
- unsigned long pfn, struct page *page, int flags)
- {
- struct siginfo si;
- int ret;
- printk(KERN_ERR
- "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
- pfn, t->comm, t->pid);
- si.si_signo = SIGBUS;
- si.si_errno = 0;
- si.si_addr = (void *)addr;
- #ifdef __ARCH_SI_TRAPNO
- si.si_trapno = trapno;
- #endif
- si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
- if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
- si.si_code = BUS_MCEERR_AR;
- ret = force_sig_info(SIGBUS, &si, current);
- } else {
- /*
- * Don't use force here, it's convenient if the signal
- * can be temporarily blocked.
- * This could cause a loop when the user sets SIGBUS
- * to SIG_IGN, but hopefully no one will do that?
- */
- si.si_code = BUS_MCEERR_AO;
- ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
- }
- if (ret < 0)
- printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
- t->comm, t->pid, ret);
- return ret;
- }
- /*
- * When a unknown page type is encountered drain as many buffers as possible
- * in the hope to turn the page into a LRU or free page, which we can handle.
- */
- void shake_page(struct page *p, int access)
- {
- if (!PageSlab(p)) {
- lru_add_drain_all();
- if (PageLRU(p))
- return;
- drain_all_pages();
- if (PageLRU(p) || is_free_buddy_page(p))
- return;
- }
- /*
- * Only call shrink_slab here (which would also shrink other caches) if
- * access is not potentially fatal.
- */
- if (access) {
- int nr;
- do {
- struct shrink_control shrink = {
- .gfp_mask = GFP_KERNEL,
- };
- shrink.priority = DEF_PRIORITY;
- nr = shrink_slab(&shrink, 1000, 1000);
- if (page_count(p) == 1)
- break;
- } while (nr > 10);
- }
- }
- EXPORT_SYMBOL_GPL(shake_page);
- /*
- * Kill all processes that have a poisoned page mapped and then isolate
- * the page.
- *
- * General strategy:
- * Find all processes having the page mapped and kill them.
- * But we keep a page reference around so that the page is not
- * actually freed yet.
- * Then stash the page away
- *
- * There's no convenient way to get back to mapped processes
- * from the VMAs. So do a brute-force search over all
- * running processes.
- *
- * Remember that machine checks are not common (or rather
- * if they are common you have other problems), so this shouldn't
- * be a performance issue.
- *
- * Also there are some races possible while we get from the
- * error detection to actually handle it.
- */
- struct to_kill {
- struct list_head nd;
- struct task_struct *tsk;
- unsigned long addr;
- char addr_valid;
- };
- /*
- * Failure handling: if we can't find or can't kill a process there's
- * not much we can do. We just print a message and ignore otherwise.
- */
- /*
- * Schedule a process for later kill.
- * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
- * TBD would GFP_NOIO be enough?
- */
- static void add_to_kill(struct task_struct *tsk, struct page *p,
- struct vm_area_struct *vma,
- struct list_head *to_kill,
- struct to_kill **tkc)
- {
- struct to_kill *tk;
- if (*tkc) {
- tk = *tkc;
- *tkc = NULL;
- } else {
- tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
- if (!tk) {
- printk(KERN_ERR
- "MCE: Out of memory while machine check handling\n");
- return;
- }
- }
- tk->addr = page_address_in_vma(p, vma);
- tk->addr_valid = 1;
- /*
- * In theory we don't have to kill when the page was
- * munmaped. But it could be also a mremap. Since that's
- * likely very rare kill anyways just out of paranoia, but use
- * a SIGKILL because the error is not contained anymore.
- */
- if (tk->addr == -EFAULT) {
- pr_info("MCE: Unable to find user space address %lx in %s\n",
- page_to_pfn(p), tsk->comm);
- tk->addr_valid = 0;
- }
- get_task_struct(tsk);
- tk->tsk = tsk;
- list_add_tail(&tk->nd, to_kill);
- }
- /*
- * Kill the processes that have been collected earlier.
- *
- * Only do anything when DOIT is set, otherwise just free the list
- * (this is used for clean pages which do not need killing)
- * Also when FAIL is set do a force kill because something went
- * wrong earlier.
- */
- static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
- int fail, struct page *page, unsigned long pfn,
- int flags)
- {
- struct to_kill *tk, *next;
- list_for_each_entry_safe (tk, next, to_kill, nd) {
- if (forcekill) {
- /*
- * In case something went wrong with munmapping
- * make sure the process doesn't catch the
- * signal and then access the memory. Just kill it.
- */
- if (fail || tk->addr_valid == 0) {
- printk(KERN_ERR
- "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
- pfn, tk->tsk->comm, tk->tsk->pid);
- force_sig(SIGKILL, tk->tsk);
- }
- /*
- * In theory the process could have mapped
- * something else on the address in-between. We could
- * check for that, but we need to tell the
- * process anyways.
- */
- else if (kill_proc(tk->tsk, tk->addr, trapno,
- pfn, page, flags) < 0)
- printk(KERN_ERR
- "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
- pfn, tk->tsk->comm, tk->tsk->pid);
- }
- put_task_struct(tk->tsk);
- kfree(tk);
- }
- }
- static int task_early_kill(struct task_struct *tsk, int force_early)
- {
- if (!tsk->mm)
- return 0;
- if (force_early)
- return 1;
- if (tsk->flags & PF_MCE_PROCESS)
- return !!(tsk->flags & PF_MCE_EARLY);
- return sysctl_memory_failure_early_kill;
- }
- /*
- * Collect processes when the error hit an anonymous page.
- */
- static void collect_procs_anon(struct page *page, struct list_head *to_kill,
- struct to_kill **tkc, int force_early)
- {
- struct vm_area_struct *vma;
- struct task_struct *tsk;
- struct anon_vma *av;
- av = page_lock_anon_vma(page);
- if (av == NULL) /* Not actually mapped anymore */
- return;
- read_lock(&tasklist_lock);
- for_each_process (tsk) {
- struct anon_vma_chain *vmac;
- if (!task_early_kill(tsk, force_early))
- continue;
- list_for_each_entry(vmac, &av->head, same_anon_vma) {
- vma = vmac->vma;
- if (!page_mapped_in_vma(page, vma))
- continue;
- if (vma->vm_mm == tsk->mm)
- add_to_kill(tsk, page, vma, to_kill, tkc);
- }
- }
- read_unlock(&tasklist_lock);
- page_unlock_anon_vma(av);
- }
- /*
- * Collect processes when the error hit a file mapped page.
- */
- static void collect_procs_file(struct page *page, struct list_head *to_kill,
- struct to_kill **tkc, int force_early)
- {
- struct vm_area_struct *vma;
- struct task_struct *tsk;
- struct prio_tree_iter iter;
- struct address_space *mapping = page->mapping;
- mutex_lock(&mapping->i_mmap_mutex);
- read_lock(&tasklist_lock);
- for_each_process(tsk) {
- pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
- if (!task_early_kill(tsk, force_early))
- continue;
- vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
- pgoff) {
- /*
- * Send early kill signal to tasks where a vma covers
- * the page but the corrupted page is not necessarily
- * mapped it in its pte.
- * Assume applications who requested early kill want
- * to be informed of all such data corruptions.
- */
- if (vma->vm_mm == tsk->mm)
- add_to_kill(tsk, page, vma, to_kill, tkc);
- }
- }
- read_unlock(&tasklist_lock);
- mutex_unlock(&mapping->i_mmap_mutex);
- }
- /*
- * Collect the processes who have the corrupted page mapped to kill.
- * This is done in two steps for locking reasons.
- * First preallocate one tokill structure outside the spin locks,
- * so that we can kill at least one process reasonably reliable.
- */
- static void collect_procs(struct page *page, struct list_head *tokill,
- int force_early)
- {
- struct to_kill *tk;
- if (!page->mapping)
- return;
- tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
- if (!tk)
- return;
- if (PageAnon(page))
- collect_procs_anon(page, tokill, &tk, force_early);
- else
- collect_procs_file(page, tokill, &tk, force_early);
- kfree(tk);
- }
- /*
- * Error handlers for various types of pages.
- */
- enum outcome {
- IGNORED, /* Error: cannot be handled */
- FAILED, /* Error: handling failed */
- DELAYED, /* Will be handled later */
- RECOVERED, /* Successfully recovered */
- };
- static const char *action_name[] = {
- [IGNORED] = "Ignored",
- [FAILED] = "Failed",
- [DELAYED] = "Delayed",
- [RECOVERED] = "Recovered",
- };
- /*
- * XXX: It is possible that a page is isolated from LRU cache,
- * and then kept in swap cache or failed to remove from page cache.
- * The page count will stop it from being freed by unpoison.
- * Stress tests should be aware of this memory leak problem.
- */
- static int delete_from_lru_cache(struct page *p)
- {
- if (!isolate_lru_page(p)) {
- /*
- * Clear sensible page flags, so that the buddy system won't
- * complain when the page is unpoison-and-freed.
- */
- ClearPageActive(p);
- ClearPageUnevictable(p);
- /*
- * drop the page count elevated by isolate_lru_page()
- */
- page_cache_release(p);
- return 0;
- }
- return -EIO;
- }
- /*
- * Error hit kernel page.
- * Do nothing, try to be lucky and not touch this instead. For a few cases we
- * could be more sophisticated.
- */
- static int me_kernel(struct page *p, unsigned long pfn)
- {
- return IGNORED;
- }
- /*
- * Page in unknown state. Do nothing.
- */
- static int me_unknown(struct page *p, unsigned long pfn)
- {
- printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
- return FAILED;
- }
- /*
- * Clean (or cleaned) page cache page.
- */
- static int me_pagecache_clean(struct page *p, unsigned long pfn)
- {
- int err;
- int ret = FAILED;
- struct address_space *mapping;
- delete_from_lru_cache(p);
- /*
- * For anonymous pages we're done the only reference left
- * should be the one m_f() holds.
- */
- if (PageAnon(p))
- return RECOVERED;
- /*
- * Now truncate the page in the page cache. This is really
- * more like a "temporary hole punch"
- * Don't do this for block devices when someone else
- * has a reference, because it could be file system metadata
- * and that's not safe to truncate.
- */
- mapping = page_mapping(p);
- if (!mapping) {
- /*
- * Page has been teared down in the meanwhile
- */
- return FAILED;
- }
- /*
- * Truncation is a bit tricky. Enable it per file system for now.
- *
- * Open: to take i_mutex or not for this? Right now we don't.
- */
- if (mapping->a_ops->error_remove_page) {
- err = mapping->a_ops->error_remove_page(mapping, p);
- if (err != 0) {
- printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
- pfn, err);
- } else if (page_has_private(p) &&
- !try_to_release_page(p, GFP_NOIO)) {
- pr_info("MCE %#lx: failed to release buffers\n", pfn);
- } else {
- ret = RECOVERED;
- }
- } else {
- /*
- * If the file system doesn't support it just invalidate
- * This fails on dirty or anything with private pages
- */
- if (invalidate_inode_page(p))
- ret = RECOVERED;
- else
- printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
- pfn);
- }
- return ret;
- }
- /*
- * Dirty cache page page
- * Issues: when the error hit a hole page the error is not properly
- * propagated.
- */
- static int me_pagecache_dirty(struct page *p, unsigned long pfn)
- {
- struct address_space *mapping = page_mapping(p);
- SetPageError(p);
- /* TBD: print more information about the file. */
- if (mapping) {
- /*
- * IO error will be reported by write(), fsync(), etc.
- * who check the mapping.
- * This way the application knows that something went
- * wrong with its dirty file data.
- *
- * There's one open issue:
- *
- * The EIO will be only reported on the next IO
- * operation and then cleared through the IO map.
- * Normally Linux has two mechanisms to pass IO error
- * first through the AS_EIO flag in the address space
- * and then through the PageError flag in the page.
- * Since we drop pages on memory failure handling the
- * only mechanism open to use is through AS_AIO.
- *
- * This has the disadvantage that it gets cleared on
- * the first operation that returns an error, while
- * the PageError bit is more sticky and only cleared
- * when the page is reread or dropped. If an
- * application assumes it will always get error on
- * fsync, but does other operations on the fd before
- * and the page is dropped between then the error
- * will not be properly reported.
- *
- * This can already happen even without hwpoisoned
- * pages: first on metadata IO errors (which only
- * report through AS_EIO) or when the page is dropped
- * at the wrong time.
- *
- * So right now we assume that the application DTRT on
- * the first EIO, but we're not worse than other parts
- * of the kernel.
- */
- mapping_set_error(mapping, EIO);
- }
- return me_pagecache_clean(p, pfn);
- }
- /*
- * Clean and dirty swap cache.
- *
- * Dirty swap cache page is tricky to handle. The page could live both in page
- * cache and swap cache(ie. page is freshly swapped in). So it could be
- * referenced concurrently by 2 types of PTEs:
- * normal PTEs and swap PTEs. We try to handle them consistently by calling
- * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
- * and then
- * - clear dirty bit to prevent IO
- * - remove from LRU
- * - but keep in the swap cache, so that when we return to it on
- * a later page fault, we know the application is accessing
- * corrupted data and shall be killed (we installed simple
- * interception code in do_swap_page to catch it).
- *
- * Clean swap cache pages can be directly isolated. A later page fault will
- * bring in the known good data from disk.
- */
- static int me_swapcache_dirty(struct page *p, unsigned long pfn)
- {
- ClearPageDirty(p);
- /* Trigger EIO in shmem: */
- ClearPageUptodate(p);
- if (!delete_from_lru_cache(p))
- return DELAYED;
- else
- return FAILED;
- }
- static int me_swapcache_clean(struct page *p, unsigned long pfn)
- {
- delete_from_swap_cache(p);
- if (!delete_from_lru_cache(p))
- return RECOVERED;
- else
- return FAILED;
- }
- /*
- * Huge pages. Needs work.
- * Issues:
- * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
- * To narrow down kill region to one page, we need to break up pmd.
- */
- static int me_huge_page(struct page *p, unsigned long pfn)
- {
- int res = 0;
- struct page *hpage = compound_head(p);
- /*
- * We can safely recover from error on free or reserved (i.e.
- * not in-use) hugepage by dequeuing it from freelist.
- * To check whether a hugepage is in-use or not, we can't use
- * page->lru because it can be used in other hugepage operations,
- * such as __unmap_hugepage_range() and gather_surplus_pages().
- * So instead we use page_mapping() and PageAnon().
- * We assume that this function is called with page lock held,
- * so there is no race between isolation and mapping/unmapping.
- */
- if (!(page_mapping(hpage) || PageAnon(hpage))) {
- res = dequeue_hwpoisoned_huge_page(hpage);
- if (!res)
- return RECOVERED;
- }
- return DELAYED;
- }
- /*
- * Various page states we can handle.
- *
- * A page state is defined by its current page->flags bits.
- * The table matches them in order and calls the right handler.
- *
- * This is quite tricky because we can access page at any time
- * in its live cycle, so all accesses have to be extremely careful.
- *
- * This is not complete. More states could be added.
- * For any missing state don't attempt recovery.
- */
- #define dirty (1UL << PG_dirty)
- #define sc (1UL << PG_swapcache)
- #define unevict (1UL << PG_unevictable)
- #define mlock (1UL << PG_mlocked)
- #define writeback (1UL << PG_writeback)
- #define lru (1UL << PG_lru)
- #define swapbacked (1UL << PG_swapbacked)
- #define head (1UL << PG_head)
- #define tail (1UL << PG_tail)
- #define compound (1UL << PG_compound)
- #define slab (1UL << PG_slab)
- #define reserved (1UL << PG_reserved)
- static struct page_state {
- unsigned long mask;
- unsigned long res;
- char *msg;
- int (*action)(struct page *p, unsigned long pfn);
- } error_states[] = {
- { reserved, reserved, "reserved kernel", me_kernel },
- /*
- * free pages are specially detected outside this table:
- * PG_buddy pages only make a small fraction of all free pages.
- */
- /*
- * Could in theory check if slab page is free or if we can drop
- * currently unused objects without touching them. But just
- * treat it as standard kernel for now.
- */
- { slab, slab, "kernel slab", me_kernel },
- #ifdef CONFIG_PAGEFLAGS_EXTENDED
- { head, head, "huge", me_huge_page },
- { tail, tail, "huge", me_huge_page },
- #else
- { compound, compound, "huge", me_huge_page },
- #endif
- { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
- { sc|dirty, sc, "swapcache", me_swapcache_clean },
- { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
- { unevict, unevict, "unevictable LRU", me_pagecache_clean},
- { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
- { mlock, mlock, "mlocked LRU", me_pagecache_clean },
- { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
- { lru|dirty, lru, "clean LRU", me_pagecache_clean },
- /*
- * Catchall entry: must be at end.
- */
- { 0, 0, "unknown page state", me_unknown },
- };
- #undef dirty
- #undef sc
- #undef unevict
- #undef mlock
- #undef writeback
- #undef lru
- #undef swapbacked
- #undef head
- #undef tail
- #undef compound
- #undef slab
- #undef reserved
- static void action_result(unsigned long pfn, char *msg, int result)
- {
- struct page *page = pfn_to_page(pfn);
- printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
- pfn,
- PageDirty(page) ? "dirty " : "",
- msg, action_name[result]);
- }
- static int page_action(struct page_state *ps, struct page *p,
- unsigned long pfn)
- {
- int result;
- int count;
- result = ps->action(p, pfn);
- action_result(pfn, ps->msg, result);
- count = page_count(p) - 1;
- if (ps->action == me_swapcache_dirty && result == DELAYED)
- count--;
- if (count != 0) {
- printk(KERN_ERR
- "MCE %#lx: %s page still referenced by %d users\n",
- pfn, ps->msg, count);
- result = FAILED;
- }
- /* Could do more checks here if page looks ok */
- /*
- * Could adjust zone counters here to correct for the missing page.
- */
- return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
- }
- /*
- * Do all that is necessary to remove user space mappings. Unmap
- * the pages and send SIGBUS to the processes if the data was dirty.
- */
- static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
- int trapno, int flags)
- {
- enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
- struct address_space *mapping;
- LIST_HEAD(tokill);
- int ret;
- int kill = 1, forcekill;
- struct page *hpage = compound_head(p);
- struct page *ppage;
- if (PageReserved(p) || PageSlab(p))
- return SWAP_SUCCESS;
- /*
- * This check implies we don't kill processes if their pages
- * are in the swap cache early. Those are always late kills.
- */
- if (!page_mapped(hpage))
- return SWAP_SUCCESS;
- if (PageKsm(p))
- return SWAP_FAIL;
- if (PageSwapCache(p)) {
- printk(KERN_ERR
- "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
- ttu |= TTU_IGNORE_HWPOISON;
- }
- /*
- * Propagate the dirty bit from PTEs to struct page first, because we
- * need this to decide if we should kill or just drop the page.
- * XXX: the dirty test could be racy: set_page_dirty() may not always
- * be called inside page lock (it's recommended but not enforced).
- */
- mapping = page_mapping(hpage);
- if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
- mapping_cap_writeback_dirty(mapping)) {
- if (page_mkclean(hpage)) {
- SetPageDirty(hpage);
- } else {
- kill = 0;
- ttu |= TTU_IGNORE_HWPOISON;
- printk(KERN_INFO
- "MCE %#lx: corrupted page was clean: dropped without side effects\n",
- pfn);
- }
- }
- /*
- * ppage: poisoned page
- * if p is regular page(4k page)
- * ppage == real poisoned page;
- * else p is hugetlb or THP, ppage == head page.
- */
- ppage = hpage;
- if (PageTransHuge(hpage)) {
- /*
- * Verify that this isn't a hugetlbfs head page, the check for
- * PageAnon is just for avoid tripping a split_huge_page
- * internal debug check, as split_huge_page refuses to deal with
- * anything that isn't an anon page. PageAnon can't go away fro
- * under us because we hold a refcount on the hpage, without a
- * refcount on the hpage. split_huge_page can't be safely called
- * in the first place, having a refcount on the tail isn't
- * enough * to be safe.
- */
- if (!PageHuge(hpage) && PageAnon(hpage)) {
- if (unlikely(split_huge_page(hpage))) {
- /*
- * FIXME: if splitting THP is failed, it is
- * better to stop the following operation rather
- * than causing panic by unmapping. System might
- * survive if the page is freed later.
- */
- printk(KERN_INFO
- "MCE %#lx: failed to split THP\n", pfn);
- BUG_ON(!PageHWPoison(p));
- return SWAP_FAIL;
- }
- /* THP is split, so ppage should be the real poisoned page. */
- ppage = p;
- }
- }
- /*
- * First collect all the processes that have the page
- * mapped in dirty form. This has to be done before try_to_unmap,
- * because ttu takes the rmap data structures down.
- *
- * Error handling: We ignore errors here because
- * there's nothing that can be done.
- */
- if (kill)
- collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
- if (hpage != ppage)
- lock_page(ppage);
- ret = try_to_unmap(ppage, ttu);
- if (ret != SWAP_SUCCESS)
- printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
- pfn, page_mapcount(ppage));
- if (hpage != ppage)
- unlock_page(ppage);
- /*
- * Now that the dirty bit has been propagated to the
- * struct page and all unmaps done we can decide if
- * killing is needed or not. Only kill when the page
- * was dirty or the process is not restartable,
- * otherwise the tokill list is merely
- * freed. When there was a problem unmapping earlier
- * use a more force-full uncatchable kill to prevent
- * any accesses to the poisoned memory.
- */
- forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
- kill_procs(&tokill, forcekill, trapno,
- ret != SWAP_SUCCESS, p, pfn, flags);
- return ret;
- }
- static void set_page_hwpoison_huge_page(struct page *hpage)
- {
- int i;
- int nr_pages = 1 << compound_trans_order(hpage);
- for (i = 0; i < nr_pages; i++)
- SetPageHWPoison(hpage + i);
- }
- static void clear_page_hwpoison_huge_page(struct page *hpage)
- {
- int i;
- int nr_pages = 1 << compound_trans_order(hpage);
- for (i = 0; i < nr_pages; i++)
- ClearPageHWPoison(hpage + i);
- }
- /**
- * memory_failure - Handle memory failure of a page.
- * @pfn: Page Number of the corrupted page
- * @trapno: Trap number reported in the signal to user space.
- * @flags: fine tune action taken
- *
- * This function is called by the low level machine check code
- * of an architecture when it detects hardware memory corruption
- * of a page. It tries its best to recover, which includes
- * dropping pages, killing processes etc.
- *
- * The function is primarily of use for corruptions that
- * happen outside the current execution context (e.g. when
- * detected by a background scrubber)
- *
- * Must run in process context (e.g. a work queue) with interrupts
- * enabled and no spinlocks hold.
- */
- int memory_failure(unsigned long pfn, int trapno, int flags)
- {
- struct page_state *ps;
- struct page *p;
- struct page *hpage;
- int res;
- unsigned int nr_pages;
- if (!sysctl_memory_failure_recovery)
- panic("Memory failure from trap %d on page %lx", trapno, pfn);
- if (!pfn_valid(pfn)) {
- printk(KERN_ERR
- "MCE %#lx: memory outside kernel control\n",
- pfn);
- return -ENXIO;
- }
- p = pfn_to_page(pfn);
- hpage = compound_head(p);
- if (TestSetPageHWPoison(p)) {
- printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
- return 0;
- }
- nr_pages = 1 << compound_trans_order(hpage);
- atomic_long_add(nr_pages, &mce_bad_pages);
- /*
- * We need/can do nothing about count=0 pages.
- * 1) it's a free page, and therefore in safe hand:
- * prep_new_page() will be the gate keeper.
- * 2) it's a free hugepage, which is also safe:
- * an affected hugepage will be dequeued from hugepage freelist,
- * so there's no concern about reusing it ever after.
- * 3) it's part of a non-compound high order page.
- * Implies some kernel user: cannot stop them from
- * R/W the page; let's pray that the page has been
- * used and will be freed some time later.
- * In fact it's dangerous to directly bump up page count from 0,
- * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
- */
- if (!(flags & MF_COUNT_INCREASED) &&
- !get_page_unless_zero(hpage)) {
- if (is_free_buddy_page(p)) {
- action_result(pfn, "free buddy", DELAYED);
- return 0;
- } else if (PageHuge(hpage)) {
- /*
- * Check "filter hit" and "race with other subpage."
- */
- lock_page(hpage);
- if (PageHWPoison(hpage)) {
- if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
- || (p != hpage && TestSetPageHWPoison(hpage))) {
- atomic_long_sub(nr_pages, &mce_bad_pages);
- unlock_page(hpage);
- return 0;
- }
- }
- set_page_hwpoison_huge_page(hpage);
- res = dequeue_hwpoisoned_huge_page(hpage);
- action_result(pfn, "free huge",
- res ? IGNORED : DELAYED);
- unlock_page(hpage);
- return res;
- } else {
- action_result(pfn, "high order kernel", IGNORED);
- return -EBUSY;
- }
- }
- /*
- * We ignore non-LRU pages for good reasons.
- * - PG_locked is only well defined for LRU pages and a few others
- * - to avoid races with __set_page_locked()
- * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
- * The check (unnecessarily) ignores LRU pages being isolated and
- * walked by the page reclaim code, however that's not a big loss.
- */
- if (!PageHuge(p)) {
- if (!PageLRU(hpage))
- shake_page(hpage, 0);
- if (!PageLRU(hpage)) {
- /*
- * shake_page could have turned it free.
- */
- if (is_free_buddy_page(p)) {
- action_result(pfn, "free buddy, 2nd try",
- DELAYED);
- return 0;
- }
- action_result(pfn, "non LRU", IGNORED);
- put_page(p);
- return -EBUSY;
- }
- }
- /*
- * Lock the page and wait for writeback to finish.
- * It's very difficult to mess with pages currently under IO
- * and in many cases impossible, so we just avoid it here.
- */
- lock_page(hpage);
- /*
- * unpoison always clear PG_hwpoison inside page lock
- */
- if (!PageHWPoison(p)) {
- printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
- atomic_long_sub(nr_pages, &mce_bad_pages);
- put_page(hpage);
- res = 0;
- goto out;
- }
- if (hwpoison_filter(p)) {
- if (TestClearPageHWPoison(p))
- atomic_long_sub(nr_pages, &mce_bad_pages);
- unlock_page(hpage);
- put_page(hpage);
- return 0;
- }
- /*
- * For error on the tail page, we should set PG_hwpoison
- * on the head page to show that the hugepage is hwpoisoned
- */
- if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
- action_result(pfn, "hugepage already hardware poisoned",
- IGNORED);
- unlock_page(hpage);
- put_page(hpage);
- return 0;
- }
- /*
- * Set PG_hwpoison on all pages in an error hugepage,
- * because containment is done in hugepage unit for now.
- * Since we have done TestSetPageHWPoison() for the head page with
- * page lock held, we can safely set PG_hwpoison bits on tail pages.
- */
- if (PageHuge(p))
- set_page_hwpoison_huge_page(hpage);
- wait_on_page_writeback(p);
- /*
- * Now take care of user space mappings.
- * Abort on fail: __delete_from_page_cache() assumes unmapped page.
- */
- if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) {
- printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
- res = -EBUSY;
- goto out;
- }
- /*
- * Torn down by someone else?
- */
- if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
- action_result(pfn, "already truncated LRU", IGNORED);
- res = -EBUSY;
- goto out;
- }
- res = -EBUSY;
- for (ps = error_states;; ps++) {
- if ((p->flags & ps->mask) == ps->res) {
- res = page_action(ps, p, pfn);
- break;
- }
- }
- out:
- unlock_page(hpage);
- return res;
- }
- EXPORT_SYMBOL_GPL(memory_failure);
- #define MEMORY_FAILURE_FIFO_ORDER 4
- #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
- struct memory_failure_entry {
- unsigned long pfn;
- int trapno;
- int flags;
- };
- struct memory_failure_cpu {
- DECLARE_KFIFO(fifo, struct memory_failure_entry,
- MEMORY_FAILURE_FIFO_SIZE);
- spinlock_t lock;
- struct work_struct work;
- };
- static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
- /**
- * memory_failure_queue - Schedule handling memory failure of a page.
- * @pfn: Page Number of the corrupted page
- * @trapno: Trap number reported in the signal to user space.
- * @flags: Flags for memory failure handling
- *
- * This function is called by the low level hardware error handler
- * when it detects hardware memory corruption of a page. It schedules
- * the recovering of error page, including dropping pages, killing
- * processes etc.
- *
- * The function is primarily of use for corruptions that
- * happen outside the current execution context (e.g. when
- * detected by a background scrubber)
- *
- * Can run in IRQ context.
- */
- void memory_failure_queue(unsigned long pfn, int trapno, int flags)
- {
- struct memory_failure_cpu *mf_cpu;
- unsigned long proc_flags;
- struct memory_failure_entry entry = {
- .pfn = pfn,
- .trapno = trapno,
- .flags = flags,
- };
- mf_cpu = &get_cpu_var(memory_failure_cpu);
- spin_lock_irqsave(&mf_cpu->lock, proc_flags);
- if (kfifo_put(&mf_cpu->fifo, &entry))
- schedule_work_on(smp_processor_id(), &mf_cpu->work);
- else
- pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
- pfn);
- spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
- put_cpu_var(memory_failure_cpu);
- }
- EXPORT_SYMBOL_GPL(memory_failure_queue);
- static void memory_failure_work_func(struct work_struct *work)
- {
- struct memory_failure_cpu *mf_cpu;
- struct memory_failure_entry entry = { 0, };
- unsigned long proc_flags;
- int gotten;
- mf_cpu = &__get_cpu_var(memory_failure_cpu);
- for (;;) {
- spin_lock_irqsave(&mf_cpu->lock, proc_flags);
- gotten = kfifo_get(&mf_cpu->fifo, &entry);
- spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
- if (!gotten)
- break;
- memory_failure(entry.pfn, entry.trapno, entry.flags);
- }
- }
- static int __init memory_failure_init(void)
- {
- struct memory_failure_cpu *mf_cpu;
- int cpu;
- for_each_possible_cpu(cpu) {
- mf_cpu = &per_cpu(memory_failure_cpu, cpu);
- spin_lock_init(&mf_cpu->lock);
- INIT_KFIFO(mf_cpu->fifo);
- INIT_WORK(&mf_cpu->work, memory_failure_work_func);
- }
- return 0;
- }
- core_initcall(memory_failure_init);
- /**
- * unpoison_memory - Unpoison a previously poisoned page
- * @pfn: Page number of the to be unpoisoned page
- *
- * Software-unpoison a page that has been poisoned by
- * memory_failure() earlier.
- *
- * This is only done on the software-level, so it only works
- * for linux injected failures, not real hardware failures
- *
- * Returns 0 for success, otherwise -errno.
- */
- int unpoison_memory(unsigned long pfn)
- {
- struct page *page;
- struct page *p;
- int freeit = 0;
- unsigned int nr_pages;
- if (!pfn_valid(pfn))
- return -ENXIO;
- p = pfn_to_page(pfn);
- page = compound_head(p);
- if (!PageHWPoison(p)) {
- pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
- return 0;
- }
- nr_pages = 1 << compound_trans_order(page);
- if (!get_page_unless_zero(page)) {
- /*
- * Since HWPoisoned hugepage should have non-zero refcount,
- * race between memory failure and unpoison seems to happen.
- * In such case unpoison fails and memory failure runs
- * to the end.
- */
- if (PageHuge(page)) {
- pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
- return 0;
- }
- if (TestClearPageHWPoison(p))
- atomic_long_sub(nr_pages, &mce_bad_pages);
- pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
- return 0;
- }
- lock_page(page);
- /*
- * This test is racy because PG_hwpoison is set outside of page lock.
- * That's acceptable because that won't trigger kernel panic. Instead,
- * the PG_hwpoison page will be caught and isolated on the entrance to
- * the free buddy page pool.
- */
- if (TestClearPageHWPoison(page)) {
- pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
- atomic_long_sub(nr_pages, &mce_bad_pages);
- freeit = 1;
- if (PageHuge(page))
- clear_page_hwpoison_huge_page(page);
- }
- unlock_page(page);
- put_page(page);
- if (freeit)
- put_page(page);
- return 0;
- }
- EXPORT_SYMBOL(unpoison_memory);
- static struct page *new_page(struct page *p, unsigned long private, int **x)
- {
- int nid = page_to_nid(p);
- if (PageHuge(p))
- return alloc_huge_page_node(page_hstate(compound_head(p)),
- nid);
- else
- return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
- }
- /*
- * Safely get reference count of an arbitrary page.
- * Returns 0 for a free page, -EIO for a zero refcount page
- * that is not free, and 1 for any other page type.
- * For 1 the page is returned with increased page count, otherwise not.
- */
- static int get_any_page(struct page *p, unsigned long pfn, int flags)
- {
- int ret;
- if (flags & MF_COUNT_INCREASED)
- return 1;
- /*
- * The lock_memory_hotplug prevents a race with memory hotplug.
- * This is a big hammer, a better would be nicer.
- */
- lock_memory_hotplug();
- /*
- * Isolate the page, so that it doesn't get reallocated if it
- * was free.
- */
- set_migratetype_isolate(p);
- /*
- * When the target page is a free hugepage, just remove it
- * from free hugepage list.
- */
- if (!get_page_unless_zero(compound_head(p))) {
- if (PageHuge(p)) {
- pr_info("get_any_page: %#lx free huge page\n", pfn);
- ret = dequeue_hwpoisoned_huge_page(compound_head(p));
- } else if (is_free_buddy_page(p)) {
- pr_info("get_any_page: %#lx free buddy page\n", pfn);
- /* Set hwpoison bit while page is still isolated */
- SetPageHWPoison(p);
- ret = 0;
- } else {
- pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
- pfn, p->flags);
- ret = -EIO;
- }
- } else {
- /* Not a free page */
- ret = 1;
- }
- unset_migratetype_isolate(p, MIGRATE_MOVABLE);
- unlock_memory_hotplug();
- return ret;
- }
- static int soft_offline_huge_page(struct page *page, int flags)
- {
- int ret;
- unsigned long pfn = page_to_pfn(page);
- struct page *hpage = compound_head(page);
- LIST_HEAD(pagelist);
- ret = get_any_page(page, pfn, flags);
- if (ret < 0)
- return ret;
- if (ret == 0)
- goto done;
- if (PageHWPoison(hpage)) {
- put_page(hpage);
- pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
- return -EBUSY;
- }
- /* Keep page count to indicate a given hugepage is isolated. */
- list_add(&hpage->lru, &pagelist);
- ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, false,
- MIGRATE_SYNC);
- if (ret) {
- struct page *page1, *page2;
- list_for_each_entry_safe(page1, page2, &pagelist, lru)
- put_page(page1);
- pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
- pfn, ret, page->flags);
- if (ret > 0)
- ret = -EIO;
- return ret;
- }
- done:
- /* overcommit hugetlb page will be freed to buddy */
- if (PageHuge(hpage)) {
- if (!PageHWPoison(hpage))
- atomic_long_add(1 << compound_trans_order(hpage),
- &mce_bad_pages);
- set_page_hwpoison_huge_page(hpage);
- dequeue_hwpoisoned_huge_page(hpage);
- } else {
- SetPageHWPoison(page);
- atomic_long_inc(&mce_bad_pages);
- }
- /* keep elevated page count for bad page */
- return ret;
- }
- /**
- * soft_offline_page - Soft offline a page.
- * @page: page to offline
- * @flags: flags. Same as memory_failure().
- *
- * Returns 0 on success, otherwise negated errno.
- *
- * Soft offline a page, by migration or invalidation,
- * without killing anything. This is for the case when
- * a page is not corrupted yet (so it's still valid to access),
- * but has had a number of corrected errors and is better taken
- * out.
- *
- * The actual policy on when to do that is maintained by
- * user space.
- *
- * This should never impact any application or cause data loss,
- * however it might take some time.
- *
- * This is not a 100% solution for all memory, but tries to be
- * ``good enough'' for the majority of memory.
- */
- int soft_offline_page(struct page *page, int flags)
- {
- int ret;
- unsigned long pfn = page_to_pfn(page);
- struct page *hpage = compound_trans_head(page);
- if (PageHuge(page))
- return soft_offline_huge_page(page, flags);
- if (PageTransHuge(hpage)) {
- if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
- pr_info("soft offline: %#lx: failed to split THP\n",
- pfn);
- return -EBUSY;
- }
- }
- ret = get_any_page(page, pfn, flags);
- if (ret < 0)
- return ret;
- if (ret == 0)
- goto done;
- /*
- * Page cache page we can handle?
- */
- if (!PageLRU(page)) {
- /*
- * Try to free it.
- */
- put_page(page);
- shake_page(page, 1);
- /*
- * Did it turn free?
- */
- ret = get_any_page(page, pfn, 0);
- if (ret < 0)
- return ret;
- if (ret == 0)
- goto done;
- }
- if (!PageLRU(page)) {
- pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
- pfn, page->flags);
- return -EIO;
- }
- lock_page(page);
- wait_on_page_writeback(page);
- /*
- * Synchronized using the page lock with memory_failure()
- */
- if (PageHWPoison(page)) {
- unlock_page(page);
- put_page(page);
- pr_info("soft offline: %#lx page already poisoned\n", pfn);
- return -EBUSY;
- }
- /*
- * Try to invalidate first. This should work for
- * non dirty unmapped page cache pages.
- */
- ret = invalidate_inode_page(page);
- unlock_page(page);
- /*
- * RED-PEN would be better to keep it isolated here, but we
- * would need to fix isolation locking first.
- */
- if (ret == 1) {
- put_page(page);
- ret = 0;
- pr_info("soft_offline: %#lx: invalidated\n", pfn);
- goto done;
- }
- /*
- * Simple invalidation didn't work.
- * Try to migrate to a new page instead. migrate.c
- * handles a large number of cases for us.
- */
- ret = isolate_lru_page(page);
- /*
- * Drop page reference which is came from get_any_page()
- * successful isolate_lru_page() already took another one.
- */
- put_page(page);
- if (!ret) {
- LIST_HEAD(pagelist);
- inc_zone_page_state(page, NR_ISOLATED_ANON +
- page_is_file_cache(page));
- list_add(&page->lru, &pagelist);
- ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
- false, MIGRATE_SYNC);
- if (ret) {
- putback_lru_pages(&pagelist);
- pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
- pfn, ret, page->flags);
- if (ret > 0)
- ret = -EIO;
- }
- } else {
- pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
- pfn, ret, page_count(page), page->flags);
- }
- if (ret)
- return ret;
- done:
- atomic_long_add(1, &mce_bad_pages);
- SetPageHWPoison(page);
- /* keep elevated page count for bad page */
- return ret;
- }
|