time.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/export.h>
  30. #include <linux/timex.h>
  31. #include <linux/capability.h>
  32. #include <linux/clocksource.h>
  33. #include <linux/errno.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/security.h>
  36. #include <linux/fs.h>
  37. #include <linux/math64.h>
  38. #include <linux/ptrace.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/unistd.h>
  41. #include "timeconst.h"
  42. /*
  43. * The timezone where the local system is located. Used as a default by some
  44. * programs who obtain this value by using gettimeofday.
  45. */
  46. struct timezone sys_tz;
  47. EXPORT_SYMBOL(sys_tz);
  48. #ifdef __ARCH_WANT_SYS_TIME
  49. /*
  50. * sys_time() can be implemented in user-level using
  51. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  52. * why not move it into the appropriate arch directory (for those
  53. * architectures that need it).
  54. */
  55. SYSCALL_DEFINE1(time, time_t __user *, tloc)
  56. {
  57. time_t i = get_seconds();
  58. if (tloc) {
  59. if (put_user(i,tloc))
  60. return -EFAULT;
  61. }
  62. force_successful_syscall_return();
  63. return i;
  64. }
  65. /*
  66. * sys_stime() can be implemented in user-level using
  67. * sys_settimeofday(). Is this for backwards compatibility? If so,
  68. * why not move it into the appropriate arch directory (for those
  69. * architectures that need it).
  70. */
  71. SYSCALL_DEFINE1(stime, time_t __user *, tptr)
  72. {
  73. struct timespec tv;
  74. int err;
  75. if (get_user(tv.tv_sec, tptr))
  76. return -EFAULT;
  77. tv.tv_nsec = 0;
  78. err = security_settime(&tv, NULL);
  79. if (err)
  80. return err;
  81. do_settimeofday(&tv);
  82. return 0;
  83. }
  84. #endif /* __ARCH_WANT_SYS_TIME */
  85. SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
  86. struct timezone __user *, tz)
  87. {
  88. if (likely(tv != NULL)) {
  89. struct timeval ktv;
  90. do_gettimeofday(&ktv);
  91. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  92. return -EFAULT;
  93. }
  94. if (unlikely(tz != NULL)) {
  95. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  96. return -EFAULT;
  97. }
  98. return 0;
  99. }
  100. /*
  101. * Adjust the time obtained from the CMOS to be UTC time instead of
  102. * local time.
  103. *
  104. * This is ugly, but preferable to the alternatives. Otherwise we
  105. * would either need to write a program to do it in /etc/rc (and risk
  106. * confusion if the program gets run more than once; it would also be
  107. * hard to make the program warp the clock precisely n hours) or
  108. * compile in the timezone information into the kernel. Bad, bad....
  109. *
  110. * - TYT, 1992-01-01
  111. *
  112. * The best thing to do is to keep the CMOS clock in universal time (UTC)
  113. * as real UNIX machines always do it. This avoids all headaches about
  114. * daylight saving times and warping kernel clocks.
  115. */
  116. static inline void warp_clock(void)
  117. {
  118. struct timespec adjust;
  119. adjust = current_kernel_time();
  120. adjust.tv_sec += sys_tz.tz_minuteswest * 60;
  121. do_settimeofday(&adjust);
  122. }
  123. /*
  124. * In case for some reason the CMOS clock has not already been running
  125. * in UTC, but in some local time: The first time we set the timezone,
  126. * we will warp the clock so that it is ticking UTC time instead of
  127. * local time. Presumably, if someone is setting the timezone then we
  128. * are running in an environment where the programs understand about
  129. * timezones. This should be done at boot time in the /etc/rc script,
  130. * as soon as possible, so that the clock can be set right. Otherwise,
  131. * various programs will get confused when the clock gets warped.
  132. */
  133. int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
  134. {
  135. static int firsttime = 1;
  136. int error = 0;
  137. if (tv && !timespec_valid(tv))
  138. return -EINVAL;
  139. error = security_settime(tv, tz);
  140. if (error)
  141. return error;
  142. if (tz) {
  143. sys_tz = *tz;
  144. update_vsyscall_tz();
  145. if (firsttime) {
  146. firsttime = 0;
  147. if (!tv)
  148. warp_clock();
  149. }
  150. }
  151. if (tv)
  152. return do_settimeofday(tv);
  153. return 0;
  154. }
  155. SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
  156. struct timezone __user *, tz)
  157. {
  158. struct timeval user_tv;
  159. struct timespec new_ts;
  160. struct timezone new_tz;
  161. if (tv) {
  162. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  163. return -EFAULT;
  164. if (!timeval_valid(&user_tv))
  165. return -EINVAL;
  166. new_ts.tv_sec = user_tv.tv_sec;
  167. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  168. }
  169. if (tz) {
  170. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  171. return -EFAULT;
  172. }
  173. return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  174. }
  175. SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
  176. {
  177. struct timex txc; /* Local copy of parameter */
  178. int ret;
  179. /* Copy the user data space into the kernel copy
  180. * structure. But bear in mind that the structures
  181. * may change
  182. */
  183. if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
  184. return -EFAULT;
  185. ret = do_adjtimex(&txc);
  186. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  187. }
  188. /**
  189. * current_fs_time - Return FS time
  190. * @sb: Superblock.
  191. *
  192. * Return the current time truncated to the time granularity supported by
  193. * the fs.
  194. */
  195. struct timespec current_fs_time(struct super_block *sb)
  196. {
  197. struct timespec now = current_kernel_time();
  198. return timespec_trunc(now, sb->s_time_gran);
  199. }
  200. EXPORT_SYMBOL(current_fs_time);
  201. /*
  202. * Convert jiffies to milliseconds and back.
  203. *
  204. * Avoid unnecessary multiplications/divisions in the
  205. * two most common HZ cases:
  206. */
  207. inline unsigned int jiffies_to_msecs(const unsigned long j)
  208. {
  209. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  210. return (MSEC_PER_SEC / HZ) * j;
  211. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  212. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  213. #else
  214. # if BITS_PER_LONG == 32
  215. return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
  216. # else
  217. return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
  218. # endif
  219. #endif
  220. }
  221. EXPORT_SYMBOL(jiffies_to_msecs);
  222. inline unsigned int jiffies_to_usecs(const unsigned long j)
  223. {
  224. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  225. return (USEC_PER_SEC / HZ) * j;
  226. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  227. return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
  228. #else
  229. # if BITS_PER_LONG == 32
  230. return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
  231. # else
  232. return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
  233. # endif
  234. #endif
  235. }
  236. EXPORT_SYMBOL(jiffies_to_usecs);
  237. /**
  238. * timespec_trunc - Truncate timespec to a granularity
  239. * @t: Timespec
  240. * @gran: Granularity in ns.
  241. *
  242. * Truncate a timespec to a granularity. gran must be smaller than a second.
  243. * Always rounds down.
  244. *
  245. * This function should be only used for timestamps returned by
  246. * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
  247. * it doesn't handle the better resolution of the latter.
  248. */
  249. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  250. {
  251. /*
  252. * Division is pretty slow so avoid it for common cases.
  253. * Currently current_kernel_time() never returns better than
  254. * jiffies resolution. Exploit that.
  255. */
  256. if (gran <= jiffies_to_usecs(1) * 1000) {
  257. /* nothing */
  258. } else if (gran == 1000000000) {
  259. t.tv_nsec = 0;
  260. } else {
  261. t.tv_nsec -= t.tv_nsec % gran;
  262. }
  263. return t;
  264. }
  265. EXPORT_SYMBOL(timespec_trunc);
  266. /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  267. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  268. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  269. *
  270. * [For the Julian calendar (which was used in Russia before 1917,
  271. * Britain & colonies before 1752, anywhere else before 1582,
  272. * and is still in use by some communities) leave out the
  273. * -year/100+year/400 terms, and add 10.]
  274. *
  275. * This algorithm was first published by Gauss (I think).
  276. *
  277. * WARNING: this function will overflow on 2106-02-07 06:28:16 on
  278. * machines where long is 32-bit! (However, as time_t is signed, we
  279. * will already get problems at other places on 2038-01-19 03:14:08)
  280. */
  281. unsigned long
  282. mktime(const unsigned int year0, const unsigned int mon0,
  283. const unsigned int day, const unsigned int hour,
  284. const unsigned int min, const unsigned int sec)
  285. {
  286. unsigned int mon = mon0, year = year0;
  287. /* 1..12 -> 11,12,1..10 */
  288. if (0 >= (int) (mon -= 2)) {
  289. mon += 12; /* Puts Feb last since it has leap day */
  290. year -= 1;
  291. }
  292. return ((((unsigned long)
  293. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  294. year*365 - 719499
  295. )*24 + hour /* now have hours */
  296. )*60 + min /* now have minutes */
  297. )*60 + sec; /* finally seconds */
  298. }
  299. EXPORT_SYMBOL(mktime);
  300. /**
  301. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  302. *
  303. * @ts: pointer to timespec variable to be set
  304. * @sec: seconds to set
  305. * @nsec: nanoseconds to set
  306. *
  307. * Set seconds and nanoseconds field of a timespec variable and
  308. * normalize to the timespec storage format
  309. *
  310. * Note: The tv_nsec part is always in the range of
  311. * 0 <= tv_nsec < NSEC_PER_SEC
  312. * For negative values only the tv_sec field is negative !
  313. */
  314. void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
  315. {
  316. while (nsec >= NSEC_PER_SEC) {
  317. /*
  318. * The following asm() prevents the compiler from
  319. * optimising this loop into a modulo operation. See
  320. * also __iter_div_u64_rem() in include/linux/time.h
  321. */
  322. asm("" : "+rm"(nsec));
  323. nsec -= NSEC_PER_SEC;
  324. ++sec;
  325. }
  326. while (nsec < 0) {
  327. asm("" : "+rm"(nsec));
  328. nsec += NSEC_PER_SEC;
  329. --sec;
  330. }
  331. ts->tv_sec = sec;
  332. ts->tv_nsec = nsec;
  333. }
  334. EXPORT_SYMBOL(set_normalized_timespec);
  335. /**
  336. * ns_to_timespec - Convert nanoseconds to timespec
  337. * @nsec: the nanoseconds value to be converted
  338. *
  339. * Returns the timespec representation of the nsec parameter.
  340. */
  341. struct timespec ns_to_timespec(const s64 nsec)
  342. {
  343. struct timespec ts;
  344. s32 rem;
  345. if (!nsec)
  346. return (struct timespec) {0, 0};
  347. ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  348. if (unlikely(rem < 0)) {
  349. ts.tv_sec--;
  350. rem += NSEC_PER_SEC;
  351. }
  352. ts.tv_nsec = rem;
  353. return ts;
  354. }
  355. EXPORT_SYMBOL(ns_to_timespec);
  356. /**
  357. * ns_to_timeval - Convert nanoseconds to timeval
  358. * @nsec: the nanoseconds value to be converted
  359. *
  360. * Returns the timeval representation of the nsec parameter.
  361. */
  362. struct timeval ns_to_timeval(const s64 nsec)
  363. {
  364. struct timespec ts = ns_to_timespec(nsec);
  365. struct timeval tv;
  366. tv.tv_sec = ts.tv_sec;
  367. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  368. return tv;
  369. }
  370. EXPORT_SYMBOL(ns_to_timeval);
  371. /*
  372. * When we convert to jiffies then we interpret incoming values
  373. * the following way:
  374. *
  375. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  376. *
  377. * - 'too large' values [that would result in larger than
  378. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  379. *
  380. * - all other values are converted to jiffies by either multiplying
  381. * the input value by a factor or dividing it with a factor
  382. *
  383. * We must also be careful about 32-bit overflows.
  384. */
  385. unsigned long msecs_to_jiffies(const unsigned int m)
  386. {
  387. /*
  388. * Negative value, means infinite timeout:
  389. */
  390. if ((int)m < 0)
  391. return MAX_JIFFY_OFFSET;
  392. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  393. /*
  394. * HZ is equal to or smaller than 1000, and 1000 is a nice
  395. * round multiple of HZ, divide with the factor between them,
  396. * but round upwards:
  397. */
  398. return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
  399. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  400. /*
  401. * HZ is larger than 1000, and HZ is a nice round multiple of
  402. * 1000 - simply multiply with the factor between them.
  403. *
  404. * But first make sure the multiplication result cannot
  405. * overflow:
  406. */
  407. if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  408. return MAX_JIFFY_OFFSET;
  409. return m * (HZ / MSEC_PER_SEC);
  410. #else
  411. /*
  412. * Generic case - multiply, round and divide. But first
  413. * check that if we are doing a net multiplication, that
  414. * we wouldn't overflow:
  415. */
  416. if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  417. return MAX_JIFFY_OFFSET;
  418. return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
  419. >> MSEC_TO_HZ_SHR32;
  420. #endif
  421. }
  422. EXPORT_SYMBOL(msecs_to_jiffies);
  423. unsigned long usecs_to_jiffies(const unsigned int u)
  424. {
  425. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  426. return MAX_JIFFY_OFFSET;
  427. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  428. return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
  429. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  430. return u * (HZ / USEC_PER_SEC);
  431. #else
  432. return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
  433. >> USEC_TO_HZ_SHR32;
  434. #endif
  435. }
  436. EXPORT_SYMBOL(usecs_to_jiffies);
  437. /*
  438. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  439. * that a remainder subtract here would not do the right thing as the
  440. * resolution values don't fall on second boundries. I.e. the line:
  441. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  442. * Note that due to the small error in the multiplier here, this
  443. * rounding is incorrect for sufficiently large values of tv_nsec, but
  444. * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
  445. * OK.
  446. *
  447. * Rather, we just shift the bits off the right.
  448. *
  449. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  450. * value to a scaled second value.
  451. */
  452. static unsigned long
  453. __timespec_to_jiffies(unsigned long sec, long nsec)
  454. {
  455. nsec = nsec + TICK_NSEC - 1;
  456. if (sec >= MAX_SEC_IN_JIFFIES){
  457. sec = MAX_SEC_IN_JIFFIES;
  458. nsec = 0;
  459. }
  460. return (((u64)sec * SEC_CONVERSION) +
  461. (((u64)nsec * NSEC_CONVERSION) >>
  462. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  463. }
  464. unsigned long
  465. timespec_to_jiffies(const struct timespec *value)
  466. {
  467. return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
  468. }
  469. EXPORT_SYMBOL(timespec_to_jiffies);
  470. void
  471. jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
  472. {
  473. /*
  474. * Convert jiffies to nanoseconds and separate with
  475. * one divide.
  476. */
  477. u32 rem;
  478. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  479. NSEC_PER_SEC, &rem);
  480. value->tv_nsec = rem;
  481. }
  482. EXPORT_SYMBOL(jiffies_to_timespec);
  483. /*
  484. * We could use a similar algorithm to timespec_to_jiffies (with a
  485. * different multiplier for usec instead of nsec). But this has a
  486. * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
  487. * usec value, since it's not necessarily integral.
  488. *
  489. * We could instead round in the intermediate scaled representation
  490. * (i.e. in units of 1/2^(large scale) jiffies) but that's also
  491. * perilous: the scaling introduces a small positive error, which
  492. * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
  493. * units to the intermediate before shifting) leads to accidental
  494. * overflow and overestimates.
  495. *
  496. * At the cost of one additional multiplication by a constant, just
  497. * use the timespec implementation.
  498. */
  499. unsigned long
  500. timeval_to_jiffies(const struct timeval *value)
  501. {
  502. return __timespec_to_jiffies(value->tv_sec,
  503. value->tv_usec * NSEC_PER_USEC);
  504. }
  505. EXPORT_SYMBOL(timeval_to_jiffies);
  506. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  507. {
  508. /*
  509. * Convert jiffies to nanoseconds and separate with
  510. * one divide.
  511. */
  512. u32 rem;
  513. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  514. NSEC_PER_SEC, &rem);
  515. value->tv_usec = rem / NSEC_PER_USEC;
  516. }
  517. EXPORT_SYMBOL(jiffies_to_timeval);
  518. /*
  519. * Convert jiffies/jiffies_64 to clock_t and back.
  520. */
  521. clock_t jiffies_to_clock_t(unsigned long x)
  522. {
  523. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  524. # if HZ < USER_HZ
  525. return x * (USER_HZ / HZ);
  526. # else
  527. return x / (HZ / USER_HZ);
  528. # endif
  529. #else
  530. return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
  531. #endif
  532. }
  533. EXPORT_SYMBOL(jiffies_to_clock_t);
  534. unsigned long clock_t_to_jiffies(unsigned long x)
  535. {
  536. #if (HZ % USER_HZ)==0
  537. if (x >= ~0UL / (HZ / USER_HZ))
  538. return ~0UL;
  539. return x * (HZ / USER_HZ);
  540. #else
  541. /* Don't worry about loss of precision here .. */
  542. if (x >= ~0UL / HZ * USER_HZ)
  543. return ~0UL;
  544. /* .. but do try to contain it here */
  545. return div_u64((u64)x * HZ, USER_HZ);
  546. #endif
  547. }
  548. EXPORT_SYMBOL(clock_t_to_jiffies);
  549. u64 jiffies_64_to_clock_t(u64 x)
  550. {
  551. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  552. # if HZ < USER_HZ
  553. x = div_u64(x * USER_HZ, HZ);
  554. # elif HZ > USER_HZ
  555. x = div_u64(x, HZ / USER_HZ);
  556. # else
  557. /* Nothing to do */
  558. # endif
  559. #else
  560. /*
  561. * There are better ways that don't overflow early,
  562. * but even this doesn't overflow in hundreds of years
  563. * in 64 bits, so..
  564. */
  565. x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
  566. #endif
  567. return x;
  568. }
  569. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  570. u64 nsec_to_clock_t(u64 x)
  571. {
  572. #if (NSEC_PER_SEC % USER_HZ) == 0
  573. return div_u64(x, NSEC_PER_SEC / USER_HZ);
  574. #elif (USER_HZ % 512) == 0
  575. return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
  576. #else
  577. /*
  578. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  579. * overflow after 64.99 years.
  580. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  581. */
  582. return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
  583. #endif
  584. }
  585. /**
  586. * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
  587. *
  588. * @n: nsecs in u64
  589. *
  590. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  591. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  592. * for scheduler, not for use in device drivers to calculate timeout value.
  593. *
  594. * note:
  595. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  596. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  597. */
  598. u64 nsecs_to_jiffies64(u64 n)
  599. {
  600. #if (NSEC_PER_SEC % HZ) == 0
  601. /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
  602. return div_u64(n, NSEC_PER_SEC / HZ);
  603. #elif (HZ % 512) == 0
  604. /* overflow after 292 years if HZ = 1024 */
  605. return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
  606. #else
  607. /*
  608. * Generic case - optimized for cases where HZ is a multiple of 3.
  609. * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
  610. */
  611. return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
  612. #endif
  613. }
  614. /**
  615. * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
  616. *
  617. * @n: nsecs in u64
  618. *
  619. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  620. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  621. * for scheduler, not for use in device drivers to calculate timeout value.
  622. *
  623. * note:
  624. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  625. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  626. */
  627. unsigned long nsecs_to_jiffies(u64 n)
  628. {
  629. return (unsigned long)nsecs_to_jiffies64(n);
  630. }
  631. /*
  632. * Add two timespec values and do a safety check for overflow.
  633. * It's assumed that both values are valid (>= 0)
  634. */
  635. struct timespec timespec_add_safe(const struct timespec lhs,
  636. const struct timespec rhs)
  637. {
  638. struct timespec res;
  639. set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
  640. (s64)lhs.tv_nsec + rhs.tv_nsec);
  641. if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
  642. res.tv_sec = TIME_T_MAX;
  643. return res;
  644. }