extent_cache.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750
  1. /*
  2. * f2fs extent cache support
  3. *
  4. * Copyright (c) 2015 Motorola Mobility
  5. * Copyright (c) 2015 Samsung Electronics
  6. * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
  7. * Chao Yu <chao2.yu@samsung.com>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. #include <linux/fs.h>
  14. #include <linux/f2fs_fs.h>
  15. #include "f2fs.h"
  16. #include "node.h"
  17. #include <trace/events/f2fs.h>
  18. static struct kmem_cache *extent_tree_slab;
  19. static struct kmem_cache *extent_node_slab;
  20. static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
  21. struct extent_tree *et, struct extent_info *ei,
  22. struct rb_node *parent, struct rb_node **p)
  23. {
  24. struct extent_node *en;
  25. en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
  26. if (!en)
  27. return NULL;
  28. en->ei = *ei;
  29. INIT_LIST_HEAD(&en->list);
  30. en->et = et;
  31. rb_link_node(&en->rb_node, parent, p);
  32. rb_insert_color(&en->rb_node, &et->root);
  33. atomic_inc(&et->node_cnt);
  34. atomic_inc(&sbi->total_ext_node);
  35. return en;
  36. }
  37. static void __detach_extent_node(struct f2fs_sb_info *sbi,
  38. struct extent_tree *et, struct extent_node *en)
  39. {
  40. rb_erase(&en->rb_node, &et->root);
  41. atomic_dec(&et->node_cnt);
  42. atomic_dec(&sbi->total_ext_node);
  43. if (et->cached_en == en)
  44. et->cached_en = NULL;
  45. kmem_cache_free(extent_node_slab, en);
  46. }
  47. /*
  48. * Flow to release an extent_node:
  49. * 1. list_del_init
  50. * 2. __detach_extent_node
  51. * 3. kmem_cache_free.
  52. */
  53. static void __release_extent_node(struct f2fs_sb_info *sbi,
  54. struct extent_tree *et, struct extent_node *en)
  55. {
  56. spin_lock(&sbi->extent_lock);
  57. f2fs_bug_on(sbi, list_empty(&en->list));
  58. list_del_init(&en->list);
  59. spin_unlock(&sbi->extent_lock);
  60. __detach_extent_node(sbi, et, en);
  61. }
  62. static struct extent_tree *__grab_extent_tree(struct inode *inode)
  63. {
  64. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  65. struct extent_tree *et;
  66. nid_t ino = inode->i_ino;
  67. down_write(&sbi->extent_tree_lock);
  68. et = radix_tree_lookup(&sbi->extent_tree_root, ino);
  69. if (!et) {
  70. et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
  71. f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
  72. memset(et, 0, sizeof(struct extent_tree));
  73. et->ino = ino;
  74. et->root = RB_ROOT;
  75. et->cached_en = NULL;
  76. rwlock_init(&et->lock);
  77. INIT_LIST_HEAD(&et->list);
  78. atomic_set(&et->node_cnt, 0);
  79. atomic_inc(&sbi->total_ext_tree);
  80. } else {
  81. atomic_dec(&sbi->total_zombie_tree);
  82. list_del_init(&et->list);
  83. }
  84. up_write(&sbi->extent_tree_lock);
  85. /* never died until evict_inode */
  86. F2FS_I(inode)->extent_tree = et;
  87. return et;
  88. }
  89. static struct extent_node *__lookup_extent_tree(struct f2fs_sb_info *sbi,
  90. struct extent_tree *et, unsigned int fofs)
  91. {
  92. struct rb_node *node = et->root.rb_node;
  93. struct extent_node *en = et->cached_en;
  94. if (en) {
  95. struct extent_info *cei = &en->ei;
  96. if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) {
  97. stat_inc_cached_node_hit(sbi);
  98. return en;
  99. }
  100. }
  101. while (node) {
  102. en = rb_entry(node, struct extent_node, rb_node);
  103. if (fofs < en->ei.fofs) {
  104. node = node->rb_left;
  105. } else if (fofs >= en->ei.fofs + en->ei.len) {
  106. node = node->rb_right;
  107. } else {
  108. stat_inc_rbtree_node_hit(sbi);
  109. return en;
  110. }
  111. }
  112. return NULL;
  113. }
  114. static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
  115. struct extent_tree *et, struct extent_info *ei)
  116. {
  117. struct rb_node **p = &et->root.rb_node;
  118. struct extent_node *en;
  119. en = __attach_extent_node(sbi, et, ei, NULL, p);
  120. if (!en)
  121. return NULL;
  122. et->largest = en->ei;
  123. et->cached_en = en;
  124. return en;
  125. }
  126. static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
  127. struct extent_tree *et)
  128. {
  129. struct rb_node *node, *next;
  130. struct extent_node *en;
  131. unsigned int count = atomic_read(&et->node_cnt);
  132. node = rb_first(&et->root);
  133. while (node) {
  134. next = rb_next(node);
  135. en = rb_entry(node, struct extent_node, rb_node);
  136. __release_extent_node(sbi, et, en);
  137. node = next;
  138. }
  139. return count - atomic_read(&et->node_cnt);
  140. }
  141. static void __drop_largest_extent(struct inode *inode,
  142. pgoff_t fofs, unsigned int len)
  143. {
  144. struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest;
  145. if (fofs < largest->fofs + largest->len && fofs + len > largest->fofs) {
  146. largest->len = 0;
  147. f2fs_mark_inode_dirty_sync(inode, true);
  148. }
  149. }
  150. /* return true, if inode page is changed */
  151. bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
  152. {
  153. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  154. struct extent_tree *et;
  155. struct extent_node *en;
  156. struct extent_info ei;
  157. if (!f2fs_may_extent_tree(inode)) {
  158. /* drop largest extent */
  159. if (i_ext && i_ext->len) {
  160. i_ext->len = 0;
  161. return true;
  162. }
  163. return false;
  164. }
  165. et = __grab_extent_tree(inode);
  166. if (!i_ext || !i_ext->len)
  167. return false;
  168. get_extent_info(&ei, i_ext);
  169. write_lock(&et->lock);
  170. if (atomic_read(&et->node_cnt))
  171. goto out;
  172. en = __init_extent_tree(sbi, et, &ei);
  173. if (en) {
  174. spin_lock(&sbi->extent_lock);
  175. list_add_tail(&en->list, &sbi->extent_list);
  176. spin_unlock(&sbi->extent_lock);
  177. }
  178. out:
  179. write_unlock(&et->lock);
  180. return false;
  181. }
  182. static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
  183. struct extent_info *ei)
  184. {
  185. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  186. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  187. struct extent_node *en;
  188. bool ret = false;
  189. f2fs_bug_on(sbi, !et);
  190. trace_f2fs_lookup_extent_tree_start(inode, pgofs);
  191. read_lock(&et->lock);
  192. if (et->largest.fofs <= pgofs &&
  193. et->largest.fofs + et->largest.len > pgofs) {
  194. *ei = et->largest;
  195. ret = true;
  196. stat_inc_largest_node_hit(sbi);
  197. goto out;
  198. }
  199. en = __lookup_extent_tree(sbi, et, pgofs);
  200. if (en) {
  201. *ei = en->ei;
  202. spin_lock(&sbi->extent_lock);
  203. if (!list_empty(&en->list)) {
  204. list_move_tail(&en->list, &sbi->extent_list);
  205. et->cached_en = en;
  206. }
  207. spin_unlock(&sbi->extent_lock);
  208. ret = true;
  209. }
  210. out:
  211. stat_inc_total_hit(sbi);
  212. read_unlock(&et->lock);
  213. trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
  214. return ret;
  215. }
  216. /*
  217. * lookup extent at @fofs, if hit, return the extent
  218. * if not, return NULL and
  219. * @prev_ex: extent before fofs
  220. * @next_ex: extent after fofs
  221. * @insert_p: insert point for new extent at fofs
  222. * in order to simpfy the insertion after.
  223. * tree must stay unchanged between lookup and insertion.
  224. */
  225. static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et,
  226. unsigned int fofs,
  227. struct extent_node **prev_ex,
  228. struct extent_node **next_ex,
  229. struct rb_node ***insert_p,
  230. struct rb_node **insert_parent)
  231. {
  232. struct rb_node **pnode = &et->root.rb_node;
  233. struct rb_node *parent = NULL, *tmp_node;
  234. struct extent_node *en = et->cached_en;
  235. *insert_p = NULL;
  236. *insert_parent = NULL;
  237. *prev_ex = NULL;
  238. *next_ex = NULL;
  239. if (RB_EMPTY_ROOT(&et->root))
  240. return NULL;
  241. if (en) {
  242. struct extent_info *cei = &en->ei;
  243. if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
  244. goto lookup_neighbors;
  245. }
  246. while (*pnode) {
  247. parent = *pnode;
  248. en = rb_entry(*pnode, struct extent_node, rb_node);
  249. if (fofs < en->ei.fofs)
  250. pnode = &(*pnode)->rb_left;
  251. else if (fofs >= en->ei.fofs + en->ei.len)
  252. pnode = &(*pnode)->rb_right;
  253. else
  254. goto lookup_neighbors;
  255. }
  256. *insert_p = pnode;
  257. *insert_parent = parent;
  258. en = rb_entry(parent, struct extent_node, rb_node);
  259. tmp_node = parent;
  260. if (parent && fofs > en->ei.fofs)
  261. tmp_node = rb_next(parent);
  262. *next_ex = tmp_node ?
  263. rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
  264. tmp_node = parent;
  265. if (parent && fofs < en->ei.fofs)
  266. tmp_node = rb_prev(parent);
  267. *prev_ex = tmp_node ?
  268. rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
  269. return NULL;
  270. lookup_neighbors:
  271. if (fofs == en->ei.fofs) {
  272. /* lookup prev node for merging backward later */
  273. tmp_node = rb_prev(&en->rb_node);
  274. *prev_ex = tmp_node ?
  275. rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
  276. }
  277. if (fofs == en->ei.fofs + en->ei.len - 1) {
  278. /* lookup next node for merging frontward later */
  279. tmp_node = rb_next(&en->rb_node);
  280. *next_ex = tmp_node ?
  281. rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
  282. }
  283. return en;
  284. }
  285. static struct extent_node *__try_merge_extent_node(struct inode *inode,
  286. struct extent_tree *et, struct extent_info *ei,
  287. struct extent_node *prev_ex,
  288. struct extent_node *next_ex)
  289. {
  290. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  291. struct extent_node *en = NULL;
  292. if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
  293. prev_ex->ei.len += ei->len;
  294. ei = &prev_ex->ei;
  295. en = prev_ex;
  296. }
  297. if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
  298. if (en)
  299. __release_extent_node(sbi, et, prev_ex);
  300. next_ex->ei.fofs = ei->fofs;
  301. next_ex->ei.blk = ei->blk;
  302. next_ex->ei.len += ei->len;
  303. en = next_ex;
  304. }
  305. if (!en)
  306. return NULL;
  307. __try_update_largest_extent(inode, et, en);
  308. spin_lock(&sbi->extent_lock);
  309. if (!list_empty(&en->list)) {
  310. list_move_tail(&en->list, &sbi->extent_list);
  311. et->cached_en = en;
  312. }
  313. spin_unlock(&sbi->extent_lock);
  314. return en;
  315. }
  316. static struct extent_node *__insert_extent_tree(struct inode *inode,
  317. struct extent_tree *et, struct extent_info *ei,
  318. struct rb_node **insert_p,
  319. struct rb_node *insert_parent)
  320. {
  321. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  322. struct rb_node **p = &et->root.rb_node;
  323. struct rb_node *parent = NULL;
  324. struct extent_node *en = NULL;
  325. if (insert_p && insert_parent) {
  326. parent = insert_parent;
  327. p = insert_p;
  328. goto do_insert;
  329. }
  330. while (*p) {
  331. parent = *p;
  332. en = rb_entry(parent, struct extent_node, rb_node);
  333. if (ei->fofs < en->ei.fofs)
  334. p = &(*p)->rb_left;
  335. else if (ei->fofs >= en->ei.fofs + en->ei.len)
  336. p = &(*p)->rb_right;
  337. else
  338. f2fs_bug_on(sbi, 1);
  339. }
  340. do_insert:
  341. en = __attach_extent_node(sbi, et, ei, parent, p);
  342. if (!en)
  343. return NULL;
  344. __try_update_largest_extent(inode, et, en);
  345. /* update in global extent list */
  346. spin_lock(&sbi->extent_lock);
  347. list_add_tail(&en->list, &sbi->extent_list);
  348. et->cached_en = en;
  349. spin_unlock(&sbi->extent_lock);
  350. return en;
  351. }
  352. static unsigned int f2fs_update_extent_tree_range(struct inode *inode,
  353. pgoff_t fofs, block_t blkaddr, unsigned int len)
  354. {
  355. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  356. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  357. struct extent_node *en = NULL, *en1 = NULL;
  358. struct extent_node *prev_en = NULL, *next_en = NULL;
  359. struct extent_info ei, dei, prev;
  360. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  361. unsigned int end = fofs + len;
  362. unsigned int pos = (unsigned int)fofs;
  363. if (!et)
  364. return false;
  365. trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len);
  366. write_lock(&et->lock);
  367. if (is_inode_flag_set(inode, FI_NO_EXTENT)) {
  368. write_unlock(&et->lock);
  369. return false;
  370. }
  371. prev = et->largest;
  372. dei.len = 0;
  373. /*
  374. * drop largest extent before lookup, in case it's already
  375. * been shrunk from extent tree
  376. */
  377. __drop_largest_extent(inode, fofs, len);
  378. /* 1. lookup first extent node in range [fofs, fofs + len - 1] */
  379. en = __lookup_extent_tree_ret(et, fofs, &prev_en, &next_en,
  380. &insert_p, &insert_parent);
  381. if (!en)
  382. en = next_en;
  383. /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
  384. while (en && en->ei.fofs < end) {
  385. unsigned int org_end;
  386. int parts = 0; /* # of parts current extent split into */
  387. next_en = en1 = NULL;
  388. dei = en->ei;
  389. org_end = dei.fofs + dei.len;
  390. f2fs_bug_on(sbi, pos >= org_end);
  391. if (pos > dei.fofs && pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
  392. en->ei.len = pos - en->ei.fofs;
  393. prev_en = en;
  394. parts = 1;
  395. }
  396. if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) {
  397. if (parts) {
  398. set_extent_info(&ei, end,
  399. end - dei.fofs + dei.blk,
  400. org_end - end);
  401. en1 = __insert_extent_tree(inode, et, &ei,
  402. NULL, NULL);
  403. next_en = en1;
  404. } else {
  405. en->ei.fofs = end;
  406. en->ei.blk += end - dei.fofs;
  407. en->ei.len -= end - dei.fofs;
  408. next_en = en;
  409. }
  410. parts++;
  411. }
  412. if (!next_en) {
  413. struct rb_node *node = rb_next(&en->rb_node);
  414. next_en = node ?
  415. rb_entry(node, struct extent_node, rb_node)
  416. : NULL;
  417. }
  418. if (parts)
  419. __try_update_largest_extent(inode, et, en);
  420. else
  421. __release_extent_node(sbi, et, en);
  422. /*
  423. * if original extent is split into zero or two parts, extent
  424. * tree has been altered by deletion or insertion, therefore
  425. * invalidate pointers regard to tree.
  426. */
  427. if (parts != 1) {
  428. insert_p = NULL;
  429. insert_parent = NULL;
  430. }
  431. en = next_en;
  432. }
  433. /* 3. update extent in extent cache */
  434. if (blkaddr) {
  435. set_extent_info(&ei, fofs, blkaddr, len);
  436. if (!__try_merge_extent_node(inode, et, &ei, prev_en, next_en))
  437. __insert_extent_tree(inode, et, &ei,
  438. insert_p, insert_parent);
  439. /* give up extent_cache, if split and small updates happen */
  440. if (dei.len >= 1 &&
  441. prev.len < F2FS_MIN_EXTENT_LEN &&
  442. et->largest.len < F2FS_MIN_EXTENT_LEN) {
  443. __drop_largest_extent(inode, 0, UINT_MAX);
  444. set_inode_flag(inode, FI_NO_EXTENT);
  445. }
  446. }
  447. if (is_inode_flag_set(inode, FI_NO_EXTENT))
  448. __free_extent_tree(sbi, et);
  449. write_unlock(&et->lock);
  450. return !__is_extent_same(&prev, &et->largest);
  451. }
  452. unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
  453. {
  454. struct extent_tree *et, *next;
  455. struct extent_node *en;
  456. unsigned int node_cnt = 0, tree_cnt = 0;
  457. int remained;
  458. if (!test_opt(sbi, EXTENT_CACHE))
  459. return 0;
  460. if (!atomic_read(&sbi->total_zombie_tree))
  461. goto free_node;
  462. if (!down_write_trylock(&sbi->extent_tree_lock))
  463. goto out;
  464. /* 1. remove unreferenced extent tree */
  465. list_for_each_entry_safe(et, next, &sbi->zombie_list, list) {
  466. if (atomic_read(&et->node_cnt)) {
  467. write_lock(&et->lock);
  468. node_cnt += __free_extent_tree(sbi, et);
  469. write_unlock(&et->lock);
  470. }
  471. f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
  472. list_del_init(&et->list);
  473. radix_tree_delete(&sbi->extent_tree_root, et->ino);
  474. kmem_cache_free(extent_tree_slab, et);
  475. atomic_dec(&sbi->total_ext_tree);
  476. atomic_dec(&sbi->total_zombie_tree);
  477. tree_cnt++;
  478. if (node_cnt + tree_cnt >= nr_shrink)
  479. goto unlock_out;
  480. cond_resched();
  481. }
  482. up_write(&sbi->extent_tree_lock);
  483. free_node:
  484. /* 2. remove LRU extent entries */
  485. if (!down_write_trylock(&sbi->extent_tree_lock))
  486. goto out;
  487. remained = nr_shrink - (node_cnt + tree_cnt);
  488. spin_lock(&sbi->extent_lock);
  489. for (; remained > 0; remained--) {
  490. if (list_empty(&sbi->extent_list))
  491. break;
  492. en = list_first_entry(&sbi->extent_list,
  493. struct extent_node, list);
  494. et = en->et;
  495. if (!write_trylock(&et->lock)) {
  496. /* refresh this extent node's position in extent list */
  497. list_move_tail(&en->list, &sbi->extent_list);
  498. continue;
  499. }
  500. list_del_init(&en->list);
  501. spin_unlock(&sbi->extent_lock);
  502. __detach_extent_node(sbi, et, en);
  503. write_unlock(&et->lock);
  504. node_cnt++;
  505. spin_lock(&sbi->extent_lock);
  506. }
  507. spin_unlock(&sbi->extent_lock);
  508. unlock_out:
  509. up_write(&sbi->extent_tree_lock);
  510. out:
  511. trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
  512. return node_cnt + tree_cnt;
  513. }
  514. unsigned int f2fs_destroy_extent_node(struct inode *inode)
  515. {
  516. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  517. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  518. unsigned int node_cnt = 0;
  519. if (!et || !atomic_read(&et->node_cnt))
  520. return 0;
  521. write_lock(&et->lock);
  522. node_cnt = __free_extent_tree(sbi, et);
  523. write_unlock(&et->lock);
  524. return node_cnt;
  525. }
  526. void f2fs_drop_extent_tree(struct inode *inode)
  527. {
  528. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  529. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  530. set_inode_flag(inode, FI_NO_EXTENT);
  531. write_lock(&et->lock);
  532. __free_extent_tree(sbi, et);
  533. __drop_largest_extent(inode, 0, UINT_MAX);
  534. write_unlock(&et->lock);
  535. }
  536. void f2fs_destroy_extent_tree(struct inode *inode)
  537. {
  538. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  539. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  540. unsigned int node_cnt = 0;
  541. if (!et)
  542. return;
  543. if (inode->i_nlink && !is_bad_inode(inode) &&
  544. atomic_read(&et->node_cnt)) {
  545. down_write(&sbi->extent_tree_lock);
  546. list_add_tail(&et->list, &sbi->zombie_list);
  547. atomic_inc(&sbi->total_zombie_tree);
  548. up_write(&sbi->extent_tree_lock);
  549. return;
  550. }
  551. /* free all extent info belong to this extent tree */
  552. node_cnt = f2fs_destroy_extent_node(inode);
  553. /* delete extent tree entry in radix tree */
  554. down_write(&sbi->extent_tree_lock);
  555. f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
  556. radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
  557. kmem_cache_free(extent_tree_slab, et);
  558. atomic_dec(&sbi->total_ext_tree);
  559. up_write(&sbi->extent_tree_lock);
  560. F2FS_I(inode)->extent_tree = NULL;
  561. trace_f2fs_destroy_extent_tree(inode, node_cnt);
  562. }
  563. bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
  564. struct extent_info *ei)
  565. {
  566. if (!f2fs_may_extent_tree(inode))
  567. return false;
  568. return f2fs_lookup_extent_tree(inode, pgofs, ei);
  569. }
  570. void f2fs_update_extent_cache(struct dnode_of_data *dn)
  571. {
  572. pgoff_t fofs;
  573. block_t blkaddr;
  574. if (!f2fs_may_extent_tree(dn->inode))
  575. return;
  576. if (dn->data_blkaddr == NEW_ADDR)
  577. blkaddr = NULL_ADDR;
  578. else
  579. blkaddr = dn->data_blkaddr;
  580. fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
  581. dn->ofs_in_node;
  582. f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1);
  583. }
  584. void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
  585. pgoff_t fofs, block_t blkaddr, unsigned int len)
  586. {
  587. if (!f2fs_may_extent_tree(dn->inode))
  588. return;
  589. f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len);
  590. }
  591. void init_extent_cache_info(struct f2fs_sb_info *sbi)
  592. {
  593. INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
  594. init_rwsem(&sbi->extent_tree_lock);
  595. INIT_LIST_HEAD(&sbi->extent_list);
  596. spin_lock_init(&sbi->extent_lock);
  597. atomic_set(&sbi->total_ext_tree, 0);
  598. INIT_LIST_HEAD(&sbi->zombie_list);
  599. atomic_set(&sbi->total_zombie_tree, 0);
  600. atomic_set(&sbi->total_ext_node, 0);
  601. }
  602. int __init create_extent_cache(void)
  603. {
  604. extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
  605. sizeof(struct extent_tree));
  606. if (!extent_tree_slab)
  607. return -ENOMEM;
  608. extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
  609. sizeof(struct extent_node));
  610. if (!extent_node_slab) {
  611. kmem_cache_destroy(extent_tree_slab);
  612. return -ENOMEM;
  613. }
  614. return 0;
  615. }
  616. void destroy_extent_cache(void)
  617. {
  618. kmem_cache_destroy(extent_node_slab);
  619. kmem_cache_destroy(extent_tree_slab);
  620. }