page-io.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433
  1. /*
  2. * linux/fs/ext4/page-io.c
  3. *
  4. * This contains the new page_io functions for ext4
  5. *
  6. * Written by Theodore Ts'o, 2010.
  7. */
  8. #include <linux/fs.h>
  9. #include <linux/time.h>
  10. #include <linux/jbd2.h>
  11. #include <linux/highuid.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/quotaops.h>
  14. #include <linux/string.h>
  15. #include <linux/buffer_head.h>
  16. #include <linux/writeback.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/mpage.h>
  19. #include <linux/namei.h>
  20. #include <linux/uio.h>
  21. #include <linux/bio.h>
  22. #include <linux/workqueue.h>
  23. #include <linux/kernel.h>
  24. #include <linux/slab.h>
  25. #include "ext4_jbd2.h"
  26. #include "xattr.h"
  27. #include "acl.h"
  28. #include "ext4_extents.h"
  29. static struct kmem_cache *io_page_cachep, *io_end_cachep;
  30. int __init ext4_init_pageio(void)
  31. {
  32. io_page_cachep = KMEM_CACHE(ext4_io_page, SLAB_RECLAIM_ACCOUNT);
  33. if (io_page_cachep == NULL)
  34. return -ENOMEM;
  35. io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
  36. if (io_end_cachep == NULL) {
  37. kmem_cache_destroy(io_page_cachep);
  38. return -ENOMEM;
  39. }
  40. return 0;
  41. }
  42. void ext4_exit_pageio(void)
  43. {
  44. kmem_cache_destroy(io_end_cachep);
  45. kmem_cache_destroy(io_page_cachep);
  46. }
  47. void ext4_ioend_wait(struct inode *inode)
  48. {
  49. wait_queue_head_t *wq = ext4_ioend_wq(inode);
  50. wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0));
  51. }
  52. static void put_io_page(struct ext4_io_page *io_page)
  53. {
  54. if (atomic_dec_and_test(&io_page->p_count)) {
  55. end_page_writeback(io_page->p_page);
  56. put_page(io_page->p_page);
  57. kmem_cache_free(io_page_cachep, io_page);
  58. }
  59. }
  60. void ext4_free_io_end(ext4_io_end_t *io)
  61. {
  62. int i;
  63. BUG_ON(!io);
  64. if (io->page)
  65. put_page(io->page);
  66. for (i = 0; i < io->num_io_pages; i++)
  67. put_io_page(io->pages[i]);
  68. io->num_io_pages = 0;
  69. if (atomic_dec_and_test(&EXT4_I(io->inode)->i_ioend_count))
  70. wake_up_all(ext4_ioend_wq(io->inode));
  71. kmem_cache_free(io_end_cachep, io);
  72. }
  73. /*
  74. * check a range of space and convert unwritten extents to written.
  75. *
  76. * Called with inode->i_mutex; we depend on this when we manipulate
  77. * io->flag, since we could otherwise race with ext4_flush_completed_IO()
  78. */
  79. int ext4_end_io_nolock(ext4_io_end_t *io)
  80. {
  81. struct inode *inode = io->inode;
  82. loff_t offset = io->offset;
  83. ssize_t size = io->size;
  84. int ret = 0;
  85. ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
  86. "list->prev 0x%p\n",
  87. io, inode->i_ino, io->list.next, io->list.prev);
  88. ret = ext4_convert_unwritten_extents(inode, offset, size);
  89. if (ret < 0) {
  90. ext4_msg(inode->i_sb, KERN_EMERG,
  91. "failed to convert unwritten extents to written "
  92. "extents -- potential data loss! "
  93. "(inode %lu, offset %llu, size %zd, error %d)",
  94. inode->i_ino, offset, size, ret);
  95. }
  96. /* Wake up anyone waiting on unwritten extent conversion */
  97. if (atomic_dec_and_test(&EXT4_I(inode)->i_aiodio_unwritten))
  98. wake_up_all(ext4_ioend_wq(io->inode));
  99. if (io->flag & EXT4_IO_END_DIRECT)
  100. inode_dio_done(inode);
  101. if (io->iocb)
  102. aio_complete(io->iocb, io->result, 0);
  103. return ret;
  104. }
  105. /*
  106. * work on completed aio dio IO, to convert unwritten extents to extents
  107. */
  108. static void ext4_end_io_work(struct work_struct *work)
  109. {
  110. ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
  111. struct inode *inode = io->inode;
  112. struct ext4_inode_info *ei = EXT4_I(inode);
  113. unsigned long flags;
  114. spin_lock_irqsave(&ei->i_completed_io_lock, flags);
  115. if (io->flag & EXT4_IO_END_IN_FSYNC)
  116. goto requeue;
  117. if (list_empty(&io->list)) {
  118. spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
  119. goto free;
  120. }
  121. if (!mutex_trylock(&inode->i_mutex)) {
  122. bool was_queued;
  123. requeue:
  124. was_queued = !!(io->flag & EXT4_IO_END_QUEUED);
  125. io->flag |= EXT4_IO_END_QUEUED;
  126. spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
  127. /*
  128. * Requeue the work instead of waiting so that the work
  129. * items queued after this can be processed.
  130. */
  131. queue_work(EXT4_SB(inode->i_sb)->dio_unwritten_wq, &io->work);
  132. /*
  133. * To prevent the ext4-dio-unwritten thread from keeping
  134. * requeueing end_io requests and occupying cpu for too long,
  135. * yield the cpu if it sees an end_io request that has already
  136. * been requeued.
  137. */
  138. if (was_queued)
  139. yield();
  140. return;
  141. }
  142. list_del_init(&io->list);
  143. spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
  144. (void) ext4_end_io_nolock(io);
  145. mutex_unlock(&inode->i_mutex);
  146. free:
  147. ext4_free_io_end(io);
  148. }
  149. ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
  150. {
  151. ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
  152. if (io) {
  153. atomic_inc(&EXT4_I(inode)->i_ioend_count);
  154. io->inode = inode;
  155. INIT_WORK(&io->work, ext4_end_io_work);
  156. INIT_LIST_HEAD(&io->list);
  157. }
  158. return io;
  159. }
  160. /*
  161. * Print an buffer I/O error compatible with the fs/buffer.c. This
  162. * provides compatibility with dmesg scrapers that look for a specific
  163. * buffer I/O error message. We really need a unified error reporting
  164. * structure to userspace ala Digital Unix's uerf system, but it's
  165. * probably not going to happen in my lifetime, due to LKML politics...
  166. */
  167. static void buffer_io_error(struct buffer_head *bh)
  168. {
  169. char b[BDEVNAME_SIZE];
  170. printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
  171. bdevname(bh->b_bdev, b),
  172. (unsigned long long)bh->b_blocknr);
  173. }
  174. static void ext4_end_bio(struct bio *bio, int error)
  175. {
  176. ext4_io_end_t *io_end = bio->bi_private;
  177. struct workqueue_struct *wq;
  178. struct inode *inode;
  179. unsigned long flags;
  180. int i;
  181. sector_t bi_sector = bio->bi_sector;
  182. BUG_ON(!io_end);
  183. bio->bi_private = NULL;
  184. bio->bi_end_io = NULL;
  185. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  186. error = 0;
  187. bio_put(bio);
  188. for (i = 0; i < io_end->num_io_pages; i++) {
  189. struct page *page = io_end->pages[i]->p_page;
  190. struct buffer_head *bh, *head;
  191. loff_t offset;
  192. loff_t io_end_offset;
  193. if (error) {
  194. SetPageError(page);
  195. set_bit(AS_EIO, &page->mapping->flags);
  196. head = page_buffers(page);
  197. BUG_ON(!head);
  198. io_end_offset = io_end->offset + io_end->size;
  199. offset = (sector_t) page->index << PAGE_CACHE_SHIFT;
  200. bh = head;
  201. do {
  202. if ((offset >= io_end->offset) &&
  203. (offset+bh->b_size <= io_end_offset))
  204. buffer_io_error(bh);
  205. offset += bh->b_size;
  206. bh = bh->b_this_page;
  207. } while (bh != head);
  208. }
  209. put_io_page(io_end->pages[i]);
  210. }
  211. io_end->num_io_pages = 0;
  212. inode = io_end->inode;
  213. if (error) {
  214. io_end->flag |= EXT4_IO_END_ERROR;
  215. ext4_warning(inode->i_sb, "I/O error writing to inode %lu "
  216. "(offset %llu size %ld starting block %llu)",
  217. inode->i_ino,
  218. (unsigned long long) io_end->offset,
  219. (long) io_end->size,
  220. (unsigned long long)
  221. bi_sector >> (inode->i_blkbits - 9));
  222. }
  223. if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
  224. ext4_free_io_end(io_end);
  225. return;
  226. }
  227. /* Add the io_end to per-inode completed io list*/
  228. spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
  229. list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
  230. spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
  231. wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
  232. /* queue the work to convert unwritten extents to written */
  233. queue_work(wq, &io_end->work);
  234. }
  235. void ext4_io_submit(struct ext4_io_submit *io)
  236. {
  237. struct bio *bio = io->io_bio;
  238. if (bio) {
  239. bio_get(io->io_bio);
  240. submit_bio(io->io_op, io->io_bio);
  241. BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
  242. bio_put(io->io_bio);
  243. }
  244. io->io_bio = NULL;
  245. io->io_op = 0;
  246. io->io_end = NULL;
  247. }
  248. static int io_submit_init(struct ext4_io_submit *io,
  249. struct inode *inode,
  250. struct writeback_control *wbc,
  251. struct buffer_head *bh)
  252. {
  253. ext4_io_end_t *io_end;
  254. struct page *page = bh->b_page;
  255. int nvecs = bio_get_nr_vecs(bh->b_bdev);
  256. struct bio *bio;
  257. io_end = ext4_init_io_end(inode, GFP_NOFS);
  258. if (!io_end)
  259. return -ENOMEM;
  260. bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
  261. bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
  262. bio->bi_bdev = bh->b_bdev;
  263. bio->bi_private = io->io_end = io_end;
  264. bio->bi_end_io = ext4_end_bio;
  265. io_end->offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(bh);
  266. io->io_bio = bio;
  267. io->io_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
  268. io->io_next_block = bh->b_blocknr;
  269. return 0;
  270. }
  271. static int io_submit_add_bh(struct ext4_io_submit *io,
  272. struct ext4_io_page *io_page,
  273. struct inode *inode,
  274. struct writeback_control *wbc,
  275. struct buffer_head *bh)
  276. {
  277. ext4_io_end_t *io_end;
  278. int ret;
  279. if (buffer_new(bh)) {
  280. clear_buffer_new(bh);
  281. unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
  282. }
  283. if (!buffer_mapped(bh) || buffer_delay(bh)) {
  284. if (!buffer_mapped(bh))
  285. clear_buffer_dirty(bh);
  286. if (io->io_bio)
  287. ext4_io_submit(io);
  288. return 0;
  289. }
  290. if (io->io_bio && bh->b_blocknr != io->io_next_block) {
  291. submit_and_retry:
  292. ext4_io_submit(io);
  293. }
  294. if (io->io_bio == NULL) {
  295. ret = io_submit_init(io, inode, wbc, bh);
  296. if (ret)
  297. return ret;
  298. }
  299. io_end = io->io_end;
  300. if ((io_end->num_io_pages >= MAX_IO_PAGES) &&
  301. (io_end->pages[io_end->num_io_pages-1] != io_page))
  302. goto submit_and_retry;
  303. if (buffer_uninit(bh))
  304. ext4_set_io_unwritten_flag(inode, io_end);
  305. io->io_end->size += bh->b_size;
  306. io->io_next_block++;
  307. ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh));
  308. if (ret != bh->b_size)
  309. goto submit_and_retry;
  310. if ((io_end->num_io_pages == 0) ||
  311. (io_end->pages[io_end->num_io_pages-1] != io_page)) {
  312. io_end->pages[io_end->num_io_pages++] = io_page;
  313. atomic_inc(&io_page->p_count);
  314. }
  315. return 0;
  316. }
  317. int ext4_bio_write_page(struct ext4_io_submit *io,
  318. struct page *page,
  319. int len,
  320. struct writeback_control *wbc)
  321. {
  322. struct inode *inode = page->mapping->host;
  323. unsigned block_start, block_end, blocksize;
  324. struct ext4_io_page *io_page;
  325. struct buffer_head *bh, *head;
  326. int ret = 0;
  327. blocksize = 1 << inode->i_blkbits;
  328. BUG_ON(!PageLocked(page));
  329. BUG_ON(PageWriteback(page));
  330. io_page = kmem_cache_alloc(io_page_cachep, GFP_NOFS);
  331. if (!io_page) {
  332. set_page_dirty(page);
  333. unlock_page(page);
  334. return -ENOMEM;
  335. }
  336. io_page->p_page = page;
  337. atomic_set(&io_page->p_count, 1);
  338. get_page(page);
  339. set_page_writeback(page);
  340. ClearPageError(page);
  341. for (bh = head = page_buffers(page), block_start = 0;
  342. bh != head || !block_start;
  343. block_start = block_end, bh = bh->b_this_page) {
  344. block_end = block_start + blocksize;
  345. if (block_start >= len) {
  346. /*
  347. * Comments copied from block_write_full_page_endio:
  348. *
  349. * The page straddles i_size. It must be zeroed out on
  350. * each and every writepage invocation because it may
  351. * be mmapped. "A file is mapped in multiples of the
  352. * page size. For a file that is not a multiple of
  353. * the page size, the remaining memory is zeroed when
  354. * mapped, and writes to that region are not written
  355. * out to the file."
  356. */
  357. zero_user_segment(page, block_start, block_end);
  358. clear_buffer_dirty(bh);
  359. set_buffer_uptodate(bh);
  360. continue;
  361. }
  362. clear_buffer_dirty(bh);
  363. ret = io_submit_add_bh(io, io_page, inode, wbc, bh);
  364. if (ret) {
  365. /*
  366. * We only get here on ENOMEM. Not much else
  367. * we can do but mark the page as dirty, and
  368. * better luck next time.
  369. */
  370. set_page_dirty(page);
  371. break;
  372. }
  373. }
  374. unlock_page(page);
  375. /*
  376. * If the page was truncated before we could do the writeback,
  377. * or we had a memory allocation error while trying to write
  378. * the first buffer head, we won't have submitted any pages for
  379. * I/O. In that case we need to make sure we've cleared the
  380. * PageWriteback bit from the page to prevent the system from
  381. * wedging later on.
  382. */
  383. put_io_page(io_page);
  384. return ret;
  385. }