super.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552
  1. /* AFS superblock handling
  2. *
  3. * Copyright (c) 2002, 2007 Red Hat, Inc. All rights reserved.
  4. *
  5. * This software may be freely redistributed under the terms of the
  6. * GNU General Public License.
  7. *
  8. * You should have received a copy of the GNU General Public License
  9. * along with this program; if not, write to the Free Software
  10. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  11. *
  12. * Authors: David Howells <dhowells@redhat.com>
  13. * David Woodhouse <dwmw2@infradead.org>
  14. *
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/module.h>
  18. #include <linux/mount.h>
  19. #include <linux/init.h>
  20. #include <linux/slab.h>
  21. #include <linux/fs.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/parser.h>
  24. #include <linux/statfs.h>
  25. #include <linux/sched.h>
  26. #include "internal.h"
  27. #define AFS_FS_MAGIC 0x6B414653 /* 'kAFS' */
  28. static void afs_i_init_once(void *foo);
  29. static struct dentry *afs_mount(struct file_system_type *fs_type,
  30. int flags, const char *dev_name, void *data);
  31. static void afs_kill_super(struct super_block *sb);
  32. static struct inode *afs_alloc_inode(struct super_block *sb);
  33. static void afs_destroy_inode(struct inode *inode);
  34. static int afs_statfs(struct dentry *dentry, struct kstatfs *buf);
  35. struct file_system_type afs_fs_type = {
  36. .owner = THIS_MODULE,
  37. .name = "afs",
  38. .mount = afs_mount,
  39. .kill_sb = afs_kill_super,
  40. .fs_flags = 0,
  41. };
  42. MODULE_ALIAS_FS("afs");
  43. static const struct super_operations afs_super_ops = {
  44. .statfs = afs_statfs,
  45. .alloc_inode = afs_alloc_inode,
  46. .drop_inode = afs_drop_inode,
  47. .destroy_inode = afs_destroy_inode,
  48. .evict_inode = afs_evict_inode,
  49. .show_options = generic_show_options,
  50. };
  51. static struct kmem_cache *afs_inode_cachep;
  52. static atomic_t afs_count_active_inodes;
  53. enum {
  54. afs_no_opt,
  55. afs_opt_cell,
  56. afs_opt_rwpath,
  57. afs_opt_vol,
  58. afs_opt_autocell,
  59. };
  60. static const match_table_t afs_options_list = {
  61. { afs_opt_cell, "cell=%s" },
  62. { afs_opt_rwpath, "rwpath" },
  63. { afs_opt_vol, "vol=%s" },
  64. { afs_opt_autocell, "autocell" },
  65. { afs_no_opt, NULL },
  66. };
  67. /*
  68. * initialise the filesystem
  69. */
  70. int __init afs_fs_init(void)
  71. {
  72. int ret;
  73. _enter("");
  74. /* create ourselves an inode cache */
  75. atomic_set(&afs_count_active_inodes, 0);
  76. ret = -ENOMEM;
  77. afs_inode_cachep = kmem_cache_create("afs_inode_cache",
  78. sizeof(struct afs_vnode),
  79. 0,
  80. SLAB_HWCACHE_ALIGN,
  81. afs_i_init_once);
  82. if (!afs_inode_cachep) {
  83. printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n");
  84. return ret;
  85. }
  86. /* now export our filesystem to lesser mortals */
  87. ret = register_filesystem(&afs_fs_type);
  88. if (ret < 0) {
  89. kmem_cache_destroy(afs_inode_cachep);
  90. _leave(" = %d", ret);
  91. return ret;
  92. }
  93. _leave(" = 0");
  94. return 0;
  95. }
  96. /*
  97. * clean up the filesystem
  98. */
  99. void __exit afs_fs_exit(void)
  100. {
  101. _enter("");
  102. afs_mntpt_kill_timer();
  103. unregister_filesystem(&afs_fs_type);
  104. if (atomic_read(&afs_count_active_inodes) != 0) {
  105. printk("kAFS: %d active inode objects still present\n",
  106. atomic_read(&afs_count_active_inodes));
  107. BUG();
  108. }
  109. /*
  110. * Make sure all delayed rcu free inodes are flushed before we
  111. * destroy cache.
  112. */
  113. rcu_barrier();
  114. kmem_cache_destroy(afs_inode_cachep);
  115. _leave("");
  116. }
  117. /*
  118. * parse the mount options
  119. * - this function has been shamelessly adapted from the ext3 fs which
  120. * shamelessly adapted it from the msdos fs
  121. */
  122. static int afs_parse_options(struct afs_mount_params *params,
  123. char *options, const char **devname)
  124. {
  125. struct afs_cell *cell;
  126. substring_t args[MAX_OPT_ARGS];
  127. char *p;
  128. int token;
  129. _enter("%s", options);
  130. options[PAGE_SIZE - 1] = 0;
  131. while ((p = strsep(&options, ","))) {
  132. if (!*p)
  133. continue;
  134. token = match_token(p, afs_options_list, args);
  135. switch (token) {
  136. case afs_opt_cell:
  137. cell = afs_cell_lookup(args[0].from,
  138. args[0].to - args[0].from,
  139. false);
  140. if (IS_ERR(cell))
  141. return PTR_ERR(cell);
  142. afs_put_cell(params->cell);
  143. params->cell = cell;
  144. break;
  145. case afs_opt_rwpath:
  146. params->rwpath = 1;
  147. break;
  148. case afs_opt_vol:
  149. *devname = args[0].from;
  150. break;
  151. case afs_opt_autocell:
  152. params->autocell = 1;
  153. break;
  154. default:
  155. printk(KERN_ERR "kAFS:"
  156. " Unknown or invalid mount option: '%s'\n", p);
  157. return -EINVAL;
  158. }
  159. }
  160. _leave(" = 0");
  161. return 0;
  162. }
  163. /*
  164. * parse a device name to get cell name, volume name, volume type and R/W
  165. * selector
  166. * - this can be one of the following:
  167. * "%[cell:]volume[.]" R/W volume
  168. * "#[cell:]volume[.]" R/O or R/W volume (rwpath=0),
  169. * or R/W (rwpath=1) volume
  170. * "%[cell:]volume.readonly" R/O volume
  171. * "#[cell:]volume.readonly" R/O volume
  172. * "%[cell:]volume.backup" Backup volume
  173. * "#[cell:]volume.backup" Backup volume
  174. */
  175. static int afs_parse_device_name(struct afs_mount_params *params,
  176. const char *name)
  177. {
  178. struct afs_cell *cell;
  179. const char *cellname, *suffix;
  180. int cellnamesz;
  181. _enter(",%s", name);
  182. if (!name) {
  183. printk(KERN_ERR "kAFS: no volume name specified\n");
  184. return -EINVAL;
  185. }
  186. if ((name[0] != '%' && name[0] != '#') || !name[1]) {
  187. printk(KERN_ERR "kAFS: unparsable volume name\n");
  188. return -EINVAL;
  189. }
  190. /* determine the type of volume we're looking for */
  191. params->type = AFSVL_ROVOL;
  192. params->force = false;
  193. if (params->rwpath || name[0] == '%') {
  194. params->type = AFSVL_RWVOL;
  195. params->force = true;
  196. }
  197. name++;
  198. /* split the cell name out if there is one */
  199. params->volname = strchr(name, ':');
  200. if (params->volname) {
  201. cellname = name;
  202. cellnamesz = params->volname - name;
  203. params->volname++;
  204. } else {
  205. params->volname = name;
  206. cellname = NULL;
  207. cellnamesz = 0;
  208. }
  209. /* the volume type is further affected by a possible suffix */
  210. suffix = strrchr(params->volname, '.');
  211. if (suffix) {
  212. if (strcmp(suffix, ".readonly") == 0) {
  213. params->type = AFSVL_ROVOL;
  214. params->force = true;
  215. } else if (strcmp(suffix, ".backup") == 0) {
  216. params->type = AFSVL_BACKVOL;
  217. params->force = true;
  218. } else if (suffix[1] == 0) {
  219. } else {
  220. suffix = NULL;
  221. }
  222. }
  223. params->volnamesz = suffix ?
  224. suffix - params->volname : strlen(params->volname);
  225. _debug("cell %*.*s [%p]",
  226. cellnamesz, cellnamesz, cellname ?: "", params->cell);
  227. /* lookup the cell record */
  228. if (cellname || !params->cell) {
  229. cell = afs_cell_lookup(cellname, cellnamesz, true);
  230. if (IS_ERR(cell)) {
  231. printk(KERN_ERR "kAFS: unable to lookup cell '%*.*s'\n",
  232. cellnamesz, cellnamesz, cellname ?: "");
  233. return PTR_ERR(cell);
  234. }
  235. afs_put_cell(params->cell);
  236. params->cell = cell;
  237. }
  238. _debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s",
  239. params->cell->name, params->cell,
  240. params->volnamesz, params->volnamesz, params->volname,
  241. suffix ?: "-", params->type, params->force ? " FORCE" : "");
  242. return 0;
  243. }
  244. /*
  245. * check a superblock to see if it's the one we're looking for
  246. */
  247. static int afs_test_super(struct super_block *sb, void *data)
  248. {
  249. struct afs_super_info *as1 = data;
  250. struct afs_super_info *as = sb->s_fs_info;
  251. return as->volume == as1->volume;
  252. }
  253. static int afs_set_super(struct super_block *sb, void *data)
  254. {
  255. sb->s_fs_info = data;
  256. return set_anon_super(sb, NULL);
  257. }
  258. /*
  259. * fill in the superblock
  260. */
  261. static int afs_fill_super(struct super_block *sb,
  262. struct afs_mount_params *params)
  263. {
  264. struct afs_super_info *as = sb->s_fs_info;
  265. struct afs_fid fid;
  266. struct inode *inode = NULL;
  267. int ret;
  268. _enter("");
  269. /* fill in the superblock */
  270. sb->s_blocksize = PAGE_CACHE_SIZE;
  271. sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
  272. sb->s_magic = AFS_FS_MAGIC;
  273. sb->s_op = &afs_super_ops;
  274. sb->s_bdi = &as->volume->bdi;
  275. strlcpy(sb->s_id, as->volume->vlocation->vldb.name, sizeof(sb->s_id));
  276. /* allocate the root inode and dentry */
  277. fid.vid = as->volume->vid;
  278. fid.vnode = 1;
  279. fid.unique = 1;
  280. inode = afs_iget(sb, params->key, &fid, NULL, NULL);
  281. if (IS_ERR(inode))
  282. return PTR_ERR(inode);
  283. if (params->autocell)
  284. set_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(inode)->flags);
  285. ret = -ENOMEM;
  286. sb->s_root = d_make_root(inode);
  287. if (!sb->s_root)
  288. goto error;
  289. sb->s_d_op = &afs_fs_dentry_operations;
  290. _leave(" = 0");
  291. return 0;
  292. error:
  293. _leave(" = %d", ret);
  294. return ret;
  295. }
  296. /*
  297. * get an AFS superblock
  298. */
  299. static struct dentry *afs_mount(struct file_system_type *fs_type,
  300. int flags, const char *dev_name, void *options)
  301. {
  302. struct afs_mount_params params;
  303. struct super_block *sb;
  304. struct afs_volume *vol;
  305. struct key *key;
  306. char *new_opts = kstrdup(options, GFP_KERNEL);
  307. struct afs_super_info *as;
  308. int ret;
  309. _enter(",,%s,%p", dev_name, options);
  310. memset(&params, 0, sizeof(params));
  311. /* parse the options and device name */
  312. if (options) {
  313. ret = afs_parse_options(&params, options, &dev_name);
  314. if (ret < 0)
  315. goto error;
  316. }
  317. ret = afs_parse_device_name(&params, dev_name);
  318. if (ret < 0)
  319. goto error;
  320. /* try and do the mount securely */
  321. key = afs_request_key(params.cell);
  322. if (IS_ERR(key)) {
  323. _leave(" = %ld [key]", PTR_ERR(key));
  324. ret = PTR_ERR(key);
  325. goto error;
  326. }
  327. params.key = key;
  328. /* parse the device name */
  329. vol = afs_volume_lookup(&params);
  330. if (IS_ERR(vol)) {
  331. ret = PTR_ERR(vol);
  332. goto error;
  333. }
  334. /* allocate a superblock info record */
  335. as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL);
  336. if (!as) {
  337. ret = -ENOMEM;
  338. afs_put_volume(vol);
  339. goto error;
  340. }
  341. as->volume = vol;
  342. /* allocate a deviceless superblock */
  343. sb = sget(fs_type, afs_test_super, afs_set_super, flags, as);
  344. if (IS_ERR(sb)) {
  345. ret = PTR_ERR(sb);
  346. afs_put_volume(vol);
  347. kfree(as);
  348. goto error;
  349. }
  350. if (!sb->s_root) {
  351. /* initial superblock/root creation */
  352. _debug("create");
  353. ret = afs_fill_super(sb, &params);
  354. if (ret < 0) {
  355. deactivate_locked_super(sb);
  356. goto error;
  357. }
  358. save_mount_options(sb, new_opts);
  359. sb->s_flags |= MS_ACTIVE;
  360. } else {
  361. _debug("reuse");
  362. ASSERTCMP(sb->s_flags, &, MS_ACTIVE);
  363. afs_put_volume(vol);
  364. kfree(as);
  365. }
  366. afs_put_cell(params.cell);
  367. kfree(new_opts);
  368. _leave(" = 0 [%p]", sb);
  369. return dget(sb->s_root);
  370. error:
  371. afs_put_cell(params.cell);
  372. key_put(params.key);
  373. kfree(new_opts);
  374. _leave(" = %d", ret);
  375. return ERR_PTR(ret);
  376. }
  377. static void afs_kill_super(struct super_block *sb)
  378. {
  379. struct afs_super_info *as = sb->s_fs_info;
  380. kill_anon_super(sb);
  381. afs_put_volume(as->volume);
  382. kfree(as);
  383. }
  384. /*
  385. * initialise an inode cache slab element prior to any use
  386. */
  387. static void afs_i_init_once(void *_vnode)
  388. {
  389. struct afs_vnode *vnode = _vnode;
  390. memset(vnode, 0, sizeof(*vnode));
  391. inode_init_once(&vnode->vfs_inode);
  392. init_waitqueue_head(&vnode->update_waitq);
  393. mutex_init(&vnode->permits_lock);
  394. mutex_init(&vnode->validate_lock);
  395. spin_lock_init(&vnode->writeback_lock);
  396. spin_lock_init(&vnode->lock);
  397. INIT_LIST_HEAD(&vnode->writebacks);
  398. INIT_LIST_HEAD(&vnode->pending_locks);
  399. INIT_LIST_HEAD(&vnode->granted_locks);
  400. INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work);
  401. INIT_WORK(&vnode->cb_broken_work, afs_broken_callback_work);
  402. }
  403. /*
  404. * allocate an AFS inode struct from our slab cache
  405. */
  406. static struct inode *afs_alloc_inode(struct super_block *sb)
  407. {
  408. struct afs_vnode *vnode;
  409. vnode = kmem_cache_alloc(afs_inode_cachep, GFP_KERNEL);
  410. if (!vnode)
  411. return NULL;
  412. atomic_inc(&afs_count_active_inodes);
  413. memset(&vnode->fid, 0, sizeof(vnode->fid));
  414. memset(&vnode->status, 0, sizeof(vnode->status));
  415. vnode->volume = NULL;
  416. vnode->update_cnt = 0;
  417. vnode->flags = 1 << AFS_VNODE_UNSET;
  418. vnode->cb_promised = false;
  419. _leave(" = %p", &vnode->vfs_inode);
  420. return &vnode->vfs_inode;
  421. }
  422. static void afs_i_callback(struct rcu_head *head)
  423. {
  424. struct inode *inode = container_of(head, struct inode, i_rcu);
  425. struct afs_vnode *vnode = AFS_FS_I(inode);
  426. kmem_cache_free(afs_inode_cachep, vnode);
  427. }
  428. /*
  429. * destroy an AFS inode struct
  430. */
  431. static void afs_destroy_inode(struct inode *inode)
  432. {
  433. struct afs_vnode *vnode = AFS_FS_I(inode);
  434. _enter("%p{%x:%u}", inode, vnode->fid.vid, vnode->fid.vnode);
  435. _debug("DESTROY INODE %p", inode);
  436. ASSERTCMP(vnode->server, ==, NULL);
  437. call_rcu(&inode->i_rcu, afs_i_callback);
  438. atomic_dec(&afs_count_active_inodes);
  439. }
  440. /*
  441. * return information about an AFS volume
  442. */
  443. static int afs_statfs(struct dentry *dentry, struct kstatfs *buf)
  444. {
  445. struct afs_volume_status vs;
  446. struct afs_vnode *vnode = AFS_FS_I(dentry->d_inode);
  447. struct key *key;
  448. int ret;
  449. key = afs_request_key(vnode->volume->cell);
  450. if (IS_ERR(key))
  451. return PTR_ERR(key);
  452. ret = afs_vnode_get_volume_status(vnode, key, &vs);
  453. key_put(key);
  454. if (ret < 0) {
  455. _leave(" = %d", ret);
  456. return ret;
  457. }
  458. buf->f_type = dentry->d_sb->s_magic;
  459. buf->f_bsize = AFS_BLOCK_SIZE;
  460. buf->f_namelen = AFSNAMEMAX - 1;
  461. if (vs.max_quota == 0)
  462. buf->f_blocks = vs.part_max_blocks;
  463. else
  464. buf->f_blocks = vs.max_quota;
  465. buf->f_bavail = buf->f_bfree = buf->f_blocks - vs.blocks_in_use;
  466. return 0;
  467. }