ssp_data.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369
  1. /*
  2. * Copyright (C) 2012, Samsung Electronics Co. Ltd. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. */
  15. #include "ssp.h"
  16. #include <linux/math64.h>
  17. #include <linux/sched.h>
  18. /* SSP -> AP Instruction */
  19. #define MSG2AP_INST_BYPASS_DATA 0x37
  20. #define MSG2AP_INST_LIBRARY_DATA 0x01
  21. #define MSG2AP_INST_DEBUG_DATA 0x03
  22. #define MSG2AP_INST_BIG_DATA 0x04
  23. #define MSG2AP_INST_META_DATA 0x05
  24. #define MSG2AP_INST_TIME_SYNC 0x06
  25. /*************************************************************************/
  26. /* SSP parsing the dataframe */
  27. /*************************************************************************/
  28. static void generate_data(struct ssp_data *data, struct sensor_value *sensorsdata,
  29. int iSensorData, u64 timestamp)
  30. {
  31. u64 move_timestamp = data->lastTimestamp[iSensorData];
  32. while ((move_timestamp * 10 + data->adDelayBuf[iSensorData] * 15) < (timestamp * 10)) {
  33. move_timestamp += data->adDelayBuf[iSensorData];
  34. sensorsdata->timestamp = move_timestamp;
  35. data->report_sensor_data[iSensorData](data, sensorsdata);
  36. }
  37. }
  38. static void get_timestamp(struct ssp_data *data, char *pchRcvDataFrame,
  39. int *iDataIdx, struct sensor_value *sensorsdata,
  40. struct ssp_time_diff *sensortime, int iSensorData)
  41. {
  42. if (sensortime->batch_mode == BATCH_MODE_RUN) {
  43. if (sensortime->batch_count == sensortime->batch_count_fixed) {
  44. if (sensortime->time_diff == data->adDelayBuf[iSensorData]) {
  45. generate_data(data, sensorsdata, iSensorData,
  46. (data->timestamp - data->adDelayBuf[iSensorData] * (sensortime->batch_count_fixed - 1)));
  47. }
  48. sensorsdata->timestamp = data->timestamp - ((sensortime->batch_count - 1) * sensortime->time_diff);
  49. } else {
  50. if (sensortime->batch_count > 1)
  51. sensorsdata->timestamp = data->timestamp - ((sensortime->batch_count - 1) * sensortime->time_diff);
  52. else
  53. sensorsdata->timestamp = data->timestamp;
  54. }
  55. } else {
  56. if (((sensortime->irq_diff * 10) > (data->adDelayBuf[iSensorData] * 18))
  57. && ((sensortime->irq_diff * 10) < (data->adDelayBuf[iSensorData] * 100))) {
  58. generate_data(data, sensorsdata, iSensorData, data->timestamp);
  59. }
  60. sensorsdata->timestamp = data->timestamp;
  61. }
  62. *iDataIdx += 4;
  63. }
  64. static void get_3axis_sensordata(char *pchRcvDataFrame, int *iDataIdx,
  65. struct sensor_value *sensorsdata)
  66. {
  67. memcpy(sensorsdata, pchRcvDataFrame + *iDataIdx, 6);
  68. *iDataIdx += 6;
  69. }
  70. static void get_geomagnetic_sensordata(char *pchRcvDataFrame, int *iDataIdx,
  71. struct sensor_value *sensorsdata)
  72. {
  73. memcpy(sensorsdata, pchRcvDataFrame + *iDataIdx, 7);
  74. *iDataIdx += 7;
  75. }
  76. static void get_uncalib_sensordata(char *pchRcvDataFrame, int *iDataIdx,
  77. struct sensor_value *sensorsdata)
  78. {
  79. memcpy(sensorsdata, pchRcvDataFrame + *iDataIdx, 12);
  80. *iDataIdx += 12;
  81. }
  82. static void get_rot_sensordata(char *pchRcvDataFrame, int *iDataIdx,
  83. struct sensor_value *sensorsdata)
  84. {
  85. memcpy(sensorsdata, pchRcvDataFrame + *iDataIdx, 17);
  86. *iDataIdx += 17;
  87. }
  88. static void get_step_det_sensordata(char *pchRcvDataFrame, int *iDataIdx,
  89. struct sensor_value *sensorsdata)
  90. {
  91. memcpy(sensorsdata, pchRcvDataFrame + *iDataIdx, 1);
  92. *iDataIdx += 1;
  93. }
  94. static void get_light_sensordata(char *pchRcvDataFrame, int *iDataIdx,
  95. struct sensor_value *sensorsdata)
  96. {
  97. #if defined (CONFIG_SENSORS_SSP_MAX88921)
  98. memcpy(sensorsdata, pchRcvDataFrame + *iDataIdx, 12);
  99. *iDataIdx += 12;
  100. #else
  101. memcpy(sensorsdata, pchRcvDataFrame + *iDataIdx, 8);
  102. *iDataIdx += 8;
  103. #endif
  104. }
  105. static void get_pressure_sensordata(char *pchRcvDataFrame, int *iDataIdx,
  106. struct sensor_value *sensorsdata)
  107. {
  108. s16 temperature = 0;
  109. memcpy(&sensorsdata->pressure[0], pchRcvDataFrame + *iDataIdx, 4);
  110. memcpy(&temperature, pchRcvDataFrame + *iDataIdx + 4, 2);
  111. sensorsdata->pressure[1] = temperature;
  112. *iDataIdx += 6;
  113. }
  114. static void get_gesture_sensordata(char *pchRcvDataFrame, int *iDataIdx,
  115. struct sensor_value *sensorsdata)
  116. {
  117. #if defined (CONFIG_SENSORS_SSP_MAX88920)
  118. memcpy(sensorsdata, pchRcvDataFrame + *iDataIdx, 18);
  119. *iDataIdx += 18;
  120. #else
  121. memcpy(sensorsdata, pchRcvDataFrame + *iDataIdx, 38);
  122. *iDataIdx += 38;
  123. #endif
  124. }
  125. static void get_proximity_sensordata(char *pchRcvDataFrame, int *iDataIdx,
  126. struct sensor_value *sensorsdata)
  127. {
  128. memset(&sensorsdata->prox[0], 0, 2);
  129. #if defined (CONFIG_SENSORS_SSP_MAX88920)
  130. memcpy(&sensorsdata->prox[0], pchRcvDataFrame + *iDataIdx, 2);
  131. //memcpy(&sensorsdata->prox[1], pchRcvDataFrame + *iDataIdx + 1, 1);
  132. *iDataIdx += 2;
  133. #else
  134. memcpy(&sensorsdata->prox[0], pchRcvDataFrame + *iDataIdx, 1);
  135. memcpy(&sensorsdata->prox[1], pchRcvDataFrame + *iDataIdx + 1, 2);
  136. *iDataIdx += 3;
  137. #endif
  138. }
  139. static void get_proximity_rawdata(char *pchRcvDataFrame, int *iDataIdx,
  140. struct sensor_value *sensorsdata)
  141. {
  142. #if defined (CONFIG_SENSORS_SSP_MAX88920)
  143. memcpy(&sensorsdata->prox[0], pchRcvDataFrame + *iDataIdx, 1);
  144. *iDataIdx += 1;
  145. #else
  146. memcpy(&sensorsdata->prox[0], pchRcvDataFrame + *iDataIdx, 2);
  147. *iDataIdx += 2;
  148. #endif
  149. }
  150. static void get_geomagnetic_rawdata(char *pchRcvDataFrame, int *iDataIdx,
  151. struct sensor_value *sensorsdata)
  152. {
  153. memcpy(sensorsdata, pchRcvDataFrame + *iDataIdx, 6);
  154. *iDataIdx += 6;
  155. }
  156. static void get_temp_humidity_sensordata(char *pchRcvDataFrame, int *iDataIdx,
  157. struct sensor_value *sensorsdata)
  158. {
  159. memset(&sensorsdata->data[2], 0, 2);
  160. memcpy(sensorsdata, pchRcvDataFrame + *iDataIdx, 5);
  161. *iDataIdx += 5;
  162. }
  163. static void get_sig_motion_sensordata(char *pchRcvDataFrame, int *iDataIdx,
  164. struct sensor_value *sensorsdata)
  165. {
  166. memcpy(sensorsdata, pchRcvDataFrame + *iDataIdx, 1);
  167. *iDataIdx += 1;
  168. }
  169. static void get_step_cnt_sensordata(char *pchRcvDataFrame, int *iDataIdx,
  170. struct sensor_value *sensorsdata)
  171. {
  172. memcpy(&sensorsdata->step_diff, pchRcvDataFrame + *iDataIdx, 4);
  173. *iDataIdx += 4;
  174. }
  175. int handle_big_data(struct ssp_data *data, char *pchRcvDataFrame, int *pDataIdx) {
  176. u8 bigType = 0;
  177. struct ssp_big *big = kzalloc(sizeof(*big), GFP_KERNEL);
  178. big->data = data;
  179. bigType = pchRcvDataFrame[(*pDataIdx)++];
  180. memcpy(&big->length, pchRcvDataFrame + *pDataIdx, 4);
  181. *pDataIdx += 4;
  182. memcpy(&big->addr, pchRcvDataFrame + *pDataIdx, 4);
  183. *pDataIdx += 4;
  184. if (bigType >= BIG_TYPE_MAX) {
  185. kfree(big);
  186. return FAIL;
  187. }
  188. INIT_WORK(&big->work, data->ssp_big_task[bigType] );
  189. queue_work(data->debug_wq, &big->work);
  190. return SUCCESS;
  191. }
  192. int parse_dataframe(struct ssp_data *data, char *pchRcvDataFrame, int iLength) {
  193. int iDataIdx, iSensorData;
  194. u16 length = 0;
  195. struct sensor_value sensorsdata;
  196. struct ssp_time_diff sensortime;
  197. for (iDataIdx = 0; iDataIdx < iLength;) {
  198. switch (pchRcvDataFrame[iDataIdx++]) {
  199. case MSG2AP_INST_BYPASS_DATA:
  200. iSensorData = pchRcvDataFrame[iDataIdx++];
  201. if ((iSensorData < 0) || (iSensorData >= SENSOR_MAX)) {
  202. pr_err("[SSP]: %s - Mcu data frame1 error %d\n", __func__,
  203. iSensorData);
  204. return ERROR;
  205. }
  206. memcpy(&length, pchRcvDataFrame + iDataIdx, 2);
  207. iDataIdx += 2;
  208. sensortime.batch_count = sensortime.batch_count_fixed = length;
  209. sensortime.batch_mode = length > 1 ? BATCH_MODE_RUN : BATCH_MODE_NONE;
  210. sensortime.irq_diff = data->timestamp - data->lastTimestamp[iSensorData];
  211. if (sensortime.batch_mode == BATCH_MODE_RUN) {
  212. if (data->reportedData[iSensorData] == true) {
  213. u64 time;
  214. sensortime.time_diff = div64_long((s64)(data->timestamp - data->lastTimestamp[iSensorData]), (s64)length);
  215. if (length > 8)
  216. time = data->adDelayBuf[iSensorData] * 18;
  217. else if (length > 4)
  218. time = data->adDelayBuf[iSensorData] * 25;
  219. else if (length > 2)
  220. time = data->adDelayBuf[iSensorData] * 50;
  221. else
  222. time = data->adDelayBuf[iSensorData] * 100;
  223. if ((sensortime.time_diff * 10) > time) {
  224. data->lastTimestamp[iSensorData] = data->timestamp - (data->adDelayBuf[iSensorData] * length);
  225. sensortime.time_diff = data->adDelayBuf[iSensorData];
  226. } else {
  227. time = data->adDelayBuf[iSensorData] * 18;
  228. if ((sensortime.time_diff * 10) > time)
  229. sensortime.time_diff = data->adDelayBuf[iSensorData];
  230. }
  231. } else {
  232. if (data->lastTimestamp[iSensorData] < (data->timestamp - (data->adDelayBuf[iSensorData] * length))) {
  233. data->lastTimestamp[iSensorData] = data->timestamp - (data->adDelayBuf[iSensorData] * length);
  234. sensortime.time_diff = data->adDelayBuf[iSensorData];
  235. } else
  236. sensortime.time_diff = div64_long((s64)(data->timestamp - data->lastTimestamp[iSensorData]), (s64)length);
  237. }
  238. } else {
  239. if (data->reportedData[iSensorData] == false)
  240. sensortime.irq_diff = data->adDelayBuf[iSensorData];
  241. }
  242. do {
  243. data->get_sensor_data[iSensorData](pchRcvDataFrame, &iDataIdx,
  244. &sensorsdata);
  245. get_timestamp(data, pchRcvDataFrame, &iDataIdx, &sensorsdata, &sensortime, iSensorData);
  246. if (sensortime.irq_diff > 1000000)
  247. data->report_sensor_data[iSensorData](data, &sensorsdata);
  248. else if ((iSensorData == PROXIMITY_SENSOR) || (iSensorData == PROXIMITY_RAW)
  249. || (iSensorData == GESTURE_SENSOR) || (iSensorData == SIG_MOTION_SENSOR))
  250. data->report_sensor_data[iSensorData](data, &sensorsdata);
  251. else
  252. pr_err("[SSP]: %s irq_diff is under 1msec (%d)\n", __func__, iSensorData);
  253. sensortime.batch_count--;
  254. } while ((sensortime.batch_count > 0) && (iDataIdx < iLength));
  255. if (sensortime.batch_count > 0)
  256. pr_err("[SSP]: %s batch count error (%d)\n", __func__, sensortime.batch_count);
  257. data->lastTimestamp[iSensorData] = data->timestamp;
  258. data->reportedData[iSensorData] = true;
  259. break;
  260. case MSG2AP_INST_DEBUG_DATA:
  261. iSensorData = print_mcu_debug(pchRcvDataFrame, &iDataIdx, iLength);
  262. if (iSensorData) {
  263. pr_err("[SSP]: %s - Mcu data frame3 error %d\n", __func__,
  264. iSensorData);
  265. return ERROR;
  266. }
  267. break;
  268. case MSG2AP_INST_LIBRARY_DATA:
  269. memcpy(&length, pchRcvDataFrame + iDataIdx, 2);
  270. iDataIdx += 2;
  271. ssp_sensorhub_handle_data(data, pchRcvDataFrame, iDataIdx,
  272. iDataIdx + length);
  273. iDataIdx += length;
  274. break;
  275. case MSG2AP_INST_BIG_DATA:
  276. handle_big_data(data, pchRcvDataFrame, &iDataIdx);
  277. break;
  278. case MSG2AP_INST_META_DATA:
  279. sensorsdata.meta_data.what = pchRcvDataFrame[iDataIdx++];
  280. sensorsdata.meta_data.sensor = pchRcvDataFrame[iDataIdx++];
  281. report_meta_data(data, &sensorsdata);
  282. break;
  283. case MSG2AP_INST_TIME_SYNC:
  284. data->bTimeSyncing = true;
  285. break;
  286. }
  287. }
  288. return SUCCESS;
  289. }
  290. void initialize_function_pointer(struct ssp_data *data)
  291. {
  292. data->get_sensor_data[ACCELEROMETER_SENSOR] = get_3axis_sensordata;
  293. data->get_sensor_data[GYROSCOPE_SENSOR] = get_3axis_sensordata;
  294. data->get_sensor_data[GEOMAGNETIC_SENSOR] = get_geomagnetic_sensordata;
  295. data->get_sensor_data[GEOMAGNETIC_UNCALIB_SENSOR] = get_uncalib_sensordata;
  296. data->get_sensor_data[PRESSURE_SENSOR] = get_pressure_sensordata;
  297. data->get_sensor_data[GESTURE_SENSOR] = get_gesture_sensordata;
  298. data->get_sensor_data[PROXIMITY_SENSOR] = get_proximity_sensordata;
  299. data->get_sensor_data[PROXIMITY_RAW] = get_proximity_rawdata;
  300. data->get_sensor_data[LIGHT_SENSOR] = get_light_sensordata;
  301. data->get_sensor_data[TEMPERATURE_HUMIDITY_SENSOR] =
  302. get_temp_humidity_sensordata;
  303. data->get_sensor_data[GEOMAGNETIC_RAW] = get_geomagnetic_rawdata;
  304. data->get_sensor_data[ROTATION_VECTOR] = get_rot_sensordata;
  305. data->get_sensor_data[GAME_ROTATION_VECTOR] = get_rot_sensordata;
  306. data->get_sensor_data[STEP_DETECTOR] = get_step_det_sensordata;
  307. data->get_sensor_data[SIG_MOTION_SENSOR] = get_sig_motion_sensordata;
  308. data->get_sensor_data[GYRO_UNCALIB_SENSOR] = get_uncalib_sensordata;
  309. data->get_sensor_data[STEP_COUNTER] = get_step_cnt_sensordata;
  310. data->report_sensor_data[ACCELEROMETER_SENSOR] = report_acc_data;
  311. data->report_sensor_data[GYROSCOPE_SENSOR] = report_gyro_data;
  312. data->report_sensor_data[GEOMAGNETIC_SENSOR] = report_mag_data;
  313. data->report_sensor_data[GEOMAGNETIC_UNCALIB_SENSOR] = report_uncalib_mag_data;
  314. data->report_sensor_data[PRESSURE_SENSOR] = report_pressure_data;
  315. data->report_sensor_data[GESTURE_SENSOR] = report_gesture_data;
  316. data->report_sensor_data[PROXIMITY_SENSOR] = report_prox_data;
  317. data->report_sensor_data[PROXIMITY_RAW] = report_prox_raw_data;
  318. data->report_sensor_data[LIGHT_SENSOR] = report_light_data;
  319. data->report_sensor_data[TEMPERATURE_HUMIDITY_SENSOR] =
  320. report_temp_humidity_data;
  321. data->report_sensor_data[GEOMAGNETIC_RAW] = report_geomagnetic_raw_data;
  322. data->report_sensor_data[ROTATION_VECTOR] = report_rot_data;
  323. data->report_sensor_data[GAME_ROTATION_VECTOR] = report_game_rot_data;
  324. data->report_sensor_data[STEP_DETECTOR] = report_step_det_data;
  325. data->report_sensor_data[SIG_MOTION_SENSOR] = report_sig_motion_data;
  326. data->report_sensor_data[GYRO_UNCALIB_SENSOR] = report_uncalib_gyro_data;
  327. data->report_sensor_data[STEP_COUNTER] = report_step_cnt_data;
  328. data->ssp_big_task[BIG_TYPE_DUMP] = ssp_dump_task;
  329. data->ssp_big_task[BIG_TYPE_READ_LIB] = ssp_read_big_library_task;
  330. data->ssp_big_task[BIG_TYPE_VOICE_NET] = ssp_send_big_library_task;
  331. data->ssp_big_task[BIG_TYPE_VOICE_GRAM] = ssp_send_big_library_task;
  332. data->ssp_big_task[BIG_TYPE_VOICE_PCM] = ssp_pcm_dump_task;
  333. data->ssp_big_task[BIG_TYPE_TEMP] = ssp_temp_task;
  334. }