au1x00.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697
  1. /*
  2. * BRIEF MODULE DESCRIPTION
  3. * Driver for AMD Au1000 MIPS Processor, AC'97 Sound Port
  4. *
  5. * Copyright 2004 Cooper Street Innovations Inc.
  6. * Author: Charles Eidsness <charles@cooper-street.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the
  10. * Free Software Foundation; either version 2 of the License, or (at your
  11. * option) any later version.
  12. *
  13. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  14. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  15. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
  16. * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  17. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  18. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
  19. * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  20. * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  21. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  22. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  23. *
  24. * You should have received a copy of the GNU General Public License along
  25. * with this program; if not, write to the Free Software Foundation, Inc.,
  26. * 675 Mass Ave, Cambridge, MA 02139, USA.
  27. *
  28. * History:
  29. *
  30. * 2004-09-09 Charles Eidsness -- Original verion -- based on
  31. * sa11xx-uda1341.c ALSA driver and the
  32. * au1000.c OSS driver.
  33. * 2004-09-09 Matt Porter -- Added support for ALSA 1.0.6
  34. *
  35. */
  36. #include <linux/ioport.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/init.h>
  39. #include <linux/slab.h>
  40. #include <linux/module.h>
  41. #include <sound/core.h>
  42. #include <sound/initval.h>
  43. #include <sound/pcm.h>
  44. #include <sound/pcm_params.h>
  45. #include <sound/ac97_codec.h>
  46. #include <asm/mach-au1x00/au1000.h>
  47. #include <asm/mach-au1x00/au1000_dma.h>
  48. MODULE_AUTHOR("Charles Eidsness <charles@cooper-street.com>");
  49. MODULE_DESCRIPTION("Au1000 AC'97 ALSA Driver");
  50. MODULE_LICENSE("GPL");
  51. MODULE_SUPPORTED_DEVICE("{{AMD,Au1000 AC'97}}");
  52. #define PLAYBACK 0
  53. #define CAPTURE 1
  54. #define AC97_SLOT_3 0x01
  55. #define AC97_SLOT_4 0x02
  56. #define AC97_SLOT_6 0x08
  57. #define AC97_CMD_IRQ 31
  58. #define READ 0
  59. #define WRITE 1
  60. #define READ_WAIT 2
  61. #define RW_DONE 3
  62. struct au1000_period
  63. {
  64. u32 start;
  65. u32 relative_end; /*realtive to start of buffer*/
  66. struct au1000_period * next;
  67. };
  68. /*Au1000 AC97 Port Control Reisters*/
  69. struct au1000_ac97_reg {
  70. u32 volatile config;
  71. u32 volatile status;
  72. u32 volatile data;
  73. u32 volatile cmd;
  74. u32 volatile cntrl;
  75. };
  76. struct audio_stream {
  77. struct snd_pcm_substream *substream;
  78. int dma;
  79. spinlock_t dma_lock;
  80. struct au1000_period * buffer;
  81. unsigned int period_size;
  82. unsigned int periods;
  83. };
  84. struct snd_au1000 {
  85. struct snd_card *card;
  86. struct au1000_ac97_reg volatile *ac97_ioport;
  87. struct resource *ac97_res_port;
  88. spinlock_t ac97_lock;
  89. struct snd_ac97 *ac97;
  90. struct snd_pcm *pcm;
  91. struct audio_stream *stream[2]; /* playback & capture */
  92. };
  93. /*--------------------------- Local Functions --------------------------------*/
  94. static void
  95. au1000_set_ac97_xmit_slots(struct snd_au1000 *au1000, long xmit_slots)
  96. {
  97. u32 volatile ac97_config;
  98. spin_lock(&au1000->ac97_lock);
  99. ac97_config = au1000->ac97_ioport->config;
  100. ac97_config = ac97_config & ~AC97C_XMIT_SLOTS_MASK;
  101. ac97_config |= (xmit_slots << AC97C_XMIT_SLOTS_BIT);
  102. au1000->ac97_ioport->config = ac97_config;
  103. spin_unlock(&au1000->ac97_lock);
  104. }
  105. static void
  106. au1000_set_ac97_recv_slots(struct snd_au1000 *au1000, long recv_slots)
  107. {
  108. u32 volatile ac97_config;
  109. spin_lock(&au1000->ac97_lock);
  110. ac97_config = au1000->ac97_ioport->config;
  111. ac97_config = ac97_config & ~AC97C_RECV_SLOTS_MASK;
  112. ac97_config |= (recv_slots << AC97C_RECV_SLOTS_BIT);
  113. au1000->ac97_ioport->config = ac97_config;
  114. spin_unlock(&au1000->ac97_lock);
  115. }
  116. static void
  117. au1000_release_dma_link(struct audio_stream *stream)
  118. {
  119. struct au1000_period * pointer;
  120. struct au1000_period * pointer_next;
  121. stream->period_size = 0;
  122. stream->periods = 0;
  123. pointer = stream->buffer;
  124. if (! pointer)
  125. return;
  126. do {
  127. pointer_next = pointer->next;
  128. kfree(pointer);
  129. pointer = pointer_next;
  130. } while (pointer != stream->buffer);
  131. stream->buffer = NULL;
  132. }
  133. static int
  134. au1000_setup_dma_link(struct audio_stream *stream, unsigned int period_bytes,
  135. unsigned int periods)
  136. {
  137. struct snd_pcm_substream *substream = stream->substream;
  138. struct snd_pcm_runtime *runtime = substream->runtime;
  139. struct au1000_period *pointer;
  140. unsigned long dma_start;
  141. int i;
  142. dma_start = virt_to_phys(runtime->dma_area);
  143. if (stream->period_size == period_bytes &&
  144. stream->periods == periods)
  145. return 0; /* not changed */
  146. au1000_release_dma_link(stream);
  147. stream->period_size = period_bytes;
  148. stream->periods = periods;
  149. stream->buffer = kmalloc(sizeof(struct au1000_period), GFP_KERNEL);
  150. if (! stream->buffer)
  151. return -ENOMEM;
  152. pointer = stream->buffer;
  153. for (i = 0; i < periods; i++) {
  154. pointer->start = (u32)(dma_start + (i * period_bytes));
  155. pointer->relative_end = (u32) (((i+1) * period_bytes) - 0x1);
  156. if (i < periods - 1) {
  157. pointer->next = kmalloc(sizeof(struct au1000_period), GFP_KERNEL);
  158. if (! pointer->next) {
  159. au1000_release_dma_link(stream);
  160. return -ENOMEM;
  161. }
  162. pointer = pointer->next;
  163. }
  164. }
  165. pointer->next = stream->buffer;
  166. return 0;
  167. }
  168. static void
  169. au1000_dma_stop(struct audio_stream *stream)
  170. {
  171. if (snd_BUG_ON(!stream->buffer))
  172. return;
  173. disable_dma(stream->dma);
  174. }
  175. static void
  176. au1000_dma_start(struct audio_stream *stream)
  177. {
  178. if (snd_BUG_ON(!stream->buffer))
  179. return;
  180. init_dma(stream->dma);
  181. if (get_dma_active_buffer(stream->dma) == 0) {
  182. clear_dma_done0(stream->dma);
  183. set_dma_addr0(stream->dma, stream->buffer->start);
  184. set_dma_count0(stream->dma, stream->period_size >> 1);
  185. set_dma_addr1(stream->dma, stream->buffer->next->start);
  186. set_dma_count1(stream->dma, stream->period_size >> 1);
  187. } else {
  188. clear_dma_done1(stream->dma);
  189. set_dma_addr1(stream->dma, stream->buffer->start);
  190. set_dma_count1(stream->dma, stream->period_size >> 1);
  191. set_dma_addr0(stream->dma, stream->buffer->next->start);
  192. set_dma_count0(stream->dma, stream->period_size >> 1);
  193. }
  194. enable_dma_buffers(stream->dma);
  195. start_dma(stream->dma);
  196. }
  197. static irqreturn_t
  198. au1000_dma_interrupt(int irq, void *dev_id)
  199. {
  200. struct audio_stream *stream = (struct audio_stream *) dev_id;
  201. struct snd_pcm_substream *substream = stream->substream;
  202. spin_lock(&stream->dma_lock);
  203. switch (get_dma_buffer_done(stream->dma)) {
  204. case DMA_D0:
  205. stream->buffer = stream->buffer->next;
  206. clear_dma_done0(stream->dma);
  207. set_dma_addr0(stream->dma, stream->buffer->next->start);
  208. set_dma_count0(stream->dma, stream->period_size >> 1);
  209. enable_dma_buffer0(stream->dma);
  210. break;
  211. case DMA_D1:
  212. stream->buffer = stream->buffer->next;
  213. clear_dma_done1(stream->dma);
  214. set_dma_addr1(stream->dma, stream->buffer->next->start);
  215. set_dma_count1(stream->dma, stream->period_size >> 1);
  216. enable_dma_buffer1(stream->dma);
  217. break;
  218. case (DMA_D0 | DMA_D1):
  219. printk(KERN_ERR "DMA %d missed interrupt.\n",stream->dma);
  220. au1000_dma_stop(stream);
  221. au1000_dma_start(stream);
  222. break;
  223. case (~DMA_D0 & ~DMA_D1):
  224. printk(KERN_ERR "DMA %d empty irq.\n",stream->dma);
  225. }
  226. spin_unlock(&stream->dma_lock);
  227. snd_pcm_period_elapsed(substream);
  228. return IRQ_HANDLED;
  229. }
  230. /*-------------------------- PCM Audio Streams -------------------------------*/
  231. static unsigned int rates[] = {8000, 11025, 16000, 22050};
  232. static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
  233. .count = ARRAY_SIZE(rates),
  234. .list = rates,
  235. .mask = 0,
  236. };
  237. static struct snd_pcm_hardware snd_au1000_hw =
  238. {
  239. .info = (SNDRV_PCM_INFO_INTERLEAVED | \
  240. SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID),
  241. .formats = SNDRV_PCM_FMTBIT_S16_LE,
  242. .rates = (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_11025 |
  243. SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050),
  244. .rate_min = 8000,
  245. .rate_max = 22050,
  246. .channels_min = 1,
  247. .channels_max = 2,
  248. .buffer_bytes_max = 128*1024,
  249. .period_bytes_min = 32,
  250. .period_bytes_max = 16*1024,
  251. .periods_min = 8,
  252. .periods_max = 255,
  253. .fifo_size = 16,
  254. };
  255. static int
  256. snd_au1000_playback_open(struct snd_pcm_substream *substream)
  257. {
  258. struct snd_au1000 *au1000 = substream->pcm->private_data;
  259. au1000->stream[PLAYBACK]->substream = substream;
  260. au1000->stream[PLAYBACK]->buffer = NULL;
  261. substream->private_data = au1000->stream[PLAYBACK];
  262. substream->runtime->hw = snd_au1000_hw;
  263. return (snd_pcm_hw_constraint_list(substream->runtime, 0,
  264. SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates) < 0);
  265. }
  266. static int
  267. snd_au1000_capture_open(struct snd_pcm_substream *substream)
  268. {
  269. struct snd_au1000 *au1000 = substream->pcm->private_data;
  270. au1000->stream[CAPTURE]->substream = substream;
  271. au1000->stream[CAPTURE]->buffer = NULL;
  272. substream->private_data = au1000->stream[CAPTURE];
  273. substream->runtime->hw = snd_au1000_hw;
  274. return (snd_pcm_hw_constraint_list(substream->runtime, 0,
  275. SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates) < 0);
  276. }
  277. static int
  278. snd_au1000_playback_close(struct snd_pcm_substream *substream)
  279. {
  280. struct snd_au1000 *au1000 = substream->pcm->private_data;
  281. au1000->stream[PLAYBACK]->substream = NULL;
  282. return 0;
  283. }
  284. static int
  285. snd_au1000_capture_close(struct snd_pcm_substream *substream)
  286. {
  287. struct snd_au1000 *au1000 = substream->pcm->private_data;
  288. au1000->stream[CAPTURE]->substream = NULL;
  289. return 0;
  290. }
  291. static int
  292. snd_au1000_hw_params(struct snd_pcm_substream *substream,
  293. struct snd_pcm_hw_params *hw_params)
  294. {
  295. struct audio_stream *stream = substream->private_data;
  296. int err;
  297. err = snd_pcm_lib_malloc_pages(substream,
  298. params_buffer_bytes(hw_params));
  299. if (err < 0)
  300. return err;
  301. return au1000_setup_dma_link(stream,
  302. params_period_bytes(hw_params),
  303. params_periods(hw_params));
  304. }
  305. static int
  306. snd_au1000_hw_free(struct snd_pcm_substream *substream)
  307. {
  308. struct audio_stream *stream = substream->private_data;
  309. au1000_release_dma_link(stream);
  310. return snd_pcm_lib_free_pages(substream);
  311. }
  312. static int
  313. snd_au1000_playback_prepare(struct snd_pcm_substream *substream)
  314. {
  315. struct snd_au1000 *au1000 = substream->pcm->private_data;
  316. struct snd_pcm_runtime *runtime = substream->runtime;
  317. if (runtime->channels == 1)
  318. au1000_set_ac97_xmit_slots(au1000, AC97_SLOT_4);
  319. else
  320. au1000_set_ac97_xmit_slots(au1000, AC97_SLOT_3 | AC97_SLOT_4);
  321. snd_ac97_set_rate(au1000->ac97, AC97_PCM_FRONT_DAC_RATE, runtime->rate);
  322. return 0;
  323. }
  324. static int
  325. snd_au1000_capture_prepare(struct snd_pcm_substream *substream)
  326. {
  327. struct snd_au1000 *au1000 = substream->pcm->private_data;
  328. struct snd_pcm_runtime *runtime = substream->runtime;
  329. if (runtime->channels == 1)
  330. au1000_set_ac97_recv_slots(au1000, AC97_SLOT_4);
  331. else
  332. au1000_set_ac97_recv_slots(au1000, AC97_SLOT_3 | AC97_SLOT_4);
  333. snd_ac97_set_rate(au1000->ac97, AC97_PCM_LR_ADC_RATE, runtime->rate);
  334. return 0;
  335. }
  336. static int
  337. snd_au1000_trigger(struct snd_pcm_substream *substream, int cmd)
  338. {
  339. struct audio_stream *stream = substream->private_data;
  340. int err = 0;
  341. spin_lock(&stream->dma_lock);
  342. switch (cmd) {
  343. case SNDRV_PCM_TRIGGER_START:
  344. au1000_dma_start(stream);
  345. break;
  346. case SNDRV_PCM_TRIGGER_STOP:
  347. au1000_dma_stop(stream);
  348. break;
  349. default:
  350. err = -EINVAL;
  351. break;
  352. }
  353. spin_unlock(&stream->dma_lock);
  354. return err;
  355. }
  356. static snd_pcm_uframes_t
  357. snd_au1000_pointer(struct snd_pcm_substream *substream)
  358. {
  359. struct audio_stream *stream = substream->private_data;
  360. struct snd_pcm_runtime *runtime = substream->runtime;
  361. long location;
  362. spin_lock(&stream->dma_lock);
  363. location = get_dma_residue(stream->dma);
  364. spin_unlock(&stream->dma_lock);
  365. location = stream->buffer->relative_end - location;
  366. if (location == -1)
  367. location = 0;
  368. return bytes_to_frames(runtime,location);
  369. }
  370. static struct snd_pcm_ops snd_card_au1000_playback_ops = {
  371. .open = snd_au1000_playback_open,
  372. .close = snd_au1000_playback_close,
  373. .ioctl = snd_pcm_lib_ioctl,
  374. .hw_params = snd_au1000_hw_params,
  375. .hw_free = snd_au1000_hw_free,
  376. .prepare = snd_au1000_playback_prepare,
  377. .trigger = snd_au1000_trigger,
  378. .pointer = snd_au1000_pointer,
  379. };
  380. static struct snd_pcm_ops snd_card_au1000_capture_ops = {
  381. .open = snd_au1000_capture_open,
  382. .close = snd_au1000_capture_close,
  383. .ioctl = snd_pcm_lib_ioctl,
  384. .hw_params = snd_au1000_hw_params,
  385. .hw_free = snd_au1000_hw_free,
  386. .prepare = snd_au1000_capture_prepare,
  387. .trigger = snd_au1000_trigger,
  388. .pointer = snd_au1000_pointer,
  389. };
  390. static int __devinit
  391. snd_au1000_pcm_new(struct snd_au1000 *au1000)
  392. {
  393. struct snd_pcm *pcm;
  394. int err;
  395. unsigned long flags;
  396. if ((err = snd_pcm_new(au1000->card, "AU1000 AC97 PCM", 0, 1, 1, &pcm)) < 0)
  397. return err;
  398. snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
  399. snd_dma_continuous_data(GFP_KERNEL), 128*1024, 128*1024);
  400. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
  401. &snd_card_au1000_playback_ops);
  402. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
  403. &snd_card_au1000_capture_ops);
  404. pcm->private_data = au1000;
  405. pcm->info_flags = 0;
  406. strcpy(pcm->name, "Au1000 AC97 PCM");
  407. spin_lock_init(&au1000->stream[PLAYBACK]->dma_lock);
  408. spin_lock_init(&au1000->stream[CAPTURE]->dma_lock);
  409. flags = claim_dma_lock();
  410. if ((au1000->stream[PLAYBACK]->dma = request_au1000_dma(DMA_ID_AC97C_TX,
  411. "AC97 TX", au1000_dma_interrupt, 0,
  412. au1000->stream[PLAYBACK])) < 0) {
  413. release_dma_lock(flags);
  414. return -EBUSY;
  415. }
  416. if ((au1000->stream[CAPTURE]->dma = request_au1000_dma(DMA_ID_AC97C_RX,
  417. "AC97 RX", au1000_dma_interrupt, 0,
  418. au1000->stream[CAPTURE])) < 0){
  419. release_dma_lock(flags);
  420. return -EBUSY;
  421. }
  422. /* enable DMA coherency in read/write DMA channels */
  423. set_dma_mode(au1000->stream[PLAYBACK]->dma,
  424. get_dma_mode(au1000->stream[PLAYBACK]->dma) & ~DMA_NC);
  425. set_dma_mode(au1000->stream[CAPTURE]->dma,
  426. get_dma_mode(au1000->stream[CAPTURE]->dma) & ~DMA_NC);
  427. release_dma_lock(flags);
  428. au1000->pcm = pcm;
  429. return 0;
  430. }
  431. /*-------------------------- AC97 CODEC Control ------------------------------*/
  432. static unsigned short
  433. snd_au1000_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
  434. {
  435. struct snd_au1000 *au1000 = ac97->private_data;
  436. u32 volatile cmd;
  437. u16 volatile data;
  438. int i;
  439. spin_lock(&au1000->ac97_lock);
  440. /* would rather use the interrupt than this polling but it works and I can't
  441. get the interrupt driven case to work efficiently */
  442. for (i = 0; i < 0x5000; i++)
  443. if (!(au1000->ac97_ioport->status & AC97C_CP))
  444. break;
  445. if (i == 0x5000)
  446. printk(KERN_ERR "au1000 AC97: AC97 command read timeout\n");
  447. cmd = (u32) reg & AC97C_INDEX_MASK;
  448. cmd |= AC97C_READ;
  449. au1000->ac97_ioport->cmd = cmd;
  450. /* now wait for the data */
  451. for (i = 0; i < 0x5000; i++)
  452. if (!(au1000->ac97_ioport->status & AC97C_CP))
  453. break;
  454. if (i == 0x5000) {
  455. printk(KERN_ERR "au1000 AC97: AC97 command read timeout\n");
  456. spin_unlock(&au1000->ac97_lock);
  457. return 0;
  458. }
  459. data = au1000->ac97_ioport->cmd & 0xffff;
  460. spin_unlock(&au1000->ac97_lock);
  461. return data;
  462. }
  463. static void
  464. snd_au1000_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val)
  465. {
  466. struct snd_au1000 *au1000 = ac97->private_data;
  467. u32 cmd;
  468. int i;
  469. spin_lock(&au1000->ac97_lock);
  470. /* would rather use the interrupt than this polling but it works and I can't
  471. get the interrupt driven case to work efficiently */
  472. for (i = 0; i < 0x5000; i++)
  473. if (!(au1000->ac97_ioport->status & AC97C_CP))
  474. break;
  475. if (i == 0x5000)
  476. printk(KERN_ERR "au1000 AC97: AC97 command write timeout\n");
  477. cmd = (u32) reg & AC97C_INDEX_MASK;
  478. cmd &= ~AC97C_READ;
  479. cmd |= ((u32) val << AC97C_WD_BIT);
  480. au1000->ac97_ioport->cmd = cmd;
  481. spin_unlock(&au1000->ac97_lock);
  482. }
  483. static int __devinit
  484. snd_au1000_ac97_new(struct snd_au1000 *au1000)
  485. {
  486. int err;
  487. struct snd_ac97_bus *pbus;
  488. struct snd_ac97_template ac97;
  489. static struct snd_ac97_bus_ops ops = {
  490. .write = snd_au1000_ac97_write,
  491. .read = snd_au1000_ac97_read,
  492. };
  493. if ((au1000->ac97_res_port = request_mem_region(CPHYSADDR(AC97C_CONFIG),
  494. 0x100000, "Au1x00 AC97")) == NULL) {
  495. snd_printk(KERN_ERR "ALSA AC97: can't grap AC97 port\n");
  496. return -EBUSY;
  497. }
  498. au1000->ac97_ioport = (struct au1000_ac97_reg *)
  499. KSEG1ADDR(au1000->ac97_res_port->start);
  500. spin_lock_init(&au1000->ac97_lock);
  501. /* configure pins for AC'97
  502. TODO: move to board_setup.c */
  503. au_writel(au_readl(SYS_PINFUNC) & ~0x02, SYS_PINFUNC);
  504. /* Initialise Au1000's AC'97 Control Block */
  505. au1000->ac97_ioport->cntrl = AC97C_RS | AC97C_CE;
  506. udelay(10);
  507. au1000->ac97_ioport->cntrl = AC97C_CE;
  508. udelay(10);
  509. /* Initialise External CODEC -- cold reset */
  510. au1000->ac97_ioport->config = AC97C_RESET;
  511. udelay(10);
  512. au1000->ac97_ioport->config = 0x0;
  513. mdelay(5);
  514. /* Initialise AC97 middle-layer */
  515. if ((err = snd_ac97_bus(au1000->card, 0, &ops, au1000, &pbus)) < 0)
  516. return err;
  517. memset(&ac97, 0, sizeof(ac97));
  518. ac97.private_data = au1000;
  519. if ((err = snd_ac97_mixer(pbus, &ac97, &au1000->ac97)) < 0)
  520. return err;
  521. return 0;
  522. }
  523. /*------------------------------ Setup / Destroy ----------------------------*/
  524. void
  525. snd_au1000_free(struct snd_card *card)
  526. {
  527. struct snd_au1000 *au1000 = card->private_data;
  528. if (au1000->ac97_res_port) {
  529. /* put internal AC97 block into reset */
  530. au1000->ac97_ioport->cntrl = AC97C_RS;
  531. au1000->ac97_ioport = NULL;
  532. release_and_free_resource(au1000->ac97_res_port);
  533. }
  534. if (au1000->stream[PLAYBACK]) {
  535. if (au1000->stream[PLAYBACK]->dma >= 0)
  536. free_au1000_dma(au1000->stream[PLAYBACK]->dma);
  537. kfree(au1000->stream[PLAYBACK]);
  538. }
  539. if (au1000->stream[CAPTURE]) {
  540. if (au1000->stream[CAPTURE]->dma >= 0)
  541. free_au1000_dma(au1000->stream[CAPTURE]->dma);
  542. kfree(au1000->stream[CAPTURE]);
  543. }
  544. }
  545. static struct snd_card *au1000_card;
  546. static int __init
  547. au1000_init(void)
  548. {
  549. int err;
  550. struct snd_card *card;
  551. struct snd_au1000 *au1000;
  552. err = snd_card_create(-1, "AC97", THIS_MODULE,
  553. sizeof(struct snd_au1000), &card);
  554. if (err < 0)
  555. return err;
  556. card->private_free = snd_au1000_free;
  557. au1000 = card->private_data;
  558. au1000->card = card;
  559. au1000->stream[PLAYBACK] = kmalloc(sizeof(struct audio_stream), GFP_KERNEL);
  560. au1000->stream[CAPTURE ] = kmalloc(sizeof(struct audio_stream), GFP_KERNEL);
  561. /* so that snd_au1000_free will work as intended */
  562. au1000->ac97_res_port = NULL;
  563. if (au1000->stream[PLAYBACK])
  564. au1000->stream[PLAYBACK]->dma = -1;
  565. if (au1000->stream[CAPTURE ])
  566. au1000->stream[CAPTURE ]->dma = -1;
  567. if (au1000->stream[PLAYBACK] == NULL ||
  568. au1000->stream[CAPTURE ] == NULL) {
  569. snd_card_free(card);
  570. return -ENOMEM;
  571. }
  572. if ((err = snd_au1000_ac97_new(au1000)) < 0 ) {
  573. snd_card_free(card);
  574. return err;
  575. }
  576. if ((err = snd_au1000_pcm_new(au1000)) < 0) {
  577. snd_card_free(card);
  578. return err;
  579. }
  580. strcpy(card->driver, "Au1000-AC97");
  581. strcpy(card->shortname, "AMD Au1000-AC97");
  582. sprintf(card->longname, "AMD Au1000--AC97 ALSA Driver");
  583. if ((err = snd_card_register(card)) < 0) {
  584. snd_card_free(card);
  585. return err;
  586. }
  587. printk(KERN_INFO "ALSA AC97: Driver Initialized\n");
  588. au1000_card = card;
  589. return 0;
  590. }
  591. static void __exit au1000_exit(void)
  592. {
  593. snd_card_free(au1000_card);
  594. }
  595. module_init(au1000_init);
  596. module_exit(au1000_exit);