device_cgroup.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538
  1. /*
  2. * device_cgroup.c - device cgroup subsystem
  3. *
  4. * Copyright 2007 IBM Corp
  5. */
  6. #include <linux/device_cgroup.h>
  7. #include <linux/cgroup.h>
  8. #include <linux/ctype.h>
  9. #include <linux/list.h>
  10. #include <linux/uaccess.h>
  11. #include <linux/seq_file.h>
  12. #include <linux/slab.h>
  13. #include <linux/rcupdate.h>
  14. #include <linux/mutex.h>
  15. #define ACC_MKNOD 1
  16. #define ACC_READ 2
  17. #define ACC_WRITE 4
  18. #define ACC_MASK (ACC_MKNOD | ACC_READ | ACC_WRITE)
  19. #define DEV_BLOCK 1
  20. #define DEV_CHAR 2
  21. #define DEV_ALL 4 /* this represents all devices */
  22. static DEFINE_MUTEX(devcgroup_mutex);
  23. /*
  24. * whitelist locking rules:
  25. * hold devcgroup_mutex for update/read.
  26. * hold rcu_read_lock() for read.
  27. */
  28. struct dev_whitelist_item {
  29. u32 major, minor;
  30. short type;
  31. short access;
  32. struct list_head list;
  33. struct rcu_head rcu;
  34. };
  35. struct dev_cgroup {
  36. struct cgroup_subsys_state css;
  37. struct list_head whitelist;
  38. };
  39. static inline struct dev_cgroup *css_to_devcgroup(struct cgroup_subsys_state *s)
  40. {
  41. return container_of(s, struct dev_cgroup, css);
  42. }
  43. static inline struct dev_cgroup *cgroup_to_devcgroup(struct cgroup *cgroup)
  44. {
  45. return css_to_devcgroup(cgroup_subsys_state(cgroup, devices_subsys_id));
  46. }
  47. static inline struct dev_cgroup *task_devcgroup(struct task_struct *task)
  48. {
  49. return css_to_devcgroup(task_subsys_state(task, devices_subsys_id));
  50. }
  51. struct cgroup_subsys devices_subsys;
  52. static int devcgroup_can_attach(struct cgroup *new_cgrp,
  53. struct cgroup_taskset *set)
  54. {
  55. struct task_struct *task = cgroup_taskset_first(set);
  56. if (current != task && !capable(CAP_SYS_ADMIN))
  57. return -EPERM;
  58. return 0;
  59. }
  60. /*
  61. * called under devcgroup_mutex
  62. */
  63. static int dev_whitelist_copy(struct list_head *dest, struct list_head *orig)
  64. {
  65. struct dev_whitelist_item *wh, *tmp, *new;
  66. list_for_each_entry(wh, orig, list) {
  67. new = kmemdup(wh, sizeof(*wh), GFP_KERNEL);
  68. if (!new)
  69. goto free_and_exit;
  70. list_add_tail(&new->list, dest);
  71. }
  72. return 0;
  73. free_and_exit:
  74. list_for_each_entry_safe(wh, tmp, dest, list) {
  75. list_del(&wh->list);
  76. kfree(wh);
  77. }
  78. return -ENOMEM;
  79. }
  80. /* Stupid prototype - don't bother combining existing entries */
  81. /*
  82. * called under devcgroup_mutex
  83. */
  84. static int dev_whitelist_add(struct dev_cgroup *dev_cgroup,
  85. struct dev_whitelist_item *wh)
  86. {
  87. struct dev_whitelist_item *whcopy, *walk;
  88. whcopy = kmemdup(wh, sizeof(*wh), GFP_KERNEL);
  89. if (!whcopy)
  90. return -ENOMEM;
  91. list_for_each_entry(walk, &dev_cgroup->whitelist, list) {
  92. if (walk->type != wh->type)
  93. continue;
  94. if (walk->major != wh->major)
  95. continue;
  96. if (walk->minor != wh->minor)
  97. continue;
  98. walk->access |= wh->access;
  99. kfree(whcopy);
  100. whcopy = NULL;
  101. }
  102. if (whcopy != NULL)
  103. list_add_tail_rcu(&whcopy->list, &dev_cgroup->whitelist);
  104. return 0;
  105. }
  106. /*
  107. * called under devcgroup_mutex
  108. */
  109. static void dev_whitelist_rm(struct dev_cgroup *dev_cgroup,
  110. struct dev_whitelist_item *wh)
  111. {
  112. struct dev_whitelist_item *walk, *tmp;
  113. list_for_each_entry_safe(walk, tmp, &dev_cgroup->whitelist, list) {
  114. if (walk->type == DEV_ALL)
  115. goto remove;
  116. if (walk->type != wh->type)
  117. continue;
  118. if (walk->major != ~0 && walk->major != wh->major)
  119. continue;
  120. if (walk->minor != ~0 && walk->minor != wh->minor)
  121. continue;
  122. remove:
  123. walk->access &= ~wh->access;
  124. if (!walk->access) {
  125. list_del_rcu(&walk->list);
  126. kfree_rcu(walk, rcu);
  127. }
  128. }
  129. }
  130. /*
  131. * called from kernel/cgroup.c with cgroup_lock() held.
  132. */
  133. static struct cgroup_subsys_state *devcgroup_create(struct cgroup *cgroup)
  134. {
  135. struct dev_cgroup *dev_cgroup, *parent_dev_cgroup;
  136. struct cgroup *parent_cgroup;
  137. int ret;
  138. dev_cgroup = kzalloc(sizeof(*dev_cgroup), GFP_KERNEL);
  139. if (!dev_cgroup)
  140. return ERR_PTR(-ENOMEM);
  141. INIT_LIST_HEAD(&dev_cgroup->whitelist);
  142. parent_cgroup = cgroup->parent;
  143. if (parent_cgroup == NULL) {
  144. struct dev_whitelist_item *wh;
  145. wh = kmalloc(sizeof(*wh), GFP_KERNEL);
  146. if (!wh) {
  147. kfree(dev_cgroup);
  148. return ERR_PTR(-ENOMEM);
  149. }
  150. wh->minor = wh->major = ~0;
  151. wh->type = DEV_ALL;
  152. wh->access = ACC_MASK;
  153. list_add(&wh->list, &dev_cgroup->whitelist);
  154. } else {
  155. parent_dev_cgroup = cgroup_to_devcgroup(parent_cgroup);
  156. mutex_lock(&devcgroup_mutex);
  157. ret = dev_whitelist_copy(&dev_cgroup->whitelist,
  158. &parent_dev_cgroup->whitelist);
  159. mutex_unlock(&devcgroup_mutex);
  160. if (ret) {
  161. kfree(dev_cgroup);
  162. return ERR_PTR(ret);
  163. }
  164. }
  165. return &dev_cgroup->css;
  166. }
  167. static void devcgroup_destroy(struct cgroup *cgroup)
  168. {
  169. struct dev_cgroup *dev_cgroup;
  170. struct dev_whitelist_item *wh, *tmp;
  171. dev_cgroup = cgroup_to_devcgroup(cgroup);
  172. list_for_each_entry_safe(wh, tmp, &dev_cgroup->whitelist, list) {
  173. list_del(&wh->list);
  174. kfree(wh);
  175. }
  176. kfree(dev_cgroup);
  177. }
  178. #define DEVCG_ALLOW 1
  179. #define DEVCG_DENY 2
  180. #define DEVCG_LIST 3
  181. #define MAJMINLEN 13
  182. #define ACCLEN 4
  183. static void set_access(char *acc, short access)
  184. {
  185. int idx = 0;
  186. memset(acc, 0, ACCLEN);
  187. if (access & ACC_READ)
  188. acc[idx++] = 'r';
  189. if (access & ACC_WRITE)
  190. acc[idx++] = 'w';
  191. if (access & ACC_MKNOD)
  192. acc[idx++] = 'm';
  193. }
  194. static char type_to_char(short type)
  195. {
  196. if (type == DEV_ALL)
  197. return 'a';
  198. if (type == DEV_CHAR)
  199. return 'c';
  200. if (type == DEV_BLOCK)
  201. return 'b';
  202. return 'X';
  203. }
  204. static void set_majmin(char *str, unsigned m)
  205. {
  206. if (m == ~0)
  207. strcpy(str, "*");
  208. else
  209. sprintf(str, "%u", m);
  210. }
  211. static int devcgroup_seq_read(struct cgroup *cgroup, struct cftype *cft,
  212. struct seq_file *m)
  213. {
  214. struct dev_cgroup *devcgroup = cgroup_to_devcgroup(cgroup);
  215. struct dev_whitelist_item *wh;
  216. char maj[MAJMINLEN], min[MAJMINLEN], acc[ACCLEN];
  217. rcu_read_lock();
  218. list_for_each_entry_rcu(wh, &devcgroup->whitelist, list) {
  219. set_access(acc, wh->access);
  220. set_majmin(maj, wh->major);
  221. set_majmin(min, wh->minor);
  222. seq_printf(m, "%c %s:%s %s\n", type_to_char(wh->type),
  223. maj, min, acc);
  224. }
  225. rcu_read_unlock();
  226. return 0;
  227. }
  228. /*
  229. * may_access_whitelist:
  230. * does the access granted to dev_cgroup c contain the access
  231. * requested in whitelist item refwh.
  232. * return 1 if yes, 0 if no.
  233. * call with devcgroup_mutex held
  234. */
  235. static int may_access_whitelist(struct dev_cgroup *c,
  236. struct dev_whitelist_item *refwh)
  237. {
  238. struct dev_whitelist_item *whitem;
  239. list_for_each_entry(whitem, &c->whitelist, list) {
  240. if (whitem->type & DEV_ALL)
  241. return 1;
  242. if ((refwh->type & DEV_BLOCK) && !(whitem->type & DEV_BLOCK))
  243. continue;
  244. if ((refwh->type & DEV_CHAR) && !(whitem->type & DEV_CHAR))
  245. continue;
  246. if (whitem->major != ~0 && whitem->major != refwh->major)
  247. continue;
  248. if (whitem->minor != ~0 && whitem->minor != refwh->minor)
  249. continue;
  250. if (refwh->access & (~whitem->access))
  251. continue;
  252. return 1;
  253. }
  254. return 0;
  255. }
  256. /*
  257. * parent_has_perm:
  258. * when adding a new allow rule to a device whitelist, the rule
  259. * must be allowed in the parent device
  260. */
  261. static int parent_has_perm(struct dev_cgroup *childcg,
  262. struct dev_whitelist_item *wh)
  263. {
  264. struct cgroup *pcg = childcg->css.cgroup->parent;
  265. struct dev_cgroup *parent;
  266. if (!pcg)
  267. return 1;
  268. parent = cgroup_to_devcgroup(pcg);
  269. return may_access_whitelist(parent, wh);
  270. }
  271. /*
  272. * Modify the whitelist using allow/deny rules.
  273. * CAP_SYS_ADMIN is needed for this. It's at least separate from CAP_MKNOD
  274. * so we can give a container CAP_MKNOD to let it create devices but not
  275. * modify the whitelist.
  276. * It seems likely we'll want to add a CAP_CONTAINER capability to allow
  277. * us to also grant CAP_SYS_ADMIN to containers without giving away the
  278. * device whitelist controls, but for now we'll stick with CAP_SYS_ADMIN
  279. *
  280. * Taking rules away is always allowed (given CAP_SYS_ADMIN). Granting
  281. * new access is only allowed if you're in the top-level cgroup, or your
  282. * parent cgroup has the access you're asking for.
  283. */
  284. static int devcgroup_update_access(struct dev_cgroup *devcgroup,
  285. int filetype, const char *buffer)
  286. {
  287. const char *b;
  288. char *endp;
  289. int count;
  290. struct dev_whitelist_item wh;
  291. if (!capable(CAP_SYS_ADMIN))
  292. return -EPERM;
  293. memset(&wh, 0, sizeof(wh));
  294. b = buffer;
  295. switch (*b) {
  296. case 'a':
  297. wh.type = DEV_ALL;
  298. wh.access = ACC_MASK;
  299. wh.major = ~0;
  300. wh.minor = ~0;
  301. goto handle;
  302. case 'b':
  303. wh.type = DEV_BLOCK;
  304. break;
  305. case 'c':
  306. wh.type = DEV_CHAR;
  307. break;
  308. default:
  309. return -EINVAL;
  310. }
  311. b++;
  312. if (!isspace(*b))
  313. return -EINVAL;
  314. b++;
  315. if (*b == '*') {
  316. wh.major = ~0;
  317. b++;
  318. } else if (isdigit(*b)) {
  319. wh.major = simple_strtoul(b, &endp, 10);
  320. b = endp;
  321. } else {
  322. return -EINVAL;
  323. }
  324. if (*b != ':')
  325. return -EINVAL;
  326. b++;
  327. /* read minor */
  328. if (*b == '*') {
  329. wh.minor = ~0;
  330. b++;
  331. } else if (isdigit(*b)) {
  332. wh.minor = simple_strtoul(b, &endp, 10);
  333. b = endp;
  334. } else {
  335. return -EINVAL;
  336. }
  337. if (!isspace(*b))
  338. return -EINVAL;
  339. for (b++, count = 0; count < 3; count++, b++) {
  340. switch (*b) {
  341. case 'r':
  342. wh.access |= ACC_READ;
  343. break;
  344. case 'w':
  345. wh.access |= ACC_WRITE;
  346. break;
  347. case 'm':
  348. wh.access |= ACC_MKNOD;
  349. break;
  350. case '\n':
  351. case '\0':
  352. count = 3;
  353. break;
  354. default:
  355. return -EINVAL;
  356. }
  357. }
  358. handle:
  359. switch (filetype) {
  360. case DEVCG_ALLOW:
  361. if (!parent_has_perm(devcgroup, &wh))
  362. return -EPERM;
  363. return dev_whitelist_add(devcgroup, &wh);
  364. case DEVCG_DENY:
  365. dev_whitelist_rm(devcgroup, &wh);
  366. break;
  367. default:
  368. return -EINVAL;
  369. }
  370. return 0;
  371. }
  372. static int devcgroup_access_write(struct cgroup *cgrp, struct cftype *cft,
  373. const char *buffer)
  374. {
  375. int retval;
  376. mutex_lock(&devcgroup_mutex);
  377. retval = devcgroup_update_access(cgroup_to_devcgroup(cgrp),
  378. cft->private, buffer);
  379. mutex_unlock(&devcgroup_mutex);
  380. return retval;
  381. }
  382. static struct cftype dev_cgroup_files[] = {
  383. {
  384. .name = "allow",
  385. .write_string = devcgroup_access_write,
  386. .private = DEVCG_ALLOW,
  387. },
  388. {
  389. .name = "deny",
  390. .write_string = devcgroup_access_write,
  391. .private = DEVCG_DENY,
  392. },
  393. {
  394. .name = "list",
  395. .read_seq_string = devcgroup_seq_read,
  396. .private = DEVCG_LIST,
  397. },
  398. };
  399. static int devcgroup_populate(struct cgroup_subsys *ss,
  400. struct cgroup *cgroup)
  401. {
  402. return cgroup_add_files(cgroup, ss, dev_cgroup_files,
  403. ARRAY_SIZE(dev_cgroup_files));
  404. }
  405. struct cgroup_subsys devices_subsys = {
  406. .name = "devices",
  407. .can_attach = devcgroup_can_attach,
  408. .create = devcgroup_create,
  409. .destroy = devcgroup_destroy,
  410. .populate = devcgroup_populate,
  411. .subsys_id = devices_subsys_id,
  412. };
  413. int __devcgroup_inode_permission(struct inode *inode, int mask)
  414. {
  415. struct dev_cgroup *dev_cgroup;
  416. struct dev_whitelist_item *wh;
  417. rcu_read_lock();
  418. dev_cgroup = task_devcgroup(current);
  419. list_for_each_entry_rcu(wh, &dev_cgroup->whitelist, list) {
  420. if (wh->type & DEV_ALL)
  421. goto found;
  422. if ((wh->type & DEV_BLOCK) && !S_ISBLK(inode->i_mode))
  423. continue;
  424. if ((wh->type & DEV_CHAR) && !S_ISCHR(inode->i_mode))
  425. continue;
  426. if (wh->major != ~0 && wh->major != imajor(inode))
  427. continue;
  428. if (wh->minor != ~0 && wh->minor != iminor(inode))
  429. continue;
  430. if ((mask & MAY_WRITE) && !(wh->access & ACC_WRITE))
  431. continue;
  432. if ((mask & MAY_READ) && !(wh->access & ACC_READ))
  433. continue;
  434. found:
  435. rcu_read_unlock();
  436. return 0;
  437. }
  438. rcu_read_unlock();
  439. return -EPERM;
  440. }
  441. int devcgroup_inode_mknod(int mode, dev_t dev)
  442. {
  443. struct dev_cgroup *dev_cgroup;
  444. struct dev_whitelist_item *wh;
  445. if (!S_ISBLK(mode) && !S_ISCHR(mode))
  446. return 0;
  447. rcu_read_lock();
  448. dev_cgroup = task_devcgroup(current);
  449. list_for_each_entry_rcu(wh, &dev_cgroup->whitelist, list) {
  450. if (wh->type & DEV_ALL)
  451. goto found;
  452. if ((wh->type & DEV_BLOCK) && !S_ISBLK(mode))
  453. continue;
  454. if ((wh->type & DEV_CHAR) && !S_ISCHR(mode))
  455. continue;
  456. if (wh->major != ~0 && wh->major != MAJOR(dev))
  457. continue;
  458. if (wh->minor != ~0 && wh->minor != MINOR(dev))
  459. continue;
  460. if (!(wh->access & ACC_MKNOD))
  461. continue;
  462. found:
  463. rcu_read_unlock();
  464. return 0;
  465. }
  466. rcu_read_unlock();
  467. return -EPERM;
  468. }