slub.c 130 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/kmemcheck.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpuset.h>
  23. #include <linux/mempolicy.h>
  24. #include <linux/ctype.h>
  25. #include <linux/debugobjects.h>
  26. #include <linux/kallsyms.h>
  27. #include <linux/memory.h>
  28. #include <linux/math64.h>
  29. #include <linux/fault-inject.h>
  30. #include <linux/stacktrace.h>
  31. #include <linux/prefetch.h>
  32. #include <trace/events/kmem.h>
  33. #ifdef CONFIG_SEC_DEBUG_DOUBLE_FREE
  34. #include <mach/sec_debug.h>
  35. #endif
  36. /*
  37. * Lock order:
  38. * 1. slub_lock (Global Semaphore)
  39. * 2. node->list_lock
  40. * 3. slab_lock(page) (Only on some arches and for debugging)
  41. *
  42. * slub_lock
  43. *
  44. * The role of the slub_lock is to protect the list of all the slabs
  45. * and to synchronize major metadata changes to slab cache structures.
  46. *
  47. * The slab_lock is only used for debugging and on arches that do not
  48. * have the ability to do a cmpxchg_double. It only protects the second
  49. * double word in the page struct. Meaning
  50. * A. page->freelist -> List of object free in a page
  51. * B. page->counters -> Counters of objects
  52. * C. page->frozen -> frozen state
  53. *
  54. * If a slab is frozen then it is exempt from list management. It is not
  55. * on any list. The processor that froze the slab is the one who can
  56. * perform list operations on the page. Other processors may put objects
  57. * onto the freelist but the processor that froze the slab is the only
  58. * one that can retrieve the objects from the page's freelist.
  59. *
  60. * The list_lock protects the partial and full list on each node and
  61. * the partial slab counter. If taken then no new slabs may be added or
  62. * removed from the lists nor make the number of partial slabs be modified.
  63. * (Note that the total number of slabs is an atomic value that may be
  64. * modified without taking the list lock).
  65. *
  66. * The list_lock is a centralized lock and thus we avoid taking it as
  67. * much as possible. As long as SLUB does not have to handle partial
  68. * slabs, operations can continue without any centralized lock. F.e.
  69. * allocating a long series of objects that fill up slabs does not require
  70. * the list lock.
  71. * Interrupts are disabled during allocation and deallocation in order to
  72. * make the slab allocator safe to use in the context of an irq. In addition
  73. * interrupts are disabled to ensure that the processor does not change
  74. * while handling per_cpu slabs, due to kernel preemption.
  75. *
  76. * SLUB assigns one slab for allocation to each processor.
  77. * Allocations only occur from these slabs called cpu slabs.
  78. *
  79. * Slabs with free elements are kept on a partial list and during regular
  80. * operations no list for full slabs is used. If an object in a full slab is
  81. * freed then the slab will show up again on the partial lists.
  82. * We track full slabs for debugging purposes though because otherwise we
  83. * cannot scan all objects.
  84. *
  85. * Slabs are freed when they become empty. Teardown and setup is
  86. * minimal so we rely on the page allocators per cpu caches for
  87. * fast frees and allocs.
  88. *
  89. * Overloading of page flags that are otherwise used for LRU management.
  90. *
  91. * PageActive The slab is frozen and exempt from list processing.
  92. * This means that the slab is dedicated to a purpose
  93. * such as satisfying allocations for a specific
  94. * processor. Objects may be freed in the slab while
  95. * it is frozen but slab_free will then skip the usual
  96. * list operations. It is up to the processor holding
  97. * the slab to integrate the slab into the slab lists
  98. * when the slab is no longer needed.
  99. *
  100. * One use of this flag is to mark slabs that are
  101. * used for allocations. Then such a slab becomes a cpu
  102. * slab. The cpu slab may be equipped with an additional
  103. * freelist that allows lockless access to
  104. * free objects in addition to the regular freelist
  105. * that requires the slab lock.
  106. *
  107. * PageError Slab requires special handling due to debug
  108. * options set. This moves slab handling out of
  109. * the fast path and disables lockless freelists.
  110. */
  111. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  112. SLAB_TRACE | SLAB_DEBUG_FREE)
  113. static inline int kmem_cache_debug(struct kmem_cache *s)
  114. {
  115. #ifdef CONFIG_SLUB_DEBUG
  116. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  117. #else
  118. return 0;
  119. #endif
  120. }
  121. /*
  122. * Issues still to be resolved:
  123. *
  124. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  125. *
  126. * - Variable sizing of the per node arrays
  127. */
  128. /* Enable to test recovery from slab corruption on boot */
  129. #undef SLUB_RESILIENCY_TEST
  130. /* Enable to log cmpxchg failures */
  131. #undef SLUB_DEBUG_CMPXCHG
  132. /*
  133. * Mininum number of partial slabs. These will be left on the partial
  134. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  135. */
  136. #define MIN_PARTIAL 5
  137. /*
  138. * Maximum number of desirable partial slabs.
  139. * The existence of more partial slabs makes kmem_cache_shrink
  140. * sort the partial list by the number of objects in the.
  141. */
  142. #define MAX_PARTIAL 10
  143. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  144. SLAB_POISON | SLAB_STORE_USER)
  145. /*
  146. * Debugging flags that require metadata to be stored in the slab. These get
  147. * disabled when slub_debug=O is used and a cache's min order increases with
  148. * metadata.
  149. */
  150. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  151. /*
  152. * Set of flags that will prevent slab merging
  153. */
  154. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  155. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  156. SLAB_FAILSLAB)
  157. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  158. SLAB_CACHE_DMA | SLAB_NOTRACK)
  159. #define OO_SHIFT 16
  160. #define OO_MASK ((1 << OO_SHIFT) - 1)
  161. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  162. /* Internal SLUB flags */
  163. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  164. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  165. static int kmem_size = sizeof(struct kmem_cache);
  166. #ifdef CONFIG_SMP
  167. static struct notifier_block slab_notifier;
  168. #endif
  169. static enum {
  170. DOWN, /* No slab functionality available */
  171. PARTIAL, /* Kmem_cache_node works */
  172. UP, /* Everything works but does not show up in sysfs */
  173. SYSFS /* Sysfs up */
  174. } slab_state = DOWN;
  175. /* A list of all slab caches on the system */
  176. static DECLARE_RWSEM(slub_lock);
  177. static LIST_HEAD(slab_caches);
  178. /*
  179. * Tracking user of a slab.
  180. */
  181. #define TRACK_ADDRS_COUNT 16
  182. struct track {
  183. unsigned long addr; /* Called from address */
  184. #ifdef CONFIG_STACKTRACE
  185. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  186. #endif
  187. int cpu; /* Was running on cpu */
  188. int pid; /* Pid context */
  189. unsigned long when; /* When did the operation occur */
  190. };
  191. enum track_item { TRACK_ALLOC, TRACK_FREE };
  192. #ifdef CONFIG_SYSFS
  193. static int sysfs_slab_add(struct kmem_cache *);
  194. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  195. static void sysfs_slab_remove(struct kmem_cache *);
  196. #else
  197. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  198. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  199. { return 0; }
  200. static inline void sysfs_slab_remove(struct kmem_cache *s)
  201. {
  202. kfree(s->name);
  203. kfree(s);
  204. }
  205. #endif
  206. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  207. {
  208. #ifdef CONFIG_SLUB_STATS
  209. __this_cpu_inc(s->cpu_slab->stat[si]);
  210. #endif
  211. }
  212. /********************************************************************
  213. * Core slab cache functions
  214. *******************************************************************/
  215. int slab_is_available(void)
  216. {
  217. return slab_state >= UP;
  218. }
  219. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  220. {
  221. return s->node[node];
  222. }
  223. /* Verify that a pointer has an address that is valid within a slab page */
  224. static inline int check_valid_pointer(struct kmem_cache *s,
  225. struct page *page, const void *object)
  226. {
  227. void *base;
  228. if (!object)
  229. return 1;
  230. base = page_address(page);
  231. if (object < base || object >= base + page->objects * s->size ||
  232. (object - base) % s->size) {
  233. return 0;
  234. }
  235. return 1;
  236. }
  237. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  238. {
  239. return *(void **)(object + s->offset);
  240. }
  241. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  242. {
  243. prefetch(object + s->offset);
  244. }
  245. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  246. {
  247. void *p;
  248. #ifdef CONFIG_DEBUG_PAGEALLOC
  249. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  250. #else
  251. p = get_freepointer(s, object);
  252. #endif
  253. return p;
  254. }
  255. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  256. {
  257. *(void **)(object + s->offset) = fp;
  258. }
  259. /* Loop over all objects in a slab */
  260. #define for_each_object(__p, __s, __addr, __objects) \
  261. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  262. __p += (__s)->size)
  263. /* Determine object index from a given position */
  264. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  265. {
  266. return (p - addr) / s->size;
  267. }
  268. static inline size_t slab_ksize(const struct kmem_cache *s)
  269. {
  270. #ifdef CONFIG_SLUB_DEBUG
  271. /*
  272. * Debugging requires use of the padding between object
  273. * and whatever may come after it.
  274. */
  275. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  276. return s->objsize;
  277. #endif
  278. /*
  279. * If we have the need to store the freelist pointer
  280. * back there or track user information then we can
  281. * only use the space before that information.
  282. */
  283. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  284. return s->inuse;
  285. /*
  286. * Else we can use all the padding etc for the allocation
  287. */
  288. return s->size;
  289. }
  290. static inline int order_objects(int order, unsigned long size, int reserved)
  291. {
  292. return ((PAGE_SIZE << order) - reserved) / size;
  293. }
  294. static inline struct kmem_cache_order_objects oo_make(int order,
  295. unsigned long size, int reserved)
  296. {
  297. struct kmem_cache_order_objects x = {
  298. (order << OO_SHIFT) + order_objects(order, size, reserved)
  299. };
  300. return x;
  301. }
  302. static inline int oo_order(struct kmem_cache_order_objects x)
  303. {
  304. return x.x >> OO_SHIFT;
  305. }
  306. static inline int oo_objects(struct kmem_cache_order_objects x)
  307. {
  308. return x.x & OO_MASK;
  309. }
  310. /*
  311. * Per slab locking using the pagelock
  312. */
  313. static __always_inline void slab_lock(struct page *page)
  314. {
  315. bit_spin_lock(PG_locked, &page->flags);
  316. }
  317. static __always_inline void slab_unlock(struct page *page)
  318. {
  319. __bit_spin_unlock(PG_locked, &page->flags);
  320. }
  321. /* Interrupts must be disabled (for the fallback code to work right) */
  322. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  323. void *freelist_old, unsigned long counters_old,
  324. void *freelist_new, unsigned long counters_new,
  325. const char *n)
  326. {
  327. VM_BUG_ON(!irqs_disabled());
  328. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  329. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  330. if (s->flags & __CMPXCHG_DOUBLE) {
  331. if (cmpxchg_double(&page->freelist, &page->counters,
  332. freelist_old, counters_old,
  333. freelist_new, counters_new))
  334. return 1;
  335. } else
  336. #endif
  337. {
  338. slab_lock(page);
  339. if (page->freelist == freelist_old && page->counters == counters_old) {
  340. page->freelist = freelist_new;
  341. page->counters = counters_new;
  342. slab_unlock(page);
  343. return 1;
  344. }
  345. slab_unlock(page);
  346. }
  347. cpu_relax();
  348. stat(s, CMPXCHG_DOUBLE_FAIL);
  349. #ifdef SLUB_DEBUG_CMPXCHG
  350. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  351. #endif
  352. return 0;
  353. }
  354. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  355. void *freelist_old, unsigned long counters_old,
  356. void *freelist_new, unsigned long counters_new,
  357. const char *n)
  358. {
  359. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  360. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  361. if (s->flags & __CMPXCHG_DOUBLE) {
  362. if (cmpxchg_double(&page->freelist, &page->counters,
  363. freelist_old, counters_old,
  364. freelist_new, counters_new))
  365. return 1;
  366. } else
  367. #endif
  368. {
  369. unsigned long flags;
  370. local_irq_save(flags);
  371. slab_lock(page);
  372. if (page->freelist == freelist_old && page->counters == counters_old) {
  373. page->freelist = freelist_new;
  374. page->counters = counters_new;
  375. slab_unlock(page);
  376. local_irq_restore(flags);
  377. return 1;
  378. }
  379. slab_unlock(page);
  380. local_irq_restore(flags);
  381. }
  382. cpu_relax();
  383. stat(s, CMPXCHG_DOUBLE_FAIL);
  384. #ifdef SLUB_DEBUG_CMPXCHG
  385. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  386. #endif
  387. return 0;
  388. }
  389. #ifdef CONFIG_SLUB_DEBUG
  390. /*
  391. * Determine a map of object in use on a page.
  392. *
  393. * Node listlock must be held to guarantee that the page does
  394. * not vanish from under us.
  395. */
  396. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  397. {
  398. void *p;
  399. void *addr = page_address(page);
  400. for (p = page->freelist; p; p = get_freepointer(s, p))
  401. set_bit(slab_index(p, s, addr), map);
  402. }
  403. /*
  404. * Debug settings:
  405. */
  406. #ifdef CONFIG_SLUB_DEBUG_ON
  407. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  408. #else
  409. static int slub_debug;
  410. #endif
  411. static char *slub_debug_slabs;
  412. static int disable_higher_order_debug;
  413. /*
  414. * Object debugging
  415. */
  416. static void print_section(char *text, u8 *addr, unsigned int length)
  417. {
  418. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  419. length, 1);
  420. }
  421. static struct track *get_track(struct kmem_cache *s, void *object,
  422. enum track_item alloc)
  423. {
  424. struct track *p;
  425. if (s->offset)
  426. p = object + s->offset + sizeof(void *);
  427. else
  428. p = object + s->inuse;
  429. return p + alloc;
  430. }
  431. static void set_track(struct kmem_cache *s, void *object,
  432. enum track_item alloc, unsigned long addr)
  433. {
  434. struct track *p = get_track(s, object, alloc);
  435. if (addr) {
  436. #ifdef CONFIG_STACKTRACE
  437. struct stack_trace trace;
  438. int i;
  439. trace.nr_entries = 0;
  440. trace.max_entries = TRACK_ADDRS_COUNT;
  441. trace.entries = p->addrs;
  442. trace.skip = 3;
  443. save_stack_trace(&trace);
  444. /* See rant in lockdep.c */
  445. if (trace.nr_entries != 0 &&
  446. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  447. trace.nr_entries--;
  448. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  449. p->addrs[i] = 0;
  450. #endif
  451. p->addr = addr;
  452. p->cpu = smp_processor_id();
  453. p->pid = current->pid;
  454. p->when = jiffies;
  455. } else
  456. memset(p, 0, sizeof(struct track));
  457. }
  458. static void init_tracking(struct kmem_cache *s, void *object)
  459. {
  460. if (!(s->flags & SLAB_STORE_USER))
  461. return;
  462. set_track(s, object, TRACK_FREE, 0UL);
  463. set_track(s, object, TRACK_ALLOC, 0UL);
  464. }
  465. static void print_track(const char *s, struct track *t)
  466. {
  467. if (!t->addr)
  468. return;
  469. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  470. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  471. #ifdef CONFIG_STACKTRACE
  472. {
  473. int i;
  474. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  475. if (t->addrs[i])
  476. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  477. else
  478. break;
  479. }
  480. #endif
  481. }
  482. static void print_tracking(struct kmem_cache *s, void *object)
  483. {
  484. if (!(s->flags & SLAB_STORE_USER))
  485. return;
  486. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  487. print_track("Freed", get_track(s, object, TRACK_FREE));
  488. }
  489. static void print_page_info(struct page *page)
  490. {
  491. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  492. page, page->objects, page->inuse, page->freelist, page->flags);
  493. }
  494. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  495. {
  496. va_list args;
  497. char buf[100];
  498. va_start(args, fmt);
  499. vsnprintf(buf, sizeof(buf), fmt, args);
  500. va_end(args);
  501. printk(KERN_ERR "========================================"
  502. "=====================================\n");
  503. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  504. printk(KERN_ERR "----------------------------------------"
  505. "-------------------------------------\n\n");
  506. }
  507. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  508. {
  509. va_list args;
  510. char buf[100];
  511. va_start(args, fmt);
  512. vsnprintf(buf, sizeof(buf), fmt, args);
  513. va_end(args);
  514. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  515. }
  516. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  517. {
  518. unsigned int off; /* Offset of last byte */
  519. u8 *addr = page_address(page);
  520. print_tracking(s, p);
  521. print_page_info(page);
  522. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  523. p, p - addr, get_freepointer(s, p));
  524. if (p > addr + 16)
  525. print_section("Bytes b4 ", p - 16, 16);
  526. print_section("Object ", p, min_t(unsigned long, s->objsize,
  527. PAGE_SIZE));
  528. if (s->flags & SLAB_RED_ZONE)
  529. print_section("Redzone ", p + s->objsize,
  530. s->inuse - s->objsize);
  531. if (s->offset)
  532. off = s->offset + sizeof(void *);
  533. else
  534. off = s->inuse;
  535. if (s->flags & SLAB_STORE_USER)
  536. off += 2 * sizeof(struct track);
  537. if (off != s->size)
  538. /* Beginning of the filler is the free pointer */
  539. print_section("Padding ", p + off, s->size - off);
  540. dump_stack();
  541. }
  542. static void object_err(struct kmem_cache *s, struct page *page,
  543. u8 *object, char *reason)
  544. {
  545. slab_bug(s, "%s", reason);
  546. print_trailer(s, page, object);
  547. }
  548. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  549. {
  550. va_list args;
  551. char buf[100];
  552. va_start(args, fmt);
  553. vsnprintf(buf, sizeof(buf), fmt, args);
  554. va_end(args);
  555. slab_bug(s, "%s", buf);
  556. print_page_info(page);
  557. dump_stack();
  558. }
  559. static void init_object(struct kmem_cache *s, void *object, u8 val)
  560. {
  561. u8 *p = object;
  562. if (s->flags & __OBJECT_POISON) {
  563. memset(p, POISON_FREE, s->objsize - 1);
  564. p[s->objsize - 1] = POISON_END;
  565. }
  566. if (s->flags & SLAB_RED_ZONE)
  567. memset(p + s->objsize, val, s->inuse - s->objsize);
  568. }
  569. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  570. void *from, void *to)
  571. {
  572. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  573. memset(from, data, to - from);
  574. }
  575. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  576. u8 *object, char *what,
  577. u8 *start, unsigned int value, unsigned int bytes)
  578. {
  579. u8 *fault;
  580. u8 *end;
  581. fault = memchr_inv(start, value, bytes);
  582. if (!fault)
  583. return 1;
  584. end = start + bytes;
  585. while (end > fault && end[-1] == value)
  586. end--;
  587. slab_bug(s, "%s overwritten", what);
  588. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  589. fault, end - 1, fault[0], value);
  590. print_trailer(s, page, object);
  591. restore_bytes(s, what, value, fault, end);
  592. return 0;
  593. }
  594. /*
  595. * Object layout:
  596. *
  597. * object address
  598. * Bytes of the object to be managed.
  599. * If the freepointer may overlay the object then the free
  600. * pointer is the first word of the object.
  601. *
  602. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  603. * 0xa5 (POISON_END)
  604. *
  605. * object + s->objsize
  606. * Padding to reach word boundary. This is also used for Redzoning.
  607. * Padding is extended by another word if Redzoning is enabled and
  608. * objsize == inuse.
  609. *
  610. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  611. * 0xcc (RED_ACTIVE) for objects in use.
  612. *
  613. * object + s->inuse
  614. * Meta data starts here.
  615. *
  616. * A. Free pointer (if we cannot overwrite object on free)
  617. * B. Tracking data for SLAB_STORE_USER
  618. * C. Padding to reach required alignment boundary or at mininum
  619. * one word if debugging is on to be able to detect writes
  620. * before the word boundary.
  621. *
  622. * Padding is done using 0x5a (POISON_INUSE)
  623. *
  624. * object + s->size
  625. * Nothing is used beyond s->size.
  626. *
  627. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  628. * ignored. And therefore no slab options that rely on these boundaries
  629. * may be used with merged slabcaches.
  630. */
  631. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  632. {
  633. unsigned long off = s->inuse; /* The end of info */
  634. if (s->offset)
  635. /* Freepointer is placed after the object. */
  636. off += sizeof(void *);
  637. if (s->flags & SLAB_STORE_USER)
  638. /* We also have user information there */
  639. off += 2 * sizeof(struct track);
  640. if (s->size == off)
  641. return 1;
  642. return check_bytes_and_report(s, page, p, "Object padding",
  643. p + off, POISON_INUSE, s->size - off);
  644. }
  645. /* Check the pad bytes at the end of a slab page */
  646. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  647. {
  648. u8 *start;
  649. u8 *fault;
  650. u8 *end;
  651. int length;
  652. int remainder;
  653. if (!(s->flags & SLAB_POISON))
  654. return 1;
  655. start = page_address(page);
  656. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  657. end = start + length;
  658. remainder = length % s->size;
  659. if (!remainder)
  660. return 1;
  661. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  662. if (!fault)
  663. return 1;
  664. while (end > fault && end[-1] == POISON_INUSE)
  665. end--;
  666. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  667. print_section("Padding ", end - remainder, remainder);
  668. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  669. return 0;
  670. }
  671. static int check_object(struct kmem_cache *s, struct page *page,
  672. void *object, u8 val)
  673. {
  674. u8 *p = object;
  675. u8 *endobject = object + s->objsize;
  676. if (s->flags & SLAB_RED_ZONE) {
  677. if (!check_bytes_and_report(s, page, object, "Redzone",
  678. endobject, val, s->inuse - s->objsize))
  679. return 0;
  680. } else {
  681. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  682. check_bytes_and_report(s, page, p, "Alignment padding",
  683. endobject, POISON_INUSE, s->inuse - s->objsize);
  684. }
  685. }
  686. if (s->flags & SLAB_POISON) {
  687. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  688. (!check_bytes_and_report(s, page, p, "Poison", p,
  689. POISON_FREE, s->objsize - 1) ||
  690. !check_bytes_and_report(s, page, p, "Poison",
  691. p + s->objsize - 1, POISON_END, 1)))
  692. return 0;
  693. /*
  694. * check_pad_bytes cleans up on its own.
  695. */
  696. check_pad_bytes(s, page, p);
  697. }
  698. if (!s->offset && val == SLUB_RED_ACTIVE)
  699. /*
  700. * Object and freepointer overlap. Cannot check
  701. * freepointer while object is allocated.
  702. */
  703. return 1;
  704. /* Check free pointer validity */
  705. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  706. object_err(s, page, p, "Freepointer corrupt");
  707. /*
  708. * No choice but to zap it and thus lose the remainder
  709. * of the free objects in this slab. May cause
  710. * another error because the object count is now wrong.
  711. */
  712. set_freepointer(s, p, NULL);
  713. return 0;
  714. }
  715. return 1;
  716. }
  717. static int check_slab(struct kmem_cache *s, struct page *page)
  718. {
  719. int maxobj;
  720. VM_BUG_ON(!irqs_disabled());
  721. if (!PageSlab(page)) {
  722. slab_err(s, page, "Not a valid slab page");
  723. return 0;
  724. }
  725. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  726. if (page->objects > maxobj) {
  727. slab_err(s, page, "objects %u > max %u",
  728. s->name, page->objects, maxobj);
  729. return 0;
  730. }
  731. if (page->inuse > page->objects) {
  732. slab_err(s, page, "inuse %u > max %u",
  733. s->name, page->inuse, page->objects);
  734. return 0;
  735. }
  736. /* Slab_pad_check fixes things up after itself */
  737. slab_pad_check(s, page);
  738. return 1;
  739. }
  740. /*
  741. * Determine if a certain object on a page is on the freelist. Must hold the
  742. * slab lock to guarantee that the chains are in a consistent state.
  743. */
  744. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  745. {
  746. int nr = 0;
  747. void *fp;
  748. void *object = NULL;
  749. unsigned long max_objects;
  750. fp = page->freelist;
  751. while (fp && nr <= page->objects) {
  752. if (fp == search)
  753. return 1;
  754. if (!check_valid_pointer(s, page, fp)) {
  755. if (object) {
  756. object_err(s, page, object,
  757. "Freechain corrupt");
  758. set_freepointer(s, object, NULL);
  759. break;
  760. } else {
  761. slab_err(s, page, "Freepointer corrupt");
  762. page->freelist = NULL;
  763. page->inuse = page->objects;
  764. slab_fix(s, "Freelist cleared");
  765. return 0;
  766. }
  767. break;
  768. }
  769. object = fp;
  770. fp = get_freepointer(s, object);
  771. nr++;
  772. }
  773. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  774. if (max_objects > MAX_OBJS_PER_PAGE)
  775. max_objects = MAX_OBJS_PER_PAGE;
  776. if (page->objects != max_objects) {
  777. slab_err(s, page, "Wrong number of objects. Found %d but "
  778. "should be %d", page->objects, max_objects);
  779. page->objects = max_objects;
  780. slab_fix(s, "Number of objects adjusted.");
  781. }
  782. if (page->inuse != page->objects - nr) {
  783. slab_err(s, page, "Wrong object count. Counter is %d but "
  784. "counted were %d", page->inuse, page->objects - nr);
  785. page->inuse = page->objects - nr;
  786. slab_fix(s, "Object count adjusted.");
  787. }
  788. return search == NULL;
  789. }
  790. static void trace(struct kmem_cache *s, struct page *page, void *object,
  791. int alloc)
  792. {
  793. if (s->flags & SLAB_TRACE) {
  794. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  795. s->name,
  796. alloc ? "alloc" : "free",
  797. object, page->inuse,
  798. page->freelist);
  799. if (!alloc)
  800. print_section("Object ", (void *)object, s->objsize);
  801. dump_stack();
  802. }
  803. }
  804. /*
  805. * Hooks for other subsystems that check memory allocations. In a typical
  806. * production configuration these hooks all should produce no code at all.
  807. */
  808. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  809. {
  810. flags &= gfp_allowed_mask;
  811. lockdep_trace_alloc(flags);
  812. might_sleep_if(flags & __GFP_WAIT);
  813. return should_failslab(s->objsize, flags, s->flags);
  814. }
  815. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  816. {
  817. flags &= gfp_allowed_mask;
  818. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  819. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
  820. }
  821. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  822. {
  823. kmemleak_free_recursive(x, s->flags);
  824. /*
  825. * Trouble is that we may no longer disable interupts in the fast path
  826. * So in order to make the debug calls that expect irqs to be
  827. * disabled we need to disable interrupts temporarily.
  828. */
  829. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  830. {
  831. unsigned long flags;
  832. local_irq_save(flags);
  833. kmemcheck_slab_free(s, x, s->objsize);
  834. debug_check_no_locks_freed(x, s->objsize);
  835. local_irq_restore(flags);
  836. }
  837. #endif
  838. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  839. debug_check_no_obj_freed(x, s->objsize);
  840. }
  841. /*
  842. * Tracking of fully allocated slabs for debugging purposes.
  843. *
  844. * list_lock must be held.
  845. */
  846. static void add_full(struct kmem_cache *s,
  847. struct kmem_cache_node *n, struct page *page)
  848. {
  849. if (!(s->flags & SLAB_STORE_USER))
  850. return;
  851. list_add(&page->lru, &n->full);
  852. }
  853. /*
  854. * list_lock must be held.
  855. */
  856. static void remove_full(struct kmem_cache *s, struct page *page)
  857. {
  858. if (!(s->flags & SLAB_STORE_USER))
  859. return;
  860. list_del(&page->lru);
  861. }
  862. /* Tracking of the number of slabs for debugging purposes */
  863. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  864. {
  865. struct kmem_cache_node *n = get_node(s, node);
  866. return atomic_long_read(&n->nr_slabs);
  867. }
  868. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  869. {
  870. return atomic_long_read(&n->nr_slabs);
  871. }
  872. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  873. {
  874. struct kmem_cache_node *n = get_node(s, node);
  875. /*
  876. * May be called early in order to allocate a slab for the
  877. * kmem_cache_node structure. Solve the chicken-egg
  878. * dilemma by deferring the increment of the count during
  879. * bootstrap (see early_kmem_cache_node_alloc).
  880. */
  881. if (n) {
  882. atomic_long_inc(&n->nr_slabs);
  883. atomic_long_add(objects, &n->total_objects);
  884. }
  885. }
  886. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  887. {
  888. struct kmem_cache_node *n = get_node(s, node);
  889. atomic_long_dec(&n->nr_slabs);
  890. atomic_long_sub(objects, &n->total_objects);
  891. }
  892. /* Object debug checks for alloc/free paths */
  893. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  894. void *object)
  895. {
  896. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  897. return;
  898. init_object(s, object, SLUB_RED_INACTIVE);
  899. init_tracking(s, object);
  900. }
  901. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  902. void *object, unsigned long addr)
  903. {
  904. if (!check_slab(s, page))
  905. goto bad;
  906. if (!check_valid_pointer(s, page, object)) {
  907. object_err(s, page, object, "Freelist Pointer check fails");
  908. goto bad;
  909. }
  910. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  911. goto bad;
  912. /* Success perform special debug activities for allocs */
  913. if (s->flags & SLAB_STORE_USER)
  914. set_track(s, object, TRACK_ALLOC, addr);
  915. trace(s, page, object, 1);
  916. init_object(s, object, SLUB_RED_ACTIVE);
  917. return 1;
  918. bad:
  919. if (PageSlab(page)) {
  920. /*
  921. * If this is a slab page then lets do the best we can
  922. * to avoid issues in the future. Marking all objects
  923. * as used avoids touching the remaining objects.
  924. */
  925. slab_fix(s, "Marking all objects used");
  926. page->inuse = page->objects;
  927. page->freelist = NULL;
  928. }
  929. return 0;
  930. }
  931. static noinline int free_debug_processing(struct kmem_cache *s,
  932. struct page *page, void *object, unsigned long addr)
  933. {
  934. unsigned long flags;
  935. int rc = 0;
  936. local_irq_save(flags);
  937. slab_lock(page);
  938. if (!check_slab(s, page))
  939. goto fail;
  940. if (!check_valid_pointer(s, page, object)) {
  941. slab_err(s, page, "Invalid object pointer 0x%p", object);
  942. goto fail;
  943. }
  944. if (on_freelist(s, page, object)) {
  945. object_err(s, page, object, "Object already free");
  946. goto fail;
  947. }
  948. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  949. goto out;
  950. if (unlikely(s != page->slab)) {
  951. if (!PageSlab(page)) {
  952. slab_err(s, page, "Attempt to free object(0x%p) "
  953. "outside of slab", object);
  954. } else if (!page->slab) {
  955. printk(KERN_ERR
  956. "SLUB <none>: no slab for object 0x%p.\n",
  957. object);
  958. dump_stack();
  959. } else
  960. object_err(s, page, object,
  961. "page slab pointer corrupt.");
  962. goto fail;
  963. }
  964. if (s->flags & SLAB_STORE_USER)
  965. set_track(s, object, TRACK_FREE, addr);
  966. trace(s, page, object, 0);
  967. init_object(s, object, SLUB_RED_INACTIVE);
  968. rc = 1;
  969. out:
  970. slab_unlock(page);
  971. local_irq_restore(flags);
  972. return rc;
  973. fail:
  974. slab_fix(s, "Object at 0x%p not freed", object);
  975. goto out;
  976. }
  977. static int __init setup_slub_debug(char *str)
  978. {
  979. slub_debug = DEBUG_DEFAULT_FLAGS;
  980. if (*str++ != '=' || !*str)
  981. /*
  982. * No options specified. Switch on full debugging.
  983. */
  984. goto out;
  985. if (*str == ',')
  986. /*
  987. * No options but restriction on slabs. This means full
  988. * debugging for slabs matching a pattern.
  989. */
  990. goto check_slabs;
  991. if (tolower(*str) == 'o') {
  992. /*
  993. * Avoid enabling debugging on caches if its minimum order
  994. * would increase as a result.
  995. */
  996. disable_higher_order_debug = 1;
  997. goto out;
  998. }
  999. slub_debug = 0;
  1000. if (*str == '-')
  1001. /*
  1002. * Switch off all debugging measures.
  1003. */
  1004. goto out;
  1005. /*
  1006. * Determine which debug features should be switched on
  1007. */
  1008. for (; *str && *str != ','; str++) {
  1009. switch (tolower(*str)) {
  1010. case 'f':
  1011. slub_debug |= SLAB_DEBUG_FREE;
  1012. break;
  1013. case 'z':
  1014. slub_debug |= SLAB_RED_ZONE;
  1015. break;
  1016. case 'p':
  1017. slub_debug |= SLAB_POISON;
  1018. break;
  1019. case 'u':
  1020. slub_debug |= SLAB_STORE_USER;
  1021. break;
  1022. case 't':
  1023. slub_debug |= SLAB_TRACE;
  1024. break;
  1025. case 'a':
  1026. slub_debug |= SLAB_FAILSLAB;
  1027. break;
  1028. default:
  1029. printk(KERN_ERR "slub_debug option '%c' "
  1030. "unknown. skipped\n", *str);
  1031. }
  1032. }
  1033. check_slabs:
  1034. if (*str == ',')
  1035. slub_debug_slabs = str + 1;
  1036. out:
  1037. return 1;
  1038. }
  1039. __setup("slub_debug", setup_slub_debug);
  1040. static unsigned long kmem_cache_flags(unsigned long objsize,
  1041. unsigned long flags, const char *name,
  1042. void (*ctor)(void *))
  1043. {
  1044. /*
  1045. * Enable debugging if selected on the kernel commandline.
  1046. */
  1047. if (slub_debug && (!slub_debug_slabs ||
  1048. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1049. flags |= slub_debug;
  1050. return flags;
  1051. }
  1052. #else
  1053. static inline void setup_object_debug(struct kmem_cache *s,
  1054. struct page *page, void *object) {}
  1055. static inline int alloc_debug_processing(struct kmem_cache *s,
  1056. struct page *page, void *object, unsigned long addr) { return 0; }
  1057. static inline int free_debug_processing(struct kmem_cache *s,
  1058. struct page *page, void *object, unsigned long addr) { return 0; }
  1059. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1060. { return 1; }
  1061. static inline int check_object(struct kmem_cache *s, struct page *page,
  1062. void *object, u8 val) { return 1; }
  1063. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1064. struct page *page) {}
  1065. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1066. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  1067. unsigned long flags, const char *name,
  1068. void (*ctor)(void *))
  1069. {
  1070. return flags;
  1071. }
  1072. #define slub_debug 0
  1073. #define disable_higher_order_debug 0
  1074. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1075. { return 0; }
  1076. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1077. { return 0; }
  1078. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1079. int objects) {}
  1080. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1081. int objects) {}
  1082. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1083. { return 0; }
  1084. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1085. void *object) {}
  1086. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1087. #endif /* CONFIG_SLUB_DEBUG */
  1088. /*
  1089. * Slab allocation and freeing
  1090. */
  1091. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1092. struct kmem_cache_order_objects oo)
  1093. {
  1094. int order = oo_order(oo);
  1095. flags |= __GFP_NOTRACK;
  1096. if (node == NUMA_NO_NODE)
  1097. return alloc_pages(flags, order);
  1098. else
  1099. return alloc_pages_exact_node(node, flags, order);
  1100. }
  1101. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1102. {
  1103. struct page *page;
  1104. struct kmem_cache_order_objects oo = s->oo;
  1105. gfp_t alloc_gfp;
  1106. flags &= gfp_allowed_mask;
  1107. if (flags & __GFP_WAIT)
  1108. local_irq_enable();
  1109. flags |= s->allocflags;
  1110. /*
  1111. * Let the initial higher-order allocation fail under memory pressure
  1112. * so we fall-back to the minimum order allocation.
  1113. */
  1114. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1115. if ((alloc_gfp & __GFP_WAIT) && oo_order(oo) > oo_order(s->min))
  1116. alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_WAIT;
  1117. page = alloc_slab_page(alloc_gfp, node, oo);
  1118. if (unlikely(!page)) {
  1119. oo = s->min;
  1120. /*
  1121. * Allocation may have failed due to fragmentation.
  1122. * Try a lower order alloc if possible
  1123. */
  1124. page = alloc_slab_page(flags, node, oo);
  1125. if (page)
  1126. stat(s, ORDER_FALLBACK);
  1127. }
  1128. if (flags & __GFP_WAIT)
  1129. local_irq_disable();
  1130. if (!page)
  1131. return NULL;
  1132. if (kmemcheck_enabled
  1133. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1134. int pages = 1 << oo_order(oo);
  1135. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1136. /*
  1137. * Objects from caches that have a constructor don't get
  1138. * cleared when they're allocated, so we need to do it here.
  1139. */
  1140. if (s->ctor)
  1141. kmemcheck_mark_uninitialized_pages(page, pages);
  1142. else
  1143. kmemcheck_mark_unallocated_pages(page, pages);
  1144. }
  1145. page->objects = oo_objects(oo);
  1146. mod_zone_page_state(page_zone(page),
  1147. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1148. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1149. 1 << oo_order(oo));
  1150. return page;
  1151. }
  1152. static void setup_object(struct kmem_cache *s, struct page *page,
  1153. void *object)
  1154. {
  1155. setup_object_debug(s, page, object);
  1156. if (unlikely(s->ctor))
  1157. s->ctor(object);
  1158. }
  1159. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1160. {
  1161. struct page *page;
  1162. void *start;
  1163. void *last;
  1164. void *p;
  1165. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1166. page = allocate_slab(s,
  1167. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1168. if (!page)
  1169. goto out;
  1170. inc_slabs_node(s, page_to_nid(page), page->objects);
  1171. page->slab = s;
  1172. page->flags |= 1 << PG_slab;
  1173. start = page_address(page);
  1174. if (unlikely(s->flags & SLAB_POISON))
  1175. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1176. last = start;
  1177. for_each_object(p, s, start, page->objects) {
  1178. setup_object(s, page, last);
  1179. set_freepointer(s, last, p);
  1180. last = p;
  1181. }
  1182. setup_object(s, page, last);
  1183. set_freepointer(s, last, NULL);
  1184. #ifdef CONFIG_TIMA_RKP_30
  1185. tima_send_cmd3(page_to_phys(page), compound_order(page), 1, 0x26);
  1186. #endif
  1187. page->freelist = start;
  1188. page->inuse = page->objects;
  1189. page->frozen = 1;
  1190. out:
  1191. return page;
  1192. }
  1193. static void __free_slab(struct kmem_cache *s, struct page *page)
  1194. {
  1195. int order = compound_order(page);
  1196. int pages = 1 << order;
  1197. if (kmem_cache_debug(s)) {
  1198. void *p;
  1199. slab_pad_check(s, page);
  1200. for_each_object(p, s, page_address(page),
  1201. page->objects)
  1202. check_object(s, page, p, SLUB_RED_INACTIVE);
  1203. }
  1204. kmemcheck_free_shadow(page, compound_order(page));
  1205. mod_zone_page_state(page_zone(page),
  1206. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1207. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1208. -pages);
  1209. __ClearPageSlab(page);
  1210. reset_page_mapcount(page);
  1211. if (current->reclaim_state)
  1212. current->reclaim_state->reclaimed_slab += pages;
  1213. __free_pages(page, order);
  1214. }
  1215. #define need_reserve_slab_rcu \
  1216. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1217. static void rcu_free_slab(struct rcu_head *h)
  1218. {
  1219. struct page *page;
  1220. if (need_reserve_slab_rcu)
  1221. page = virt_to_head_page(h);
  1222. else
  1223. page = container_of((struct list_head *)h, struct page, lru);
  1224. __free_slab(page->slab, page);
  1225. }
  1226. static void free_slab(struct kmem_cache *s, struct page *page)
  1227. {
  1228. #ifdef CONFIG_TIMA_RKP_30
  1229. tima_send_cmd3(page_to_phys(page), compound_order(page), 0, 0x26);
  1230. #endif
  1231. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1232. struct rcu_head *head;
  1233. if (need_reserve_slab_rcu) {
  1234. int order = compound_order(page);
  1235. int offset = (PAGE_SIZE << order) - s->reserved;
  1236. VM_BUG_ON(s->reserved != sizeof(*head));
  1237. head = page_address(page) + offset;
  1238. } else {
  1239. /*
  1240. * RCU free overloads the RCU head over the LRU
  1241. */
  1242. head = (void *)&page->lru;
  1243. }
  1244. call_rcu(head, rcu_free_slab);
  1245. } else
  1246. __free_slab(s, page);
  1247. }
  1248. static void discard_slab(struct kmem_cache *s, struct page *page)
  1249. {
  1250. dec_slabs_node(s, page_to_nid(page), page->objects);
  1251. free_slab(s, page);
  1252. }
  1253. /*
  1254. * Management of partially allocated slabs.
  1255. *
  1256. * list_lock must be held.
  1257. */
  1258. static inline void add_partial(struct kmem_cache_node *n,
  1259. struct page *page, int tail)
  1260. {
  1261. n->nr_partial++;
  1262. if (tail == DEACTIVATE_TO_TAIL)
  1263. list_add_tail(&page->lru, &n->partial);
  1264. else
  1265. list_add(&page->lru, &n->partial);
  1266. }
  1267. /*
  1268. * list_lock must be held.
  1269. */
  1270. static inline void remove_partial(struct kmem_cache_node *n,
  1271. struct page *page)
  1272. {
  1273. list_del(&page->lru);
  1274. n->nr_partial--;
  1275. }
  1276. /*
  1277. * Lock slab, remove from the partial list and put the object into the
  1278. * per cpu freelist.
  1279. *
  1280. * Returns a list of objects or NULL if it fails.
  1281. *
  1282. * Must hold list_lock.
  1283. */
  1284. static inline void *acquire_slab(struct kmem_cache *s,
  1285. struct kmem_cache_node *n, struct page *page,
  1286. int mode)
  1287. {
  1288. void *freelist;
  1289. unsigned long counters;
  1290. struct page new;
  1291. /*
  1292. * Zap the freelist and set the frozen bit.
  1293. * The old freelist is the list of objects for the
  1294. * per cpu allocation list.
  1295. */
  1296. do {
  1297. freelist = page->freelist;
  1298. counters = page->counters;
  1299. new.counters = counters;
  1300. if (mode) {
  1301. new.inuse = page->objects;
  1302. new.freelist = NULL;
  1303. } else {
  1304. new.freelist = freelist;
  1305. }
  1306. VM_BUG_ON(new.frozen);
  1307. new.frozen = 1;
  1308. } while (!__cmpxchg_double_slab(s, page,
  1309. freelist, counters,
  1310. new.freelist, new.counters,
  1311. "lock and freeze"));
  1312. remove_partial(n, page);
  1313. return freelist;
  1314. }
  1315. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1316. /*
  1317. * Try to allocate a partial slab from a specific node.
  1318. */
  1319. static void *get_partial_node(struct kmem_cache *s,
  1320. struct kmem_cache_node *n, struct kmem_cache_cpu *c)
  1321. {
  1322. struct page *page, *page2;
  1323. void *object = NULL;
  1324. /*
  1325. * Racy check. If we mistakenly see no partial slabs then we
  1326. * just allocate an empty slab. If we mistakenly try to get a
  1327. * partial slab and there is none available then get_partials()
  1328. * will return NULL.
  1329. */
  1330. if (!n || !n->nr_partial)
  1331. return NULL;
  1332. spin_lock(&n->list_lock);
  1333. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1334. void *t = acquire_slab(s, n, page, object == NULL);
  1335. int available;
  1336. if (!t)
  1337. break;
  1338. if (!object) {
  1339. c->page = page;
  1340. c->node = page_to_nid(page);
  1341. stat(s, ALLOC_FROM_PARTIAL);
  1342. object = t;
  1343. available = page->objects - page->inuse;
  1344. } else {
  1345. available = put_cpu_partial(s, page, 0);
  1346. stat(s, CPU_PARTIAL_NODE);
  1347. }
  1348. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1349. break;
  1350. }
  1351. spin_unlock(&n->list_lock);
  1352. return object;
  1353. }
  1354. /*
  1355. * Get a page from somewhere. Search in increasing NUMA distances.
  1356. */
  1357. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1358. struct kmem_cache_cpu *c)
  1359. {
  1360. #ifdef CONFIG_NUMA
  1361. struct zonelist *zonelist;
  1362. struct zoneref *z;
  1363. struct zone *zone;
  1364. enum zone_type high_zoneidx = gfp_zone(flags);
  1365. void *object;
  1366. unsigned int cpuset_mems_cookie;
  1367. /*
  1368. * The defrag ratio allows a configuration of the tradeoffs between
  1369. * inter node defragmentation and node local allocations. A lower
  1370. * defrag_ratio increases the tendency to do local allocations
  1371. * instead of attempting to obtain partial slabs from other nodes.
  1372. *
  1373. * If the defrag_ratio is set to 0 then kmalloc() always
  1374. * returns node local objects. If the ratio is higher then kmalloc()
  1375. * may return off node objects because partial slabs are obtained
  1376. * from other nodes and filled up.
  1377. *
  1378. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1379. * defrag_ratio = 1000) then every (well almost) allocation will
  1380. * first attempt to defrag slab caches on other nodes. This means
  1381. * scanning over all nodes to look for partial slabs which may be
  1382. * expensive if we do it every time we are trying to find a slab
  1383. * with available objects.
  1384. */
  1385. if (!s->remote_node_defrag_ratio ||
  1386. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1387. return NULL;
  1388. do {
  1389. cpuset_mems_cookie = get_mems_allowed();
  1390. zonelist = node_zonelist(slab_node(), flags);
  1391. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1392. struct kmem_cache_node *n;
  1393. n = get_node(s, zone_to_nid(zone));
  1394. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1395. n->nr_partial > s->min_partial) {
  1396. object = get_partial_node(s, n, c);
  1397. if (object) {
  1398. /*
  1399. * Return the object even if
  1400. * put_mems_allowed indicated that
  1401. * the cpuset mems_allowed was
  1402. * updated in parallel. It's a
  1403. * harmless race between the alloc
  1404. * and the cpuset update.
  1405. */
  1406. put_mems_allowed(cpuset_mems_cookie);
  1407. return object;
  1408. }
  1409. }
  1410. }
  1411. } while (!put_mems_allowed(cpuset_mems_cookie));
  1412. #endif
  1413. return NULL;
  1414. }
  1415. /*
  1416. * Get a partial page, lock it and return it.
  1417. */
  1418. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1419. struct kmem_cache_cpu *c)
  1420. {
  1421. void *object;
  1422. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1423. object = get_partial_node(s, get_node(s, searchnode), c);
  1424. if (object || node != NUMA_NO_NODE)
  1425. return object;
  1426. return get_any_partial(s, flags, c);
  1427. }
  1428. #ifdef CONFIG_PREEMPT
  1429. /*
  1430. * Calculate the next globally unique transaction for disambiguiation
  1431. * during cmpxchg. The transactions start with the cpu number and are then
  1432. * incremented by CONFIG_NR_CPUS.
  1433. */
  1434. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1435. #else
  1436. /*
  1437. * No preemption supported therefore also no need to check for
  1438. * different cpus.
  1439. */
  1440. #define TID_STEP 1
  1441. #endif
  1442. static inline unsigned long next_tid(unsigned long tid)
  1443. {
  1444. return tid + TID_STEP;
  1445. }
  1446. static inline unsigned int tid_to_cpu(unsigned long tid)
  1447. {
  1448. return tid % TID_STEP;
  1449. }
  1450. static inline unsigned long tid_to_event(unsigned long tid)
  1451. {
  1452. return tid / TID_STEP;
  1453. }
  1454. static inline unsigned int init_tid(int cpu)
  1455. {
  1456. return cpu;
  1457. }
  1458. static inline void note_cmpxchg_failure(const char *n,
  1459. const struct kmem_cache *s, unsigned long tid)
  1460. {
  1461. #ifdef SLUB_DEBUG_CMPXCHG
  1462. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1463. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1464. #ifdef CONFIG_PREEMPT
  1465. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1466. printk("due to cpu change %d -> %d\n",
  1467. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1468. else
  1469. #endif
  1470. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1471. printk("due to cpu running other code. Event %ld->%ld\n",
  1472. tid_to_event(tid), tid_to_event(actual_tid));
  1473. else
  1474. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1475. actual_tid, tid, next_tid(tid));
  1476. #endif
  1477. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1478. }
  1479. void init_kmem_cache_cpus(struct kmem_cache *s)
  1480. {
  1481. int cpu;
  1482. for_each_possible_cpu(cpu)
  1483. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1484. }
  1485. /*
  1486. * Remove the cpu slab
  1487. */
  1488. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1489. {
  1490. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1491. struct page *page = c->page;
  1492. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1493. int lock = 0;
  1494. enum slab_modes l = M_NONE, m = M_NONE;
  1495. void *freelist;
  1496. void *nextfree;
  1497. int tail = DEACTIVATE_TO_HEAD;
  1498. struct page new;
  1499. struct page old;
  1500. if (page->freelist) {
  1501. stat(s, DEACTIVATE_REMOTE_FREES);
  1502. tail = DEACTIVATE_TO_TAIL;
  1503. }
  1504. c->tid = next_tid(c->tid);
  1505. c->page = NULL;
  1506. freelist = c->freelist;
  1507. c->freelist = NULL;
  1508. /*
  1509. * Stage one: Free all available per cpu objects back
  1510. * to the page freelist while it is still frozen. Leave the
  1511. * last one.
  1512. *
  1513. * There is no need to take the list->lock because the page
  1514. * is still frozen.
  1515. */
  1516. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1517. void *prior;
  1518. unsigned long counters;
  1519. do {
  1520. prior = page->freelist;
  1521. counters = page->counters;
  1522. set_freepointer(s, freelist, prior);
  1523. new.counters = counters;
  1524. new.inuse--;
  1525. VM_BUG_ON(!new.frozen);
  1526. } while (!__cmpxchg_double_slab(s, page,
  1527. prior, counters,
  1528. freelist, new.counters,
  1529. "drain percpu freelist"));
  1530. freelist = nextfree;
  1531. }
  1532. /*
  1533. * Stage two: Ensure that the page is unfrozen while the
  1534. * list presence reflects the actual number of objects
  1535. * during unfreeze.
  1536. *
  1537. * We setup the list membership and then perform a cmpxchg
  1538. * with the count. If there is a mismatch then the page
  1539. * is not unfrozen but the page is on the wrong list.
  1540. *
  1541. * Then we restart the process which may have to remove
  1542. * the page from the list that we just put it on again
  1543. * because the number of objects in the slab may have
  1544. * changed.
  1545. */
  1546. redo:
  1547. old.freelist = page->freelist;
  1548. old.counters = page->counters;
  1549. VM_BUG_ON(!old.frozen);
  1550. /* Determine target state of the slab */
  1551. new.counters = old.counters;
  1552. if (freelist) {
  1553. new.inuse--;
  1554. set_freepointer(s, freelist, old.freelist);
  1555. new.freelist = freelist;
  1556. } else
  1557. new.freelist = old.freelist;
  1558. new.frozen = 0;
  1559. if (!new.inuse && n->nr_partial > s->min_partial)
  1560. m = M_FREE;
  1561. else if (new.freelist) {
  1562. m = M_PARTIAL;
  1563. if (!lock) {
  1564. lock = 1;
  1565. /*
  1566. * Taking the spinlock removes the possiblity
  1567. * that acquire_slab() will see a slab page that
  1568. * is frozen
  1569. */
  1570. spin_lock(&n->list_lock);
  1571. }
  1572. } else {
  1573. m = M_FULL;
  1574. if (kmem_cache_debug(s) && !lock) {
  1575. lock = 1;
  1576. /*
  1577. * This also ensures that the scanning of full
  1578. * slabs from diagnostic functions will not see
  1579. * any frozen slabs.
  1580. */
  1581. spin_lock(&n->list_lock);
  1582. }
  1583. }
  1584. if (l != m) {
  1585. if (l == M_PARTIAL)
  1586. remove_partial(n, page);
  1587. else if (l == M_FULL)
  1588. remove_full(s, page);
  1589. if (m == M_PARTIAL) {
  1590. add_partial(n, page, tail);
  1591. stat(s, tail);
  1592. } else if (m == M_FULL) {
  1593. stat(s, DEACTIVATE_FULL);
  1594. add_full(s, n, page);
  1595. }
  1596. }
  1597. l = m;
  1598. if (!__cmpxchg_double_slab(s, page,
  1599. old.freelist, old.counters,
  1600. new.freelist, new.counters,
  1601. "unfreezing slab"))
  1602. goto redo;
  1603. if (lock)
  1604. spin_unlock(&n->list_lock);
  1605. if (m == M_FREE) {
  1606. stat(s, DEACTIVATE_EMPTY);
  1607. discard_slab(s, page);
  1608. stat(s, FREE_SLAB);
  1609. }
  1610. }
  1611. /* Unfreeze all the cpu partial slabs */
  1612. static void unfreeze_partials(struct kmem_cache *s)
  1613. {
  1614. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1615. struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
  1616. struct page *page, *discard_page = NULL;
  1617. while ((page = c->partial)) {
  1618. struct page new;
  1619. struct page old;
  1620. c->partial = page->next;
  1621. n2 = get_node(s, page_to_nid(page));
  1622. if (n != n2) {
  1623. if (n)
  1624. spin_unlock(&n->list_lock);
  1625. n = n2;
  1626. spin_lock(&n->list_lock);
  1627. }
  1628. do {
  1629. old.freelist = page->freelist;
  1630. old.counters = page->counters;
  1631. VM_BUG_ON(!old.frozen);
  1632. new.counters = old.counters;
  1633. new.freelist = old.freelist;
  1634. new.frozen = 0;
  1635. } while (!cmpxchg_double_slab(s, page,
  1636. old.freelist, old.counters,
  1637. new.freelist, new.counters,
  1638. "unfreezing slab"));
  1639. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1640. page->next = discard_page;
  1641. discard_page = page;
  1642. } else {
  1643. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1644. stat(s, FREE_ADD_PARTIAL);
  1645. }
  1646. }
  1647. if (n)
  1648. spin_unlock(&n->list_lock);
  1649. while (discard_page) {
  1650. page = discard_page;
  1651. discard_page = discard_page->next;
  1652. stat(s, DEACTIVATE_EMPTY);
  1653. discard_slab(s, page);
  1654. stat(s, FREE_SLAB);
  1655. }
  1656. }
  1657. /*
  1658. * Put a page that was just frozen (in __slab_free) into a partial page
  1659. * slot if available. This is done without interrupts disabled and without
  1660. * preemption disabled. The cmpxchg is racy and may put the partial page
  1661. * onto a random cpus partial slot.
  1662. *
  1663. * If we did not find a slot then simply move all the partials to the
  1664. * per node partial list.
  1665. */
  1666. int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1667. {
  1668. struct page *oldpage;
  1669. int pages;
  1670. int pobjects;
  1671. do {
  1672. pages = 0;
  1673. pobjects = 0;
  1674. oldpage = this_cpu_read(s->cpu_slab->partial);
  1675. if (oldpage) {
  1676. pobjects = oldpage->pobjects;
  1677. pages = oldpage->pages;
  1678. if (drain && pobjects > s->cpu_partial) {
  1679. unsigned long flags;
  1680. /*
  1681. * partial array is full. Move the existing
  1682. * set to the per node partial list.
  1683. */
  1684. local_irq_save(flags);
  1685. unfreeze_partials(s);
  1686. local_irq_restore(flags);
  1687. pobjects = 0;
  1688. pages = 0;
  1689. stat(s, CPU_PARTIAL_DRAIN);
  1690. }
  1691. }
  1692. pages++;
  1693. pobjects += page->objects - page->inuse;
  1694. page->pages = pages;
  1695. page->pobjects = pobjects;
  1696. page->next = oldpage;
  1697. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1698. return pobjects;
  1699. }
  1700. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1701. {
  1702. stat(s, CPUSLAB_FLUSH);
  1703. deactivate_slab(s, c);
  1704. }
  1705. /*
  1706. * Flush cpu slab.
  1707. *
  1708. * Called from IPI handler with interrupts disabled.
  1709. */
  1710. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1711. {
  1712. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1713. if (likely(c)) {
  1714. if (c->page)
  1715. flush_slab(s, c);
  1716. unfreeze_partials(s);
  1717. }
  1718. }
  1719. static void flush_cpu_slab(void *d)
  1720. {
  1721. struct kmem_cache *s = d;
  1722. __flush_cpu_slab(s, smp_processor_id());
  1723. }
  1724. static bool has_cpu_slab(int cpu, void *info)
  1725. {
  1726. struct kmem_cache *s = info;
  1727. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1728. return c->page || c->partial;
  1729. }
  1730. static void flush_all(struct kmem_cache *s)
  1731. {
  1732. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1733. }
  1734. /*
  1735. * Check if the objects in a per cpu structure fit numa
  1736. * locality expectations.
  1737. */
  1738. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1739. {
  1740. #ifdef CONFIG_NUMA
  1741. if (node != NUMA_NO_NODE && c->node != node)
  1742. return 0;
  1743. #endif
  1744. return 1;
  1745. }
  1746. static int count_free(struct page *page)
  1747. {
  1748. return page->objects - page->inuse;
  1749. }
  1750. static unsigned long count_partial(struct kmem_cache_node *n,
  1751. int (*get_count)(struct page *))
  1752. {
  1753. unsigned long flags;
  1754. unsigned long x = 0;
  1755. struct page *page;
  1756. spin_lock_irqsave(&n->list_lock, flags);
  1757. list_for_each_entry(page, &n->partial, lru)
  1758. x += get_count(page);
  1759. spin_unlock_irqrestore(&n->list_lock, flags);
  1760. return x;
  1761. }
  1762. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1763. {
  1764. #ifdef CONFIG_SLUB_DEBUG
  1765. return atomic_long_read(&n->total_objects);
  1766. #else
  1767. return 0;
  1768. #endif
  1769. }
  1770. static noinline void
  1771. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1772. {
  1773. int node;
  1774. printk(KERN_WARNING
  1775. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1776. nid, gfpflags);
  1777. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1778. "default order: %d, min order: %d\n", s->name, s->objsize,
  1779. s->size, oo_order(s->oo), oo_order(s->min));
  1780. if (oo_order(s->min) > get_order(s->objsize))
  1781. printk(KERN_WARNING " %s debugging increased min order, use "
  1782. "slub_debug=O to disable.\n", s->name);
  1783. for_each_online_node(node) {
  1784. struct kmem_cache_node *n = get_node(s, node);
  1785. unsigned long nr_slabs;
  1786. unsigned long nr_objs;
  1787. unsigned long nr_free;
  1788. if (!n)
  1789. continue;
  1790. nr_free = count_partial(n, count_free);
  1791. nr_slabs = node_nr_slabs(n);
  1792. nr_objs = node_nr_objs(n);
  1793. printk(KERN_WARNING
  1794. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1795. node, nr_slabs, nr_objs, nr_free);
  1796. }
  1797. }
  1798. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1799. int node, struct kmem_cache_cpu **pc)
  1800. {
  1801. void *object;
  1802. struct kmem_cache_cpu *c;
  1803. struct page *page = new_slab(s, flags, node);
  1804. if (page) {
  1805. c = __this_cpu_ptr(s->cpu_slab);
  1806. if (c->page)
  1807. flush_slab(s, c);
  1808. /*
  1809. * No other reference to the page yet so we can
  1810. * muck around with it freely without cmpxchg
  1811. */
  1812. object = page->freelist;
  1813. page->freelist = NULL;
  1814. stat(s, ALLOC_SLAB);
  1815. c->node = page_to_nid(page);
  1816. c->page = page;
  1817. *pc = c;
  1818. } else
  1819. object = NULL;
  1820. return object;
  1821. }
  1822. /*
  1823. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1824. * or deactivate the page.
  1825. *
  1826. * The page is still frozen if the return value is not NULL.
  1827. *
  1828. * If this function returns NULL then the page has been unfrozen.
  1829. */
  1830. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1831. {
  1832. struct page new;
  1833. unsigned long counters;
  1834. void *freelist;
  1835. do {
  1836. freelist = page->freelist;
  1837. counters = page->counters;
  1838. new.counters = counters;
  1839. VM_BUG_ON(!new.frozen);
  1840. new.inuse = page->objects;
  1841. new.frozen = freelist != NULL;
  1842. } while (!cmpxchg_double_slab(s, page,
  1843. freelist, counters,
  1844. NULL, new.counters,
  1845. "get_freelist"));
  1846. return freelist;
  1847. }
  1848. /*
  1849. * Slow path. The lockless freelist is empty or we need to perform
  1850. * debugging duties.
  1851. *
  1852. * Processing is still very fast if new objects have been freed to the
  1853. * regular freelist. In that case we simply take over the regular freelist
  1854. * as the lockless freelist and zap the regular freelist.
  1855. *
  1856. * If that is not working then we fall back to the partial lists. We take the
  1857. * first element of the freelist as the object to allocate now and move the
  1858. * rest of the freelist to the lockless freelist.
  1859. *
  1860. * And if we were unable to get a new slab from the partial slab lists then
  1861. * we need to allocate a new slab. This is the slowest path since it involves
  1862. * a call to the page allocator and the setup of a new slab.
  1863. */
  1864. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1865. unsigned long addr, struct kmem_cache_cpu *c)
  1866. {
  1867. void **object;
  1868. unsigned long flags;
  1869. local_irq_save(flags);
  1870. #ifdef CONFIG_PREEMPT
  1871. /*
  1872. * We may have been preempted and rescheduled on a different
  1873. * cpu before disabling interrupts. Need to reload cpu area
  1874. * pointer.
  1875. */
  1876. c = this_cpu_ptr(s->cpu_slab);
  1877. #endif
  1878. if (!c->page)
  1879. goto new_slab;
  1880. redo:
  1881. if (unlikely(!node_match(c, node))) {
  1882. stat(s, ALLOC_NODE_MISMATCH);
  1883. deactivate_slab(s, c);
  1884. goto new_slab;
  1885. }
  1886. /* must check again c->freelist in case of cpu migration or IRQ */
  1887. object = c->freelist;
  1888. if (object)
  1889. goto load_freelist;
  1890. stat(s, ALLOC_SLOWPATH);
  1891. object = get_freelist(s, c->page);
  1892. if (!object) {
  1893. c->page = NULL;
  1894. stat(s, DEACTIVATE_BYPASS);
  1895. goto new_slab;
  1896. }
  1897. stat(s, ALLOC_REFILL);
  1898. load_freelist:
  1899. c->freelist = get_freepointer(s, object);
  1900. c->tid = next_tid(c->tid);
  1901. local_irq_restore(flags);
  1902. return object;
  1903. new_slab:
  1904. if (c->partial) {
  1905. c->page = c->partial;
  1906. c->partial = c->page->next;
  1907. c->node = page_to_nid(c->page);
  1908. stat(s, CPU_PARTIAL_ALLOC);
  1909. c->freelist = NULL;
  1910. goto redo;
  1911. }
  1912. /* Then do expensive stuff like retrieving pages from the partial lists */
  1913. object = get_partial(s, gfpflags, node, c);
  1914. if (unlikely(!object)) {
  1915. object = new_slab_objects(s, gfpflags, node, &c);
  1916. if (unlikely(!object)) {
  1917. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1918. slab_out_of_memory(s, gfpflags, node);
  1919. local_irq_restore(flags);
  1920. return NULL;
  1921. }
  1922. }
  1923. if (likely(!kmem_cache_debug(s)))
  1924. goto load_freelist;
  1925. /* Only entered in the debug case */
  1926. if (!alloc_debug_processing(s, c->page, object, addr))
  1927. goto new_slab; /* Slab failed checks. Next slab needed */
  1928. c->freelist = get_freepointer(s, object);
  1929. deactivate_slab(s, c);
  1930. c->node = NUMA_NO_NODE;
  1931. local_irq_restore(flags);
  1932. return object;
  1933. }
  1934. /*
  1935. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1936. * have the fastpath folded into their functions. So no function call
  1937. * overhead for requests that can be satisfied on the fastpath.
  1938. *
  1939. * The fastpath works by first checking if the lockless freelist can be used.
  1940. * If not then __slab_alloc is called for slow processing.
  1941. *
  1942. * Otherwise we can simply pick the next object from the lockless free list.
  1943. */
  1944. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1945. gfp_t gfpflags, int node, unsigned long addr)
  1946. {
  1947. void **object;
  1948. struct kmem_cache_cpu *c;
  1949. unsigned long tid;
  1950. if (slab_pre_alloc_hook(s, gfpflags))
  1951. return NULL;
  1952. redo:
  1953. /*
  1954. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1955. * enabled. We may switch back and forth between cpus while
  1956. * reading from one cpu area. That does not matter as long
  1957. * as we end up on the original cpu again when doing the cmpxchg.
  1958. *
  1959. * Preemption is disabled for the retrieval of the tid because that
  1960. * must occur from the current processor. We cannot allow rescheduling
  1961. * on a different processor between the determination of the pointer
  1962. * and the retrieval of the tid.
  1963. */
  1964. preempt_disable();
  1965. c = __this_cpu_ptr(s->cpu_slab);
  1966. /*
  1967. * The transaction ids are globally unique per cpu and per operation on
  1968. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1969. * occurs on the right processor and that there was no operation on the
  1970. * linked list in between.
  1971. */
  1972. tid = c->tid;
  1973. preempt_enable();
  1974. object = c->freelist;
  1975. if (unlikely(!object || !node_match(c, node)))
  1976. object = __slab_alloc(s, gfpflags, node, addr, c);
  1977. else {
  1978. void *next_object = get_freepointer_safe(s, object);
  1979. /*
  1980. * The cmpxchg will only match if there was no additional
  1981. * operation and if we are on the right processor.
  1982. *
  1983. * The cmpxchg does the following atomically (without lock semantics!)
  1984. * 1. Relocate first pointer to the current per cpu area.
  1985. * 2. Verify that tid and freelist have not been changed
  1986. * 3. If they were not changed replace tid and freelist
  1987. *
  1988. * Since this is without lock semantics the protection is only against
  1989. * code executing on this cpu *not* from access by other cpus.
  1990. */
  1991. if (unlikely(!this_cpu_cmpxchg_double(
  1992. s->cpu_slab->freelist, s->cpu_slab->tid,
  1993. object, tid,
  1994. next_object, next_tid(tid)))) {
  1995. note_cmpxchg_failure("slab_alloc", s, tid);
  1996. goto redo;
  1997. }
  1998. prefetch_freepointer(s, next_object);
  1999. stat(s, ALLOC_FASTPATH);
  2000. }
  2001. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2002. memset(object, 0, s->objsize);
  2003. slab_post_alloc_hook(s, gfpflags, object);
  2004. return object;
  2005. }
  2006. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2007. {
  2008. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  2009. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  2010. return ret;
  2011. }
  2012. EXPORT_SYMBOL(kmem_cache_alloc);
  2013. #ifdef CONFIG_TRACING
  2014. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2015. {
  2016. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  2017. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2018. return ret;
  2019. }
  2020. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2021. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  2022. {
  2023. void *ret = kmalloc_order(size, flags, order);
  2024. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  2025. return ret;
  2026. }
  2027. EXPORT_SYMBOL(kmalloc_order_trace);
  2028. #endif
  2029. #ifdef CONFIG_NUMA
  2030. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2031. {
  2032. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2033. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2034. s->objsize, s->size, gfpflags, node);
  2035. return ret;
  2036. }
  2037. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2038. #ifdef CONFIG_TRACING
  2039. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2040. gfp_t gfpflags,
  2041. int node, size_t size)
  2042. {
  2043. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2044. trace_kmalloc_node(_RET_IP_, ret,
  2045. size, s->size, gfpflags, node);
  2046. return ret;
  2047. }
  2048. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2049. #endif
  2050. #endif
  2051. /*
  2052. * Slow patch handling. This may still be called frequently since objects
  2053. * have a longer lifetime than the cpu slabs in most processing loads.
  2054. *
  2055. * So we still attempt to reduce cache line usage. Just take the slab
  2056. * lock and free the item. If there is no additional partial page
  2057. * handling required then we can return immediately.
  2058. */
  2059. static void __slab_free(struct kmem_cache *s, struct page *page,
  2060. void *x, unsigned long addr)
  2061. {
  2062. void *prior;
  2063. void **object = (void *)x;
  2064. int was_frozen;
  2065. int inuse;
  2066. struct page new;
  2067. unsigned long counters;
  2068. struct kmem_cache_node *n = NULL;
  2069. unsigned long uninitialized_var(flags);
  2070. stat(s, FREE_SLOWPATH);
  2071. if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
  2072. return;
  2073. do {
  2074. prior = page->freelist;
  2075. counters = page->counters;
  2076. set_freepointer(s, object, prior);
  2077. new.counters = counters;
  2078. was_frozen = new.frozen;
  2079. new.inuse--;
  2080. if ((!new.inuse || !prior) && !was_frozen && !n) {
  2081. if (!kmem_cache_debug(s) && !prior)
  2082. /*
  2083. * Slab was on no list before and will be partially empty
  2084. * We can defer the list move and instead freeze it.
  2085. */
  2086. new.frozen = 1;
  2087. else { /* Needs to be taken off a list */
  2088. n = get_node(s, page_to_nid(page));
  2089. /*
  2090. * Speculatively acquire the list_lock.
  2091. * If the cmpxchg does not succeed then we may
  2092. * drop the list_lock without any processing.
  2093. *
  2094. * Otherwise the list_lock will synchronize with
  2095. * other processors updating the list of slabs.
  2096. */
  2097. spin_lock_irqsave(&n->list_lock, flags);
  2098. }
  2099. }
  2100. inuse = new.inuse;
  2101. } while (!cmpxchg_double_slab(s, page,
  2102. prior, counters,
  2103. object, new.counters,
  2104. "__slab_free"));
  2105. if (likely(!n)) {
  2106. /*
  2107. * If we just froze the page then put it onto the
  2108. * per cpu partial list.
  2109. */
  2110. if (new.frozen && !was_frozen) {
  2111. put_cpu_partial(s, page, 1);
  2112. stat(s, CPU_PARTIAL_FREE);
  2113. }
  2114. /*
  2115. * The list lock was not taken therefore no list
  2116. * activity can be necessary.
  2117. */
  2118. if (was_frozen)
  2119. stat(s, FREE_FROZEN);
  2120. return;
  2121. }
  2122. /*
  2123. * was_frozen may have been set after we acquired the list_lock in
  2124. * an earlier loop. So we need to check it here again.
  2125. */
  2126. if (was_frozen)
  2127. stat(s, FREE_FROZEN);
  2128. else {
  2129. if (unlikely(!inuse && n->nr_partial > s->min_partial))
  2130. goto slab_empty;
  2131. /*
  2132. * Objects left in the slab. If it was not on the partial list before
  2133. * then add it.
  2134. */
  2135. if (unlikely(!prior)) {
  2136. remove_full(s, page);
  2137. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2138. stat(s, FREE_ADD_PARTIAL);
  2139. }
  2140. }
  2141. spin_unlock_irqrestore(&n->list_lock, flags);
  2142. return;
  2143. slab_empty:
  2144. if (prior) {
  2145. /*
  2146. * Slab on the partial list.
  2147. */
  2148. remove_partial(n, page);
  2149. stat(s, FREE_REMOVE_PARTIAL);
  2150. } else
  2151. /* Slab must be on the full list */
  2152. remove_full(s, page);
  2153. spin_unlock_irqrestore(&n->list_lock, flags);
  2154. stat(s, FREE_SLAB);
  2155. discard_slab(s, page);
  2156. }
  2157. /*
  2158. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2159. * can perform fastpath freeing without additional function calls.
  2160. *
  2161. * The fastpath is only possible if we are freeing to the current cpu slab
  2162. * of this processor. This typically the case if we have just allocated
  2163. * the item before.
  2164. *
  2165. * If fastpath is not possible then fall back to __slab_free where we deal
  2166. * with all sorts of special processing.
  2167. */
  2168. static __always_inline void slab_free(struct kmem_cache *s,
  2169. struct page *page, void *x, unsigned long addr)
  2170. {
  2171. void **object = (void *)x;
  2172. struct kmem_cache_cpu *c;
  2173. unsigned long tid;
  2174. slab_free_hook(s, x);
  2175. redo:
  2176. /*
  2177. * Determine the currently cpus per cpu slab.
  2178. * The cpu may change afterward. However that does not matter since
  2179. * data is retrieved via this pointer. If we are on the same cpu
  2180. * during the cmpxchg then the free will succedd.
  2181. */
  2182. preempt_disable();
  2183. c = __this_cpu_ptr(s->cpu_slab);
  2184. tid = c->tid;
  2185. preempt_enable();
  2186. if (likely(page == c->page)) {
  2187. void **freelist = READ_ONCE(c->freelist);
  2188. set_freepointer(s, object, freelist);
  2189. if (unlikely(!this_cpu_cmpxchg_double(
  2190. s->cpu_slab->freelist, s->cpu_slab->tid,
  2191. freelist, tid,
  2192. object, next_tid(tid)))) {
  2193. note_cmpxchg_failure("slab_free", s, tid);
  2194. goto redo;
  2195. }
  2196. stat(s, FREE_FASTPATH);
  2197. } else
  2198. __slab_free(s, page, x, addr);
  2199. }
  2200. void kmem_cache_free(struct kmem_cache *s, void *x)
  2201. {
  2202. struct page *page;
  2203. page = virt_to_head_page(x);
  2204. slab_free(s, page, x, _RET_IP_);
  2205. trace_kmem_cache_free(_RET_IP_, x);
  2206. }
  2207. EXPORT_SYMBOL(kmem_cache_free);
  2208. /*
  2209. * Object placement in a slab is made very easy because we always start at
  2210. * offset 0. If we tune the size of the object to the alignment then we can
  2211. * get the required alignment by putting one properly sized object after
  2212. * another.
  2213. *
  2214. * Notice that the allocation order determines the sizes of the per cpu
  2215. * caches. Each processor has always one slab available for allocations.
  2216. * Increasing the allocation order reduces the number of times that slabs
  2217. * must be moved on and off the partial lists and is therefore a factor in
  2218. * locking overhead.
  2219. */
  2220. /*
  2221. * Mininum / Maximum order of slab pages. This influences locking overhead
  2222. * and slab fragmentation. A higher order reduces the number of partial slabs
  2223. * and increases the number of allocations possible without having to
  2224. * take the list_lock.
  2225. */
  2226. static int slub_min_order;
  2227. static int slub_max_order;
  2228. static int slub_min_objects;
  2229. /*
  2230. * Merge control. If this is set then no merging of slab caches will occur.
  2231. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2232. */
  2233. static int slub_nomerge;
  2234. /*
  2235. * Calculate the order of allocation given an slab object size.
  2236. *
  2237. * The order of allocation has significant impact on performance and other
  2238. * system components. Generally order 0 allocations should be preferred since
  2239. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2240. * be problematic to put into order 0 slabs because there may be too much
  2241. * unused space left. We go to a higher order if more than 1/16th of the slab
  2242. * would be wasted.
  2243. *
  2244. * In order to reach satisfactory performance we must ensure that a minimum
  2245. * number of objects is in one slab. Otherwise we may generate too much
  2246. * activity on the partial lists which requires taking the list_lock. This is
  2247. * less a concern for large slabs though which are rarely used.
  2248. *
  2249. * slub_max_order specifies the order where we begin to stop considering the
  2250. * number of objects in a slab as critical. If we reach slub_max_order then
  2251. * we try to keep the page order as low as possible. So we accept more waste
  2252. * of space in favor of a small page order.
  2253. *
  2254. * Higher order allocations also allow the placement of more objects in a
  2255. * slab and thereby reduce object handling overhead. If the user has
  2256. * requested a higher mininum order then we start with that one instead of
  2257. * the smallest order which will fit the object.
  2258. */
  2259. static inline int slab_order(int size, int min_objects,
  2260. int max_order, int fract_leftover, int reserved)
  2261. {
  2262. int order;
  2263. int rem;
  2264. int min_order = slub_min_order;
  2265. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2266. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2267. for (order = max(min_order,
  2268. fls(min_objects * size - 1) - PAGE_SHIFT);
  2269. order <= max_order; order++) {
  2270. unsigned long slab_size = PAGE_SIZE << order;
  2271. if (slab_size < min_objects * size + reserved)
  2272. continue;
  2273. rem = (slab_size - reserved) % size;
  2274. if (rem <= slab_size / fract_leftover)
  2275. break;
  2276. }
  2277. return order;
  2278. }
  2279. static inline int calculate_order(int size, int reserved)
  2280. {
  2281. int order;
  2282. int min_objects;
  2283. int fraction;
  2284. int max_objects;
  2285. /*
  2286. * Attempt to find best configuration for a slab. This
  2287. * works by first attempting to generate a layout with
  2288. * the best configuration and backing off gradually.
  2289. *
  2290. * First we reduce the acceptable waste in a slab. Then
  2291. * we reduce the minimum objects required in a slab.
  2292. */
  2293. min_objects = slub_min_objects;
  2294. if (!min_objects)
  2295. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2296. max_objects = order_objects(slub_max_order, size, reserved);
  2297. min_objects = min(min_objects, max_objects);
  2298. while (min_objects > 1) {
  2299. fraction = 16;
  2300. while (fraction >= 4) {
  2301. order = slab_order(size, min_objects,
  2302. slub_max_order, fraction, reserved);
  2303. if (order <= slub_max_order)
  2304. return order;
  2305. fraction /= 2;
  2306. }
  2307. min_objects--;
  2308. }
  2309. /*
  2310. * We were unable to place multiple objects in a slab. Now
  2311. * lets see if we can place a single object there.
  2312. */
  2313. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2314. if (order <= slub_max_order)
  2315. return order;
  2316. /*
  2317. * Doh this slab cannot be placed using slub_max_order.
  2318. */
  2319. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2320. if (order < MAX_ORDER)
  2321. return order;
  2322. return -ENOSYS;
  2323. }
  2324. /*
  2325. * Figure out what the alignment of the objects will be.
  2326. */
  2327. static unsigned long calculate_alignment(unsigned long flags,
  2328. unsigned long align, unsigned long size)
  2329. {
  2330. /*
  2331. * If the user wants hardware cache aligned objects then follow that
  2332. * suggestion if the object is sufficiently large.
  2333. *
  2334. * The hardware cache alignment cannot override the specified
  2335. * alignment though. If that is greater then use it.
  2336. */
  2337. if (flags & SLAB_HWCACHE_ALIGN) {
  2338. unsigned long ralign = cache_line_size();
  2339. while (size <= ralign / 2)
  2340. ralign /= 2;
  2341. align = max(align, ralign);
  2342. }
  2343. if (align < ARCH_SLAB_MINALIGN)
  2344. align = ARCH_SLAB_MINALIGN;
  2345. return ALIGN(align, sizeof(void *));
  2346. }
  2347. static void
  2348. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  2349. {
  2350. n->nr_partial = 0;
  2351. spin_lock_init(&n->list_lock);
  2352. INIT_LIST_HEAD(&n->partial);
  2353. #ifdef CONFIG_SLUB_DEBUG
  2354. atomic_long_set(&n->nr_slabs, 0);
  2355. atomic_long_set(&n->total_objects, 0);
  2356. INIT_LIST_HEAD(&n->full);
  2357. #endif
  2358. }
  2359. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2360. {
  2361. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2362. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2363. /*
  2364. * Must align to double word boundary for the double cmpxchg
  2365. * instructions to work; see __pcpu_double_call_return_bool().
  2366. */
  2367. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2368. 2 * sizeof(void *));
  2369. if (!s->cpu_slab)
  2370. return 0;
  2371. init_kmem_cache_cpus(s);
  2372. return 1;
  2373. }
  2374. static struct kmem_cache *kmem_cache_node;
  2375. /*
  2376. * No kmalloc_node yet so do it by hand. We know that this is the first
  2377. * slab on the node for this slabcache. There are no concurrent accesses
  2378. * possible.
  2379. *
  2380. * Note that this function only works on the kmalloc_node_cache
  2381. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2382. * memory on a fresh node that has no slab structures yet.
  2383. */
  2384. static void early_kmem_cache_node_alloc(int node)
  2385. {
  2386. struct page *page;
  2387. struct kmem_cache_node *n;
  2388. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2389. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2390. BUG_ON(!page);
  2391. if (page_to_nid(page) != node) {
  2392. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2393. "node %d\n", node);
  2394. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2395. "in order to be able to continue\n");
  2396. }
  2397. n = page->freelist;
  2398. BUG_ON(!n);
  2399. page->freelist = get_freepointer(kmem_cache_node, n);
  2400. page->inuse = 1;
  2401. page->frozen = 0;
  2402. kmem_cache_node->node[node] = n;
  2403. #ifdef CONFIG_SLUB_DEBUG
  2404. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2405. init_tracking(kmem_cache_node, n);
  2406. #endif
  2407. init_kmem_cache_node(n, kmem_cache_node);
  2408. inc_slabs_node(kmem_cache_node, node, page->objects);
  2409. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2410. }
  2411. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2412. {
  2413. int node;
  2414. for_each_node_state(node, N_NORMAL_MEMORY) {
  2415. struct kmem_cache_node *n = s->node[node];
  2416. if (n)
  2417. kmem_cache_free(kmem_cache_node, n);
  2418. s->node[node] = NULL;
  2419. }
  2420. }
  2421. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2422. {
  2423. int node;
  2424. for_each_node_state(node, N_NORMAL_MEMORY) {
  2425. struct kmem_cache_node *n;
  2426. if (slab_state == DOWN) {
  2427. early_kmem_cache_node_alloc(node);
  2428. continue;
  2429. }
  2430. n = kmem_cache_alloc_node(kmem_cache_node,
  2431. GFP_KERNEL, node);
  2432. if (!n) {
  2433. free_kmem_cache_nodes(s);
  2434. return 0;
  2435. }
  2436. s->node[node] = n;
  2437. init_kmem_cache_node(n, s);
  2438. }
  2439. return 1;
  2440. }
  2441. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2442. {
  2443. if (min < MIN_PARTIAL)
  2444. min = MIN_PARTIAL;
  2445. else if (min > MAX_PARTIAL)
  2446. min = MAX_PARTIAL;
  2447. s->min_partial = min;
  2448. }
  2449. /*
  2450. * calculate_sizes() determines the order and the distribution of data within
  2451. * a slab object.
  2452. */
  2453. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2454. {
  2455. unsigned long flags = s->flags;
  2456. unsigned long size = s->objsize;
  2457. unsigned long align = s->align;
  2458. int order;
  2459. /*
  2460. * Round up object size to the next word boundary. We can only
  2461. * place the free pointer at word boundaries and this determines
  2462. * the possible location of the free pointer.
  2463. */
  2464. size = ALIGN(size, sizeof(void *));
  2465. #ifdef CONFIG_SLUB_DEBUG
  2466. /*
  2467. * Determine if we can poison the object itself. If the user of
  2468. * the slab may touch the object after free or before allocation
  2469. * then we should never poison the object itself.
  2470. */
  2471. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2472. !s->ctor)
  2473. s->flags |= __OBJECT_POISON;
  2474. else
  2475. s->flags &= ~__OBJECT_POISON;
  2476. /*
  2477. * If we are Redzoning then check if there is some space between the
  2478. * end of the object and the free pointer. If not then add an
  2479. * additional word to have some bytes to store Redzone information.
  2480. */
  2481. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  2482. size += sizeof(void *);
  2483. #endif
  2484. /*
  2485. * With that we have determined the number of bytes in actual use
  2486. * by the object. This is the potential offset to the free pointer.
  2487. */
  2488. s->inuse = size;
  2489. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2490. s->ctor)) {
  2491. /*
  2492. * Relocate free pointer after the object if it is not
  2493. * permitted to overwrite the first word of the object on
  2494. * kmem_cache_free.
  2495. *
  2496. * This is the case if we do RCU, have a constructor or
  2497. * destructor or are poisoning the objects.
  2498. */
  2499. s->offset = size;
  2500. size += sizeof(void *);
  2501. }
  2502. #ifdef CONFIG_SLUB_DEBUG
  2503. if (flags & SLAB_STORE_USER)
  2504. /*
  2505. * Need to store information about allocs and frees after
  2506. * the object.
  2507. */
  2508. size += 2 * sizeof(struct track);
  2509. if (flags & SLAB_RED_ZONE)
  2510. /*
  2511. * Add some empty padding so that we can catch
  2512. * overwrites from earlier objects rather than let
  2513. * tracking information or the free pointer be
  2514. * corrupted if a user writes before the start
  2515. * of the object.
  2516. */
  2517. size += sizeof(void *);
  2518. #endif
  2519. /*
  2520. * Determine the alignment based on various parameters that the
  2521. * user specified and the dynamic determination of cache line size
  2522. * on bootup.
  2523. */
  2524. align = calculate_alignment(flags, align, s->objsize);
  2525. s->align = align;
  2526. /*
  2527. * SLUB stores one object immediately after another beginning from
  2528. * offset 0. In order to align the objects we have to simply size
  2529. * each object to conform to the alignment.
  2530. */
  2531. size = ALIGN(size, align);
  2532. s->size = size;
  2533. if (forced_order >= 0)
  2534. order = forced_order;
  2535. else
  2536. order = calculate_order(size, s->reserved);
  2537. if (order < 0)
  2538. return 0;
  2539. s->allocflags = 0;
  2540. if (order)
  2541. s->allocflags |= __GFP_COMP;
  2542. if (s->flags & SLAB_CACHE_DMA)
  2543. s->allocflags |= SLUB_DMA;
  2544. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2545. s->allocflags |= __GFP_RECLAIMABLE;
  2546. /*
  2547. * Determine the number of objects per slab
  2548. */
  2549. s->oo = oo_make(order, size, s->reserved);
  2550. s->min = oo_make(get_order(size), size, s->reserved);
  2551. if (oo_objects(s->oo) > oo_objects(s->max))
  2552. s->max = s->oo;
  2553. return !!oo_objects(s->oo);
  2554. }
  2555. static int kmem_cache_open(struct kmem_cache *s,
  2556. const char *name, size_t size,
  2557. size_t align, unsigned long flags,
  2558. void (*ctor)(void *))
  2559. {
  2560. memset(s, 0, kmem_size);
  2561. s->name = name;
  2562. s->ctor = ctor;
  2563. s->objsize = size;
  2564. s->align = align;
  2565. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2566. s->reserved = 0;
  2567. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2568. s->reserved = sizeof(struct rcu_head);
  2569. if (!calculate_sizes(s, -1))
  2570. goto error;
  2571. if (disable_higher_order_debug) {
  2572. /*
  2573. * Disable debugging flags that store metadata if the min slab
  2574. * order increased.
  2575. */
  2576. if (get_order(s->size) > get_order(s->objsize)) {
  2577. s->flags &= ~DEBUG_METADATA_FLAGS;
  2578. s->offset = 0;
  2579. if (!calculate_sizes(s, -1))
  2580. goto error;
  2581. }
  2582. }
  2583. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2584. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2585. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2586. /* Enable fast mode */
  2587. s->flags |= __CMPXCHG_DOUBLE;
  2588. #endif
  2589. /*
  2590. * The larger the object size is, the more pages we want on the partial
  2591. * list to avoid pounding the page allocator excessively.
  2592. */
  2593. set_min_partial(s, ilog2(s->size) / 2);
  2594. /*
  2595. * cpu_partial determined the maximum number of objects kept in the
  2596. * per cpu partial lists of a processor.
  2597. *
  2598. * Per cpu partial lists mainly contain slabs that just have one
  2599. * object freed. If they are used for allocation then they can be
  2600. * filled up again with minimal effort. The slab will never hit the
  2601. * per node partial lists and therefore no locking will be required.
  2602. *
  2603. * This setting also determines
  2604. *
  2605. * A) The number of objects from per cpu partial slabs dumped to the
  2606. * per node list when we reach the limit.
  2607. * B) The number of objects in cpu partial slabs to extract from the
  2608. * per node list when we run out of per cpu objects. We only fetch 50%
  2609. * to keep some capacity around for frees.
  2610. */
  2611. if (kmem_cache_debug(s))
  2612. s->cpu_partial = 0;
  2613. else if (s->size >= PAGE_SIZE)
  2614. s->cpu_partial = 2;
  2615. else if (s->size >= 1024)
  2616. s->cpu_partial = 6;
  2617. else if (s->size >= 256)
  2618. s->cpu_partial = 13;
  2619. else
  2620. s->cpu_partial = 30;
  2621. s->refcount = 1;
  2622. #ifdef CONFIG_NUMA
  2623. s->remote_node_defrag_ratio = 1000;
  2624. #endif
  2625. if (!init_kmem_cache_nodes(s))
  2626. goto error;
  2627. if (alloc_kmem_cache_cpus(s))
  2628. return 1;
  2629. free_kmem_cache_nodes(s);
  2630. error:
  2631. if (flags & SLAB_PANIC)
  2632. panic("Cannot create slab %s size=%lu realsize=%u "
  2633. "order=%u offset=%u flags=%lx\n",
  2634. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2635. s->offset, flags);
  2636. return 0;
  2637. }
  2638. /*
  2639. * Determine the size of a slab object
  2640. */
  2641. unsigned int kmem_cache_size(struct kmem_cache *s)
  2642. {
  2643. return s->objsize;
  2644. }
  2645. EXPORT_SYMBOL(kmem_cache_size);
  2646. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2647. const char *text)
  2648. {
  2649. #ifdef CONFIG_SLUB_DEBUG
  2650. void *addr = page_address(page);
  2651. void *p;
  2652. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2653. sizeof(long), GFP_ATOMIC);
  2654. if (!map)
  2655. return;
  2656. slab_err(s, page, "%s", text);
  2657. slab_lock(page);
  2658. get_map(s, page, map);
  2659. for_each_object(p, s, addr, page->objects) {
  2660. if (!test_bit(slab_index(p, s, addr), map)) {
  2661. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2662. p, p - addr);
  2663. print_tracking(s, p);
  2664. }
  2665. }
  2666. slab_unlock(page);
  2667. kfree(map);
  2668. #endif
  2669. }
  2670. /*
  2671. * Attempt to free all partial slabs on a node.
  2672. * This is called from kmem_cache_close(). We must be the last thread
  2673. * using the cache and therefore we do not need to lock anymore.
  2674. */
  2675. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2676. {
  2677. struct page *page, *h;
  2678. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2679. if (!page->inuse) {
  2680. remove_partial(n, page);
  2681. discard_slab(s, page);
  2682. } else {
  2683. list_slab_objects(s, page,
  2684. "Objects remaining on kmem_cache_close()");
  2685. }
  2686. }
  2687. }
  2688. /*
  2689. * Release all resources used by a slab cache.
  2690. */
  2691. static inline int kmem_cache_close(struct kmem_cache *s)
  2692. {
  2693. int node;
  2694. flush_all(s);
  2695. free_percpu(s->cpu_slab);
  2696. /* Attempt to free all objects */
  2697. for_each_node_state(node, N_NORMAL_MEMORY) {
  2698. struct kmem_cache_node *n = get_node(s, node);
  2699. free_partial(s, n);
  2700. if (n->nr_partial || slabs_node(s, node))
  2701. return 1;
  2702. }
  2703. free_kmem_cache_nodes(s);
  2704. return 0;
  2705. }
  2706. /*
  2707. * Close a cache and release the kmem_cache structure
  2708. * (must be used for caches created using kmem_cache_create)
  2709. */
  2710. void kmem_cache_destroy(struct kmem_cache *s)
  2711. {
  2712. down_write(&slub_lock);
  2713. s->refcount--;
  2714. if (!s->refcount) {
  2715. list_del(&s->list);
  2716. up_write(&slub_lock);
  2717. if (kmem_cache_close(s)) {
  2718. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2719. "still has objects.\n", s->name, __func__);
  2720. dump_stack();
  2721. }
  2722. if (s->flags & SLAB_DESTROY_BY_RCU)
  2723. rcu_barrier();
  2724. sysfs_slab_remove(s);
  2725. } else
  2726. up_write(&slub_lock);
  2727. }
  2728. EXPORT_SYMBOL(kmem_cache_destroy);
  2729. /********************************************************************
  2730. * Kmalloc subsystem
  2731. *******************************************************************/
  2732. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2733. EXPORT_SYMBOL(kmalloc_caches);
  2734. static struct kmem_cache *kmem_cache;
  2735. #ifdef CONFIG_ZONE_DMA
  2736. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2737. #endif
  2738. static int __init setup_slub_min_order(char *str)
  2739. {
  2740. get_option(&str, &slub_min_order);
  2741. return 1;
  2742. }
  2743. __setup("slub_min_order=", setup_slub_min_order);
  2744. static int __init setup_slub_max_order(char *str)
  2745. {
  2746. get_option(&str, &slub_max_order);
  2747. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2748. return 1;
  2749. }
  2750. __setup("slub_max_order=", setup_slub_max_order);
  2751. static int __init setup_slub_min_objects(char *str)
  2752. {
  2753. get_option(&str, &slub_min_objects);
  2754. return 1;
  2755. }
  2756. __setup("slub_min_objects=", setup_slub_min_objects);
  2757. static int __init setup_slub_nomerge(char *str)
  2758. {
  2759. slub_nomerge = 1;
  2760. return 1;
  2761. }
  2762. __setup("slub_nomerge", setup_slub_nomerge);
  2763. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2764. int size, unsigned int flags)
  2765. {
  2766. struct kmem_cache *s;
  2767. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2768. /*
  2769. * This function is called with IRQs disabled during early-boot on
  2770. * single CPU so there's no need to take slub_lock here.
  2771. */
  2772. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2773. flags, NULL))
  2774. goto panic;
  2775. list_add(&s->list, &slab_caches);
  2776. return s;
  2777. panic:
  2778. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2779. return NULL;
  2780. }
  2781. /*
  2782. * Conversion table for small slabs sizes / 8 to the index in the
  2783. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2784. * of two cache sizes there. The size of larger slabs can be determined using
  2785. * fls.
  2786. */
  2787. static s8 size_index[24] = {
  2788. 3, /* 8 */
  2789. 4, /* 16 */
  2790. 5, /* 24 */
  2791. 5, /* 32 */
  2792. 6, /* 40 */
  2793. 6, /* 48 */
  2794. 6, /* 56 */
  2795. 6, /* 64 */
  2796. 1, /* 72 */
  2797. 1, /* 80 */
  2798. 1, /* 88 */
  2799. 1, /* 96 */
  2800. 7, /* 104 */
  2801. 7, /* 112 */
  2802. 7, /* 120 */
  2803. 7, /* 128 */
  2804. 2, /* 136 */
  2805. 2, /* 144 */
  2806. 2, /* 152 */
  2807. 2, /* 160 */
  2808. 2, /* 168 */
  2809. 2, /* 176 */
  2810. 2, /* 184 */
  2811. 2 /* 192 */
  2812. };
  2813. static inline int size_index_elem(size_t bytes)
  2814. {
  2815. return (bytes - 1) / 8;
  2816. }
  2817. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2818. {
  2819. int index;
  2820. if (size <= 192) {
  2821. if (!size)
  2822. return ZERO_SIZE_PTR;
  2823. index = size_index[size_index_elem(size)];
  2824. } else
  2825. index = fls(size - 1);
  2826. #ifdef CONFIG_ZONE_DMA
  2827. if (unlikely((flags & SLUB_DMA)))
  2828. return kmalloc_dma_caches[index];
  2829. #endif
  2830. return kmalloc_caches[index];
  2831. }
  2832. void *__kmalloc(size_t size, gfp_t flags)
  2833. {
  2834. struct kmem_cache *s;
  2835. void *ret;
  2836. if (unlikely(size > SLUB_MAX_SIZE))
  2837. return kmalloc_large(size, flags);
  2838. s = get_slab(size, flags);
  2839. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2840. return s;
  2841. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2842. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2843. return ret;
  2844. }
  2845. EXPORT_SYMBOL(__kmalloc);
  2846. #ifdef CONFIG_NUMA
  2847. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2848. {
  2849. struct page *page;
  2850. void *ptr = NULL;
  2851. flags |= __GFP_COMP | __GFP_NOTRACK;
  2852. page = alloc_pages_node(node, flags, get_order(size));
  2853. if (page)
  2854. ptr = page_address(page);
  2855. kmemleak_alloc(ptr, size, 1, flags);
  2856. return ptr;
  2857. }
  2858. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2859. {
  2860. struct kmem_cache *s;
  2861. void *ret;
  2862. if (unlikely(size > SLUB_MAX_SIZE)) {
  2863. ret = kmalloc_large_node(size, flags, node);
  2864. trace_kmalloc_node(_RET_IP_, ret,
  2865. size, PAGE_SIZE << get_order(size),
  2866. flags, node);
  2867. return ret;
  2868. }
  2869. s = get_slab(size, flags);
  2870. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2871. return s;
  2872. ret = slab_alloc(s, flags, node, _RET_IP_);
  2873. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2874. return ret;
  2875. }
  2876. EXPORT_SYMBOL(__kmalloc_node);
  2877. #endif
  2878. size_t ksize(const void *object)
  2879. {
  2880. struct page *page;
  2881. if (unlikely(object == ZERO_SIZE_PTR))
  2882. return 0;
  2883. page = virt_to_head_page(object);
  2884. if (unlikely(!PageSlab(page))) {
  2885. WARN_ON(!PageCompound(page));
  2886. return PAGE_SIZE << compound_order(page);
  2887. }
  2888. return slab_ksize(page->slab);
  2889. }
  2890. EXPORT_SYMBOL(ksize);
  2891. #ifdef CONFIG_SLUB_DEBUG
  2892. bool verify_mem_not_deleted(const void *x)
  2893. {
  2894. struct page *page;
  2895. void *object = (void *)x;
  2896. unsigned long flags;
  2897. bool rv;
  2898. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2899. return false;
  2900. local_irq_save(flags);
  2901. page = virt_to_head_page(x);
  2902. if (unlikely(!PageSlab(page))) {
  2903. /* maybe it was from stack? */
  2904. rv = true;
  2905. goto out_unlock;
  2906. }
  2907. slab_lock(page);
  2908. if (on_freelist(page->slab, page, object)) {
  2909. object_err(page->slab, page, object, "Object is on free-list");
  2910. rv = false;
  2911. } else {
  2912. rv = true;
  2913. }
  2914. slab_unlock(page);
  2915. out_unlock:
  2916. local_irq_restore(flags);
  2917. return rv;
  2918. }
  2919. EXPORT_SYMBOL(verify_mem_not_deleted);
  2920. #endif
  2921. #ifdef CONFIG_SEC_DEBUG_DOUBLE_FREE
  2922. void kfree(const void *y)
  2923. #else
  2924. void kfree(const void *x)
  2925. #endif
  2926. {
  2927. struct page *page;
  2928. #ifdef CONFIG_SEC_DEBUG_DOUBLE_FREE
  2929. void *x = (void *)y;
  2930. #endif
  2931. void *object = (void *)x;
  2932. #ifdef CONFIG_SEC_DEBUG_DOUBLE_FREE
  2933. object = x = kfree_hook(x, __builtin_return_address(0));
  2934. if (!x)
  2935. return;
  2936. #endif
  2937. trace_kfree(_RET_IP_, x);
  2938. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2939. return;
  2940. page = virt_to_head_page(x);
  2941. if (unlikely(!PageSlab(page))) {
  2942. BUG_ON(!PageCompound(page));
  2943. kmemleak_free(x);
  2944. put_page(page);
  2945. return;
  2946. }
  2947. slab_free(page->slab, page, object, _RET_IP_);
  2948. }
  2949. EXPORT_SYMBOL(kfree);
  2950. /*
  2951. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2952. * the remaining slabs by the number of items in use. The slabs with the
  2953. * most items in use come first. New allocations will then fill those up
  2954. * and thus they can be removed from the partial lists.
  2955. *
  2956. * The slabs with the least items are placed last. This results in them
  2957. * being allocated from last increasing the chance that the last objects
  2958. * are freed in them.
  2959. */
  2960. int kmem_cache_shrink(struct kmem_cache *s)
  2961. {
  2962. int node;
  2963. int i;
  2964. struct kmem_cache_node *n;
  2965. struct page *page;
  2966. struct page *t;
  2967. int objects = oo_objects(s->max);
  2968. struct list_head *slabs_by_inuse =
  2969. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2970. unsigned long flags;
  2971. if (!slabs_by_inuse)
  2972. return -ENOMEM;
  2973. flush_all(s);
  2974. for_each_node_state(node, N_NORMAL_MEMORY) {
  2975. n = get_node(s, node);
  2976. if (!n->nr_partial)
  2977. continue;
  2978. for (i = 0; i < objects; i++)
  2979. INIT_LIST_HEAD(slabs_by_inuse + i);
  2980. spin_lock_irqsave(&n->list_lock, flags);
  2981. /*
  2982. * Build lists indexed by the items in use in each slab.
  2983. *
  2984. * Note that concurrent frees may occur while we hold the
  2985. * list_lock. page->inuse here is the upper limit.
  2986. */
  2987. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2988. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2989. if (!page->inuse)
  2990. n->nr_partial--;
  2991. }
  2992. /*
  2993. * Rebuild the partial list with the slabs filled up most
  2994. * first and the least used slabs at the end.
  2995. */
  2996. for (i = objects - 1; i > 0; i--)
  2997. list_splice(slabs_by_inuse + i, n->partial.prev);
  2998. spin_unlock_irqrestore(&n->list_lock, flags);
  2999. /* Release empty slabs */
  3000. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  3001. discard_slab(s, page);
  3002. }
  3003. kfree(slabs_by_inuse);
  3004. return 0;
  3005. }
  3006. EXPORT_SYMBOL(kmem_cache_shrink);
  3007. #if defined(CONFIG_MEMORY_HOTPLUG)
  3008. static int slab_mem_going_offline_callback(void *arg)
  3009. {
  3010. struct kmem_cache *s;
  3011. down_read(&slub_lock);
  3012. list_for_each_entry(s, &slab_caches, list)
  3013. kmem_cache_shrink(s);
  3014. up_read(&slub_lock);
  3015. return 0;
  3016. }
  3017. static void slab_mem_offline_callback(void *arg)
  3018. {
  3019. struct kmem_cache_node *n;
  3020. struct kmem_cache *s;
  3021. struct memory_notify *marg = arg;
  3022. int offline_node;
  3023. offline_node = marg->status_change_nid;
  3024. /*
  3025. * If the node still has available memory. we need kmem_cache_node
  3026. * for it yet.
  3027. */
  3028. if (offline_node < 0)
  3029. return;
  3030. down_read(&slub_lock);
  3031. list_for_each_entry(s, &slab_caches, list) {
  3032. n = get_node(s, offline_node);
  3033. if (n) {
  3034. /*
  3035. * if n->nr_slabs > 0, slabs still exist on the node
  3036. * that is going down. We were unable to free them,
  3037. * and offline_pages() function shouldn't call this
  3038. * callback. So, we must fail.
  3039. */
  3040. BUG_ON(slabs_node(s, offline_node));
  3041. s->node[offline_node] = NULL;
  3042. kmem_cache_free(kmem_cache_node, n);
  3043. }
  3044. }
  3045. up_read(&slub_lock);
  3046. }
  3047. static int slab_mem_going_online_callback(void *arg)
  3048. {
  3049. struct kmem_cache_node *n;
  3050. struct kmem_cache *s;
  3051. struct memory_notify *marg = arg;
  3052. int nid = marg->status_change_nid;
  3053. int ret = 0;
  3054. /*
  3055. * If the node's memory is already available, then kmem_cache_node is
  3056. * already created. Nothing to do.
  3057. */
  3058. if (nid < 0)
  3059. return 0;
  3060. /*
  3061. * We are bringing a node online. No memory is available yet. We must
  3062. * allocate a kmem_cache_node structure in order to bring the node
  3063. * online.
  3064. */
  3065. down_read(&slub_lock);
  3066. list_for_each_entry(s, &slab_caches, list) {
  3067. /*
  3068. * XXX: kmem_cache_alloc_node will fallback to other nodes
  3069. * since memory is not yet available from the node that
  3070. * is brought up.
  3071. */
  3072. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  3073. if (!n) {
  3074. ret = -ENOMEM;
  3075. goto out;
  3076. }
  3077. init_kmem_cache_node(n, s);
  3078. s->node[nid] = n;
  3079. }
  3080. out:
  3081. up_read(&slub_lock);
  3082. return ret;
  3083. }
  3084. static int slab_memory_callback(struct notifier_block *self,
  3085. unsigned long action, void *arg)
  3086. {
  3087. int ret = 0;
  3088. switch (action) {
  3089. case MEM_GOING_ONLINE:
  3090. ret = slab_mem_going_online_callback(arg);
  3091. break;
  3092. case MEM_GOING_OFFLINE:
  3093. ret = slab_mem_going_offline_callback(arg);
  3094. break;
  3095. case MEM_OFFLINE:
  3096. case MEM_CANCEL_ONLINE:
  3097. slab_mem_offline_callback(arg);
  3098. break;
  3099. case MEM_ONLINE:
  3100. case MEM_CANCEL_OFFLINE:
  3101. break;
  3102. }
  3103. if (ret)
  3104. ret = notifier_from_errno(ret);
  3105. else
  3106. ret = NOTIFY_OK;
  3107. return ret;
  3108. }
  3109. #endif /* CONFIG_MEMORY_HOTPLUG */
  3110. /********************************************************************
  3111. * Basic setup of slabs
  3112. *******************************************************************/
  3113. /*
  3114. * Used for early kmem_cache structures that were allocated using
  3115. * the page allocator
  3116. */
  3117. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  3118. {
  3119. int node;
  3120. list_add(&s->list, &slab_caches);
  3121. s->refcount = -1;
  3122. for_each_node_state(node, N_NORMAL_MEMORY) {
  3123. struct kmem_cache_node *n = get_node(s, node);
  3124. struct page *p;
  3125. if (n) {
  3126. list_for_each_entry(p, &n->partial, lru)
  3127. p->slab = s;
  3128. #ifdef CONFIG_SLUB_DEBUG
  3129. list_for_each_entry(p, &n->full, lru)
  3130. p->slab = s;
  3131. #endif
  3132. }
  3133. }
  3134. }
  3135. void __init kmem_cache_init(void)
  3136. {
  3137. int i;
  3138. int caches = 0;
  3139. struct kmem_cache *temp_kmem_cache;
  3140. int order;
  3141. struct kmem_cache *temp_kmem_cache_node;
  3142. unsigned long kmalloc_size;
  3143. if (debug_guardpage_minorder())
  3144. slub_max_order = 0;
  3145. kmem_size = offsetof(struct kmem_cache, node) +
  3146. nr_node_ids * sizeof(struct kmem_cache_node *);
  3147. /* Allocate two kmem_caches from the page allocator */
  3148. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  3149. order = get_order(2 * kmalloc_size);
  3150. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  3151. /*
  3152. * Must first have the slab cache available for the allocations of the
  3153. * struct kmem_cache_node's. There is special bootstrap code in
  3154. * kmem_cache_open for slab_state == DOWN.
  3155. */
  3156. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  3157. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  3158. sizeof(struct kmem_cache_node),
  3159. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3160. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3161. /* Able to allocate the per node structures */
  3162. slab_state = PARTIAL;
  3163. temp_kmem_cache = kmem_cache;
  3164. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  3165. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3166. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3167. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  3168. /*
  3169. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3170. * kmem_cache_node is separately allocated so no need to
  3171. * update any list pointers.
  3172. */
  3173. temp_kmem_cache_node = kmem_cache_node;
  3174. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3175. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  3176. kmem_cache_bootstrap_fixup(kmem_cache_node);
  3177. caches++;
  3178. kmem_cache_bootstrap_fixup(kmem_cache);
  3179. caches++;
  3180. /* Free temporary boot structure */
  3181. free_pages((unsigned long)temp_kmem_cache, order);
  3182. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3183. /*
  3184. * Patch up the size_index table if we have strange large alignment
  3185. * requirements for the kmalloc array. This is only the case for
  3186. * MIPS it seems. The standard arches will not generate any code here.
  3187. *
  3188. * Largest permitted alignment is 256 bytes due to the way we
  3189. * handle the index determination for the smaller caches.
  3190. *
  3191. * Make sure that nothing crazy happens if someone starts tinkering
  3192. * around with ARCH_KMALLOC_MINALIGN
  3193. */
  3194. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  3195. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  3196. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  3197. int elem = size_index_elem(i);
  3198. if (elem >= ARRAY_SIZE(size_index))
  3199. break;
  3200. size_index[elem] = KMALLOC_SHIFT_LOW;
  3201. }
  3202. if (KMALLOC_MIN_SIZE == 64) {
  3203. /*
  3204. * The 96 byte size cache is not used if the alignment
  3205. * is 64 byte.
  3206. */
  3207. for (i = 64 + 8; i <= 96; i += 8)
  3208. size_index[size_index_elem(i)] = 7;
  3209. } else if (KMALLOC_MIN_SIZE == 128) {
  3210. /*
  3211. * The 192 byte sized cache is not used if the alignment
  3212. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  3213. * instead.
  3214. */
  3215. for (i = 128 + 8; i <= 192; i += 8)
  3216. size_index[size_index_elem(i)] = 8;
  3217. }
  3218. /* Caches that are not of the two-to-the-power-of size */
  3219. if (KMALLOC_MIN_SIZE <= 32) {
  3220. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  3221. caches++;
  3222. }
  3223. if (KMALLOC_MIN_SIZE <= 64) {
  3224. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  3225. caches++;
  3226. }
  3227. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3228. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  3229. caches++;
  3230. }
  3231. slab_state = UP;
  3232. /* Provide the correct kmalloc names now that the caches are up */
  3233. if (KMALLOC_MIN_SIZE <= 32) {
  3234. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  3235. BUG_ON(!kmalloc_caches[1]->name);
  3236. }
  3237. if (KMALLOC_MIN_SIZE <= 64) {
  3238. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  3239. BUG_ON(!kmalloc_caches[2]->name);
  3240. }
  3241. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3242. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  3243. BUG_ON(!s);
  3244. kmalloc_caches[i]->name = s;
  3245. }
  3246. #ifdef CONFIG_SMP
  3247. register_cpu_notifier(&slab_notifier);
  3248. #endif
  3249. #ifdef CONFIG_ZONE_DMA
  3250. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3251. struct kmem_cache *s = kmalloc_caches[i];
  3252. if (s && s->size) {
  3253. char *name = kasprintf(GFP_NOWAIT,
  3254. "dma-kmalloc-%d", s->objsize);
  3255. BUG_ON(!name);
  3256. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3257. s->objsize, SLAB_CACHE_DMA);
  3258. }
  3259. }
  3260. #endif
  3261. printk(KERN_INFO
  3262. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3263. " CPUs=%d, Nodes=%d\n",
  3264. caches, cache_line_size(),
  3265. slub_min_order, slub_max_order, slub_min_objects,
  3266. nr_cpu_ids, nr_node_ids);
  3267. }
  3268. void __init kmem_cache_init_late(void)
  3269. {
  3270. }
  3271. /*
  3272. * Find a mergeable slab cache
  3273. */
  3274. static int slab_unmergeable(struct kmem_cache *s)
  3275. {
  3276. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3277. return 1;
  3278. if (s->ctor)
  3279. return 1;
  3280. /*
  3281. * We may have set a slab to be unmergeable during bootstrap.
  3282. */
  3283. if (s->refcount < 0)
  3284. return 1;
  3285. return 0;
  3286. }
  3287. static struct kmem_cache *find_mergeable(size_t size,
  3288. size_t align, unsigned long flags, const char *name,
  3289. void (*ctor)(void *))
  3290. {
  3291. struct kmem_cache *s;
  3292. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3293. return NULL;
  3294. if (ctor)
  3295. return NULL;
  3296. size = ALIGN(size, sizeof(void *));
  3297. align = calculate_alignment(flags, align, size);
  3298. size = ALIGN(size, align);
  3299. flags = kmem_cache_flags(size, flags, name, NULL);
  3300. list_for_each_entry(s, &slab_caches, list) {
  3301. if (slab_unmergeable(s))
  3302. continue;
  3303. if (size > s->size)
  3304. continue;
  3305. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3306. continue;
  3307. /*
  3308. * Check if alignment is compatible.
  3309. * Courtesy of Adrian Drzewiecki
  3310. */
  3311. if ((s->size & ~(align - 1)) != s->size)
  3312. continue;
  3313. if (s->size - size >= sizeof(void *))
  3314. continue;
  3315. return s;
  3316. }
  3317. return NULL;
  3318. }
  3319. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  3320. size_t align, unsigned long flags, void (*ctor)(void *))
  3321. {
  3322. struct kmem_cache *s;
  3323. char *n;
  3324. if (WARN_ON(!name))
  3325. return NULL;
  3326. down_write(&slub_lock);
  3327. s = find_mergeable(size, align, flags, name, ctor);
  3328. if (s) {
  3329. s->refcount++;
  3330. /*
  3331. * Adjust the object sizes so that we clear
  3332. * the complete object on kzalloc.
  3333. */
  3334. s->objsize = max(s->objsize, (int)size);
  3335. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3336. if (sysfs_slab_alias(s, name)) {
  3337. s->refcount--;
  3338. goto err;
  3339. }
  3340. up_write(&slub_lock);
  3341. return s;
  3342. }
  3343. n = kstrdup(name, GFP_KERNEL);
  3344. if (!n)
  3345. goto err;
  3346. s = kmalloc(kmem_size, GFP_KERNEL);
  3347. if (s) {
  3348. if (kmem_cache_open(s, n,
  3349. size, align, flags, ctor)) {
  3350. list_add(&s->list, &slab_caches);
  3351. up_write(&slub_lock);
  3352. if (sysfs_slab_add(s)) {
  3353. down_write(&slub_lock);
  3354. list_del(&s->list);
  3355. kfree(n);
  3356. kfree(s);
  3357. goto err;
  3358. }
  3359. return s;
  3360. }
  3361. kfree(n);
  3362. kfree(s);
  3363. }
  3364. err:
  3365. up_write(&slub_lock);
  3366. if (flags & SLAB_PANIC)
  3367. panic("Cannot create slabcache %s\n", name);
  3368. else
  3369. s = NULL;
  3370. return s;
  3371. }
  3372. EXPORT_SYMBOL(kmem_cache_create);
  3373. #ifdef CONFIG_SMP
  3374. /*
  3375. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3376. * necessary.
  3377. */
  3378. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3379. unsigned long action, void *hcpu)
  3380. {
  3381. long cpu = (long)hcpu;
  3382. struct kmem_cache *s;
  3383. unsigned long flags;
  3384. switch (action) {
  3385. case CPU_UP_CANCELED:
  3386. case CPU_UP_CANCELED_FROZEN:
  3387. case CPU_DEAD:
  3388. case CPU_DEAD_FROZEN:
  3389. down_read(&slub_lock);
  3390. list_for_each_entry(s, &slab_caches, list) {
  3391. local_irq_save(flags);
  3392. __flush_cpu_slab(s, cpu);
  3393. local_irq_restore(flags);
  3394. }
  3395. up_read(&slub_lock);
  3396. break;
  3397. default:
  3398. break;
  3399. }
  3400. return NOTIFY_OK;
  3401. }
  3402. static struct notifier_block __cpuinitdata slab_notifier = {
  3403. .notifier_call = slab_cpuup_callback
  3404. };
  3405. #endif
  3406. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3407. {
  3408. struct kmem_cache *s;
  3409. void *ret;
  3410. if (unlikely(size > SLUB_MAX_SIZE))
  3411. return kmalloc_large(size, gfpflags);
  3412. s = get_slab(size, gfpflags);
  3413. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3414. return s;
  3415. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  3416. /* Honor the call site pointer we received. */
  3417. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3418. return ret;
  3419. }
  3420. #ifdef CONFIG_NUMA
  3421. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3422. int node, unsigned long caller)
  3423. {
  3424. struct kmem_cache *s;
  3425. void *ret;
  3426. if (unlikely(size > SLUB_MAX_SIZE)) {
  3427. ret = kmalloc_large_node(size, gfpflags, node);
  3428. trace_kmalloc_node(caller, ret,
  3429. size, PAGE_SIZE << get_order(size),
  3430. gfpflags, node);
  3431. return ret;
  3432. }
  3433. s = get_slab(size, gfpflags);
  3434. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3435. return s;
  3436. ret = slab_alloc(s, gfpflags, node, caller);
  3437. /* Honor the call site pointer we received. */
  3438. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3439. return ret;
  3440. }
  3441. #endif
  3442. #ifdef CONFIG_SYSFS
  3443. static int count_inuse(struct page *page)
  3444. {
  3445. return page->inuse;
  3446. }
  3447. static int count_total(struct page *page)
  3448. {
  3449. return page->objects;
  3450. }
  3451. #endif
  3452. #ifdef CONFIG_SLUB_DEBUG
  3453. static int validate_slab(struct kmem_cache *s, struct page *page,
  3454. unsigned long *map)
  3455. {
  3456. void *p;
  3457. void *addr = page_address(page);
  3458. if (!check_slab(s, page) ||
  3459. !on_freelist(s, page, NULL))
  3460. return 0;
  3461. /* Now we know that a valid freelist exists */
  3462. bitmap_zero(map, page->objects);
  3463. get_map(s, page, map);
  3464. for_each_object(p, s, addr, page->objects) {
  3465. if (test_bit(slab_index(p, s, addr), map))
  3466. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3467. return 0;
  3468. }
  3469. for_each_object(p, s, addr, page->objects)
  3470. if (!test_bit(slab_index(p, s, addr), map))
  3471. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3472. return 0;
  3473. return 1;
  3474. }
  3475. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3476. unsigned long *map)
  3477. {
  3478. slab_lock(page);
  3479. validate_slab(s, page, map);
  3480. slab_unlock(page);
  3481. }
  3482. static int validate_slab_node(struct kmem_cache *s,
  3483. struct kmem_cache_node *n, unsigned long *map)
  3484. {
  3485. unsigned long count = 0;
  3486. struct page *page;
  3487. unsigned long flags;
  3488. spin_lock_irqsave(&n->list_lock, flags);
  3489. list_for_each_entry(page, &n->partial, lru) {
  3490. validate_slab_slab(s, page, map);
  3491. count++;
  3492. }
  3493. if (count != n->nr_partial)
  3494. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3495. "counter=%ld\n", s->name, count, n->nr_partial);
  3496. if (!(s->flags & SLAB_STORE_USER))
  3497. goto out;
  3498. list_for_each_entry(page, &n->full, lru) {
  3499. validate_slab_slab(s, page, map);
  3500. count++;
  3501. }
  3502. if (count != atomic_long_read(&n->nr_slabs))
  3503. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3504. "counter=%ld\n", s->name, count,
  3505. atomic_long_read(&n->nr_slabs));
  3506. out:
  3507. spin_unlock_irqrestore(&n->list_lock, flags);
  3508. return count;
  3509. }
  3510. static long validate_slab_cache(struct kmem_cache *s)
  3511. {
  3512. int node;
  3513. unsigned long count = 0;
  3514. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3515. sizeof(unsigned long), GFP_KERNEL);
  3516. if (!map)
  3517. return -ENOMEM;
  3518. flush_all(s);
  3519. for_each_node_state(node, N_NORMAL_MEMORY) {
  3520. struct kmem_cache_node *n = get_node(s, node);
  3521. count += validate_slab_node(s, n, map);
  3522. }
  3523. kfree(map);
  3524. return count;
  3525. }
  3526. /*
  3527. * Generate lists of code addresses where slabcache objects are allocated
  3528. * and freed.
  3529. */
  3530. struct location {
  3531. unsigned long count;
  3532. unsigned long addr;
  3533. long long sum_time;
  3534. long min_time;
  3535. long max_time;
  3536. long min_pid;
  3537. long max_pid;
  3538. DECLARE_BITMAP(cpus, NR_CPUS);
  3539. nodemask_t nodes;
  3540. };
  3541. struct loc_track {
  3542. unsigned long max;
  3543. unsigned long count;
  3544. struct location *loc;
  3545. };
  3546. static void free_loc_track(struct loc_track *t)
  3547. {
  3548. if (t->max)
  3549. free_pages((unsigned long)t->loc,
  3550. get_order(sizeof(struct location) * t->max));
  3551. }
  3552. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3553. {
  3554. struct location *l;
  3555. int order;
  3556. order = get_order(sizeof(struct location) * max);
  3557. l = (void *)__get_free_pages(flags, order);
  3558. if (!l)
  3559. return 0;
  3560. if (t->count) {
  3561. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3562. free_loc_track(t);
  3563. }
  3564. t->max = max;
  3565. t->loc = l;
  3566. return 1;
  3567. }
  3568. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3569. const struct track *track)
  3570. {
  3571. long start, end, pos;
  3572. struct location *l;
  3573. unsigned long caddr;
  3574. unsigned long age = jiffies - track->when;
  3575. start = -1;
  3576. end = t->count;
  3577. for ( ; ; ) {
  3578. pos = start + (end - start + 1) / 2;
  3579. /*
  3580. * There is nothing at "end". If we end up there
  3581. * we need to add something to before end.
  3582. */
  3583. if (pos == end)
  3584. break;
  3585. caddr = t->loc[pos].addr;
  3586. if (track->addr == caddr) {
  3587. l = &t->loc[pos];
  3588. l->count++;
  3589. if (track->when) {
  3590. l->sum_time += age;
  3591. if (age < l->min_time)
  3592. l->min_time = age;
  3593. if (age > l->max_time)
  3594. l->max_time = age;
  3595. if (track->pid < l->min_pid)
  3596. l->min_pid = track->pid;
  3597. if (track->pid > l->max_pid)
  3598. l->max_pid = track->pid;
  3599. cpumask_set_cpu(track->cpu,
  3600. to_cpumask(l->cpus));
  3601. }
  3602. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3603. return 1;
  3604. }
  3605. if (track->addr < caddr)
  3606. end = pos;
  3607. else
  3608. start = pos;
  3609. }
  3610. /*
  3611. * Not found. Insert new tracking element.
  3612. */
  3613. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3614. return 0;
  3615. l = t->loc + pos;
  3616. if (pos < t->count)
  3617. memmove(l + 1, l,
  3618. (t->count - pos) * sizeof(struct location));
  3619. t->count++;
  3620. l->count = 1;
  3621. l->addr = track->addr;
  3622. l->sum_time = age;
  3623. l->min_time = age;
  3624. l->max_time = age;
  3625. l->min_pid = track->pid;
  3626. l->max_pid = track->pid;
  3627. cpumask_clear(to_cpumask(l->cpus));
  3628. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3629. nodes_clear(l->nodes);
  3630. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3631. return 1;
  3632. }
  3633. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3634. struct page *page, enum track_item alloc,
  3635. unsigned long *map)
  3636. {
  3637. void *addr = page_address(page);
  3638. void *p;
  3639. bitmap_zero(map, page->objects);
  3640. get_map(s, page, map);
  3641. for_each_object(p, s, addr, page->objects)
  3642. if (!test_bit(slab_index(p, s, addr), map))
  3643. add_location(t, s, get_track(s, p, alloc));
  3644. }
  3645. static int list_locations(struct kmem_cache *s, char *buf,
  3646. enum track_item alloc)
  3647. {
  3648. int len = 0;
  3649. unsigned long i;
  3650. struct loc_track t = { 0, 0, NULL };
  3651. int node;
  3652. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3653. sizeof(unsigned long), GFP_KERNEL);
  3654. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3655. GFP_TEMPORARY)) {
  3656. kfree(map);
  3657. return sprintf(buf, "Out of memory\n");
  3658. }
  3659. /* Push back cpu slabs */
  3660. flush_all(s);
  3661. for_each_node_state(node, N_NORMAL_MEMORY) {
  3662. struct kmem_cache_node *n = get_node(s, node);
  3663. unsigned long flags;
  3664. struct page *page;
  3665. if (!atomic_long_read(&n->nr_slabs))
  3666. continue;
  3667. spin_lock_irqsave(&n->list_lock, flags);
  3668. list_for_each_entry(page, &n->partial, lru)
  3669. process_slab(&t, s, page, alloc, map);
  3670. list_for_each_entry(page, &n->full, lru)
  3671. process_slab(&t, s, page, alloc, map);
  3672. spin_unlock_irqrestore(&n->list_lock, flags);
  3673. }
  3674. for (i = 0; i < t.count; i++) {
  3675. struct location *l = &t.loc[i];
  3676. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3677. break;
  3678. len += sprintf(buf + len, "%7ld ", l->count);
  3679. if (l->addr)
  3680. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3681. else
  3682. len += sprintf(buf + len, "<not-available>");
  3683. if (l->sum_time != l->min_time) {
  3684. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3685. l->min_time,
  3686. (long)div_u64(l->sum_time, l->count),
  3687. l->max_time);
  3688. } else
  3689. len += sprintf(buf + len, " age=%ld",
  3690. l->min_time);
  3691. if (l->min_pid != l->max_pid)
  3692. len += sprintf(buf + len, " pid=%ld-%ld",
  3693. l->min_pid, l->max_pid);
  3694. else
  3695. len += sprintf(buf + len, " pid=%ld",
  3696. l->min_pid);
  3697. if (num_online_cpus() > 1 &&
  3698. !cpumask_empty(to_cpumask(l->cpus)) &&
  3699. len < PAGE_SIZE - 60) {
  3700. len += sprintf(buf + len, " cpus=");
  3701. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3702. to_cpumask(l->cpus));
  3703. }
  3704. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3705. len < PAGE_SIZE - 60) {
  3706. len += sprintf(buf + len, " nodes=");
  3707. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3708. l->nodes);
  3709. }
  3710. len += sprintf(buf + len, "\n");
  3711. }
  3712. free_loc_track(&t);
  3713. kfree(map);
  3714. if (!t.count)
  3715. len += sprintf(buf, "No data\n");
  3716. return len;
  3717. }
  3718. #endif
  3719. #ifdef SLUB_RESILIENCY_TEST
  3720. static void resiliency_test(void)
  3721. {
  3722. u8 *p;
  3723. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3724. printk(KERN_ERR "SLUB resiliency testing\n");
  3725. printk(KERN_ERR "-----------------------\n");
  3726. printk(KERN_ERR "A. Corruption after allocation\n");
  3727. p = kzalloc(16, GFP_KERNEL);
  3728. p[16] = 0x12;
  3729. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3730. " 0x12->0x%p\n\n", p + 16);
  3731. validate_slab_cache(kmalloc_caches[4]);
  3732. /* Hmmm... The next two are dangerous */
  3733. p = kzalloc(32, GFP_KERNEL);
  3734. p[32 + sizeof(void *)] = 0x34;
  3735. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3736. " 0x34 -> -0x%p\n", p);
  3737. printk(KERN_ERR
  3738. "If allocated object is overwritten then not detectable\n\n");
  3739. validate_slab_cache(kmalloc_caches[5]);
  3740. p = kzalloc(64, GFP_KERNEL);
  3741. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3742. *p = 0x56;
  3743. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3744. p);
  3745. printk(KERN_ERR
  3746. "If allocated object is overwritten then not detectable\n\n");
  3747. validate_slab_cache(kmalloc_caches[6]);
  3748. printk(KERN_ERR "\nB. Corruption after free\n");
  3749. p = kzalloc(128, GFP_KERNEL);
  3750. kfree(p);
  3751. *p = 0x78;
  3752. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3753. validate_slab_cache(kmalloc_caches[7]);
  3754. p = kzalloc(256, GFP_KERNEL);
  3755. kfree(p);
  3756. p[50] = 0x9a;
  3757. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3758. p);
  3759. validate_slab_cache(kmalloc_caches[8]);
  3760. p = kzalloc(512, GFP_KERNEL);
  3761. kfree(p);
  3762. p[512] = 0xab;
  3763. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3764. validate_slab_cache(kmalloc_caches[9]);
  3765. }
  3766. #else
  3767. #ifdef CONFIG_SYSFS
  3768. static void resiliency_test(void) {};
  3769. #endif
  3770. #endif
  3771. #ifdef CONFIG_SYSFS
  3772. enum slab_stat_type {
  3773. SL_ALL, /* All slabs */
  3774. SL_PARTIAL, /* Only partially allocated slabs */
  3775. SL_CPU, /* Only slabs used for cpu caches */
  3776. SL_OBJECTS, /* Determine allocated objects not slabs */
  3777. SL_TOTAL /* Determine object capacity not slabs */
  3778. };
  3779. #define SO_ALL (1 << SL_ALL)
  3780. #define SO_PARTIAL (1 << SL_PARTIAL)
  3781. #define SO_CPU (1 << SL_CPU)
  3782. #define SO_OBJECTS (1 << SL_OBJECTS)
  3783. #define SO_TOTAL (1 << SL_TOTAL)
  3784. static ssize_t show_slab_objects(struct kmem_cache *s,
  3785. char *buf, unsigned long flags)
  3786. {
  3787. unsigned long total = 0;
  3788. int node;
  3789. int x;
  3790. unsigned long *nodes;
  3791. unsigned long *per_cpu;
  3792. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3793. if (!nodes)
  3794. return -ENOMEM;
  3795. per_cpu = nodes + nr_node_ids;
  3796. if (flags & SO_CPU) {
  3797. int cpu;
  3798. for_each_possible_cpu(cpu) {
  3799. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3800. int node = ACCESS_ONCE(c->node);
  3801. struct page *page;
  3802. if (node < 0)
  3803. continue;
  3804. page = ACCESS_ONCE(c->page);
  3805. if (page) {
  3806. if (flags & SO_TOTAL)
  3807. x = page->objects;
  3808. else if (flags & SO_OBJECTS)
  3809. x = page->inuse;
  3810. else
  3811. x = 1;
  3812. total += x;
  3813. nodes[node] += x;
  3814. }
  3815. page = c->partial;
  3816. if (page) {
  3817. node = page_to_nid(page);
  3818. if (flags & SO_TOTAL)
  3819. WARN_ON_ONCE(1);
  3820. else if (flags & SO_OBJECTS)
  3821. WARN_ON_ONCE(1);
  3822. else
  3823. x = page->pages;
  3824. total += x;
  3825. nodes[node] += x;
  3826. }
  3827. per_cpu[node]++;
  3828. }
  3829. }
  3830. lock_memory_hotplug();
  3831. #ifdef CONFIG_SLUB_DEBUG
  3832. if (flags & SO_ALL) {
  3833. for_each_node_state(node, N_NORMAL_MEMORY) {
  3834. struct kmem_cache_node *n = get_node(s, node);
  3835. if (flags & SO_TOTAL)
  3836. x = atomic_long_read(&n->total_objects);
  3837. else if (flags & SO_OBJECTS)
  3838. x = atomic_long_read(&n->total_objects) -
  3839. count_partial(n, count_free);
  3840. else
  3841. x = atomic_long_read(&n->nr_slabs);
  3842. total += x;
  3843. nodes[node] += x;
  3844. }
  3845. } else
  3846. #endif
  3847. if (flags & SO_PARTIAL) {
  3848. for_each_node_state(node, N_NORMAL_MEMORY) {
  3849. struct kmem_cache_node *n = get_node(s, node);
  3850. if (flags & SO_TOTAL)
  3851. x = count_partial(n, count_total);
  3852. else if (flags & SO_OBJECTS)
  3853. x = count_partial(n, count_inuse);
  3854. else
  3855. x = n->nr_partial;
  3856. total += x;
  3857. nodes[node] += x;
  3858. }
  3859. }
  3860. x = sprintf(buf, "%lu", total);
  3861. #ifdef CONFIG_NUMA
  3862. for_each_node_state(node, N_NORMAL_MEMORY)
  3863. if (nodes[node])
  3864. x += sprintf(buf + x, " N%d=%lu",
  3865. node, nodes[node]);
  3866. #endif
  3867. unlock_memory_hotplug();
  3868. kfree(nodes);
  3869. return x + sprintf(buf + x, "\n");
  3870. }
  3871. #ifdef CONFIG_SLUB_DEBUG
  3872. static int any_slab_objects(struct kmem_cache *s)
  3873. {
  3874. int node;
  3875. for_each_online_node(node) {
  3876. struct kmem_cache_node *n = get_node(s, node);
  3877. if (!n)
  3878. continue;
  3879. if (atomic_long_read(&n->total_objects))
  3880. return 1;
  3881. }
  3882. return 0;
  3883. }
  3884. #endif
  3885. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3886. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3887. struct slab_attribute {
  3888. struct attribute attr;
  3889. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3890. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3891. };
  3892. #define SLAB_ATTR_RO(_name) \
  3893. static struct slab_attribute _name##_attr = \
  3894. __ATTR(_name, 0400, _name##_show, NULL)
  3895. #define SLAB_ATTR(_name) \
  3896. static struct slab_attribute _name##_attr = \
  3897. __ATTR(_name, 0600, _name##_show, _name##_store)
  3898. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3899. {
  3900. return sprintf(buf, "%d\n", s->size);
  3901. }
  3902. SLAB_ATTR_RO(slab_size);
  3903. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3904. {
  3905. return sprintf(buf, "%d\n", s->align);
  3906. }
  3907. SLAB_ATTR_RO(align);
  3908. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3909. {
  3910. return sprintf(buf, "%d\n", s->objsize);
  3911. }
  3912. SLAB_ATTR_RO(object_size);
  3913. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3914. {
  3915. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3916. }
  3917. SLAB_ATTR_RO(objs_per_slab);
  3918. static ssize_t order_store(struct kmem_cache *s,
  3919. const char *buf, size_t length)
  3920. {
  3921. unsigned long order;
  3922. int err;
  3923. err = strict_strtoul(buf, 10, &order);
  3924. if (err)
  3925. return err;
  3926. if (order > slub_max_order || order < slub_min_order)
  3927. return -EINVAL;
  3928. calculate_sizes(s, order);
  3929. return length;
  3930. }
  3931. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3932. {
  3933. return sprintf(buf, "%d\n", oo_order(s->oo));
  3934. }
  3935. SLAB_ATTR(order);
  3936. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3937. {
  3938. return sprintf(buf, "%lu\n", s->min_partial);
  3939. }
  3940. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3941. size_t length)
  3942. {
  3943. unsigned long min;
  3944. int err;
  3945. err = strict_strtoul(buf, 10, &min);
  3946. if (err)
  3947. return err;
  3948. set_min_partial(s, min);
  3949. return length;
  3950. }
  3951. SLAB_ATTR(min_partial);
  3952. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3953. {
  3954. return sprintf(buf, "%u\n", s->cpu_partial);
  3955. }
  3956. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3957. size_t length)
  3958. {
  3959. unsigned long objects;
  3960. int err;
  3961. err = strict_strtoul(buf, 10, &objects);
  3962. if (err)
  3963. return err;
  3964. if (objects && kmem_cache_debug(s))
  3965. return -EINVAL;
  3966. s->cpu_partial = objects;
  3967. flush_all(s);
  3968. return length;
  3969. }
  3970. SLAB_ATTR(cpu_partial);
  3971. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3972. {
  3973. if (!s->ctor)
  3974. return 0;
  3975. return sprintf(buf, "%pS\n", s->ctor);
  3976. }
  3977. SLAB_ATTR_RO(ctor);
  3978. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3979. {
  3980. return sprintf(buf, "%d\n", s->refcount - 1);
  3981. }
  3982. SLAB_ATTR_RO(aliases);
  3983. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3984. {
  3985. return show_slab_objects(s, buf, SO_PARTIAL);
  3986. }
  3987. SLAB_ATTR_RO(partial);
  3988. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3989. {
  3990. return show_slab_objects(s, buf, SO_CPU);
  3991. }
  3992. SLAB_ATTR_RO(cpu_slabs);
  3993. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3994. {
  3995. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3996. }
  3997. SLAB_ATTR_RO(objects);
  3998. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3999. {
  4000. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  4001. }
  4002. SLAB_ATTR_RO(objects_partial);
  4003. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  4004. {
  4005. int objects = 0;
  4006. int pages = 0;
  4007. int cpu;
  4008. int len;
  4009. for_each_online_cpu(cpu) {
  4010. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  4011. if (page) {
  4012. pages += page->pages;
  4013. objects += page->pobjects;
  4014. }
  4015. }
  4016. len = sprintf(buf, "%d(%d)", objects, pages);
  4017. #ifdef CONFIG_SMP
  4018. for_each_online_cpu(cpu) {
  4019. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  4020. if (page && len < PAGE_SIZE - 20)
  4021. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  4022. page->pobjects, page->pages);
  4023. }
  4024. #endif
  4025. return len + sprintf(buf + len, "\n");
  4026. }
  4027. SLAB_ATTR_RO(slabs_cpu_partial);
  4028. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  4029. {
  4030. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  4031. }
  4032. static ssize_t reclaim_account_store(struct kmem_cache *s,
  4033. const char *buf, size_t length)
  4034. {
  4035. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  4036. if (buf[0] == '1')
  4037. s->flags |= SLAB_RECLAIM_ACCOUNT;
  4038. return length;
  4039. }
  4040. SLAB_ATTR(reclaim_account);
  4041. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  4042. {
  4043. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  4044. }
  4045. SLAB_ATTR_RO(hwcache_align);
  4046. #ifdef CONFIG_ZONE_DMA
  4047. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  4048. {
  4049. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  4050. }
  4051. SLAB_ATTR_RO(cache_dma);
  4052. #endif
  4053. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  4054. {
  4055. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  4056. }
  4057. SLAB_ATTR_RO(destroy_by_rcu);
  4058. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  4059. {
  4060. return sprintf(buf, "%d\n", s->reserved);
  4061. }
  4062. SLAB_ATTR_RO(reserved);
  4063. #ifdef CONFIG_SLUB_DEBUG
  4064. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  4065. {
  4066. return show_slab_objects(s, buf, SO_ALL);
  4067. }
  4068. SLAB_ATTR_RO(slabs);
  4069. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  4070. {
  4071. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  4072. }
  4073. SLAB_ATTR_RO(total_objects);
  4074. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  4075. {
  4076. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  4077. }
  4078. static ssize_t sanity_checks_store(struct kmem_cache *s,
  4079. const char *buf, size_t length)
  4080. {
  4081. s->flags &= ~SLAB_DEBUG_FREE;
  4082. if (buf[0] == '1') {
  4083. s->flags &= ~__CMPXCHG_DOUBLE;
  4084. s->flags |= SLAB_DEBUG_FREE;
  4085. }
  4086. return length;
  4087. }
  4088. SLAB_ATTR(sanity_checks);
  4089. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  4090. {
  4091. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  4092. }
  4093. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  4094. size_t length)
  4095. {
  4096. s->flags &= ~SLAB_TRACE;
  4097. if (buf[0] == '1') {
  4098. s->flags &= ~__CMPXCHG_DOUBLE;
  4099. s->flags |= SLAB_TRACE;
  4100. }
  4101. return length;
  4102. }
  4103. SLAB_ATTR(trace);
  4104. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  4105. {
  4106. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  4107. }
  4108. static ssize_t red_zone_store(struct kmem_cache *s,
  4109. const char *buf, size_t length)
  4110. {
  4111. if (any_slab_objects(s))
  4112. return -EBUSY;
  4113. s->flags &= ~SLAB_RED_ZONE;
  4114. if (buf[0] == '1') {
  4115. s->flags &= ~__CMPXCHG_DOUBLE;
  4116. s->flags |= SLAB_RED_ZONE;
  4117. }
  4118. calculate_sizes(s, -1);
  4119. return length;
  4120. }
  4121. SLAB_ATTR(red_zone);
  4122. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  4123. {
  4124. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  4125. }
  4126. static ssize_t poison_store(struct kmem_cache *s,
  4127. const char *buf, size_t length)
  4128. {
  4129. if (any_slab_objects(s))
  4130. return -EBUSY;
  4131. s->flags &= ~SLAB_POISON;
  4132. if (buf[0] == '1') {
  4133. s->flags &= ~__CMPXCHG_DOUBLE;
  4134. s->flags |= SLAB_POISON;
  4135. }
  4136. calculate_sizes(s, -1);
  4137. return length;
  4138. }
  4139. SLAB_ATTR(poison);
  4140. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  4141. {
  4142. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  4143. }
  4144. static ssize_t store_user_store(struct kmem_cache *s,
  4145. const char *buf, size_t length)
  4146. {
  4147. if (any_slab_objects(s))
  4148. return -EBUSY;
  4149. s->flags &= ~SLAB_STORE_USER;
  4150. if (buf[0] == '1') {
  4151. s->flags &= ~__CMPXCHG_DOUBLE;
  4152. s->flags |= SLAB_STORE_USER;
  4153. }
  4154. calculate_sizes(s, -1);
  4155. return length;
  4156. }
  4157. SLAB_ATTR(store_user);
  4158. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  4159. {
  4160. return 0;
  4161. }
  4162. static ssize_t validate_store(struct kmem_cache *s,
  4163. const char *buf, size_t length)
  4164. {
  4165. int ret = -EINVAL;
  4166. if (buf[0] == '1') {
  4167. ret = validate_slab_cache(s);
  4168. if (ret >= 0)
  4169. ret = length;
  4170. }
  4171. return ret;
  4172. }
  4173. SLAB_ATTR(validate);
  4174. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  4175. {
  4176. if (!(s->flags & SLAB_STORE_USER))
  4177. return -ENOSYS;
  4178. return list_locations(s, buf, TRACK_ALLOC);
  4179. }
  4180. SLAB_ATTR_RO(alloc_calls);
  4181. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  4182. {
  4183. if (!(s->flags & SLAB_STORE_USER))
  4184. return -ENOSYS;
  4185. return list_locations(s, buf, TRACK_FREE);
  4186. }
  4187. SLAB_ATTR_RO(free_calls);
  4188. #endif /* CONFIG_SLUB_DEBUG */
  4189. #ifdef CONFIG_FAILSLAB
  4190. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4191. {
  4192. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4193. }
  4194. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4195. size_t length)
  4196. {
  4197. s->flags &= ~SLAB_FAILSLAB;
  4198. if (buf[0] == '1')
  4199. s->flags |= SLAB_FAILSLAB;
  4200. return length;
  4201. }
  4202. SLAB_ATTR(failslab);
  4203. #endif
  4204. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4205. {
  4206. return 0;
  4207. }
  4208. static ssize_t shrink_store(struct kmem_cache *s,
  4209. const char *buf, size_t length)
  4210. {
  4211. if (buf[0] == '1') {
  4212. int rc = kmem_cache_shrink(s);
  4213. if (rc)
  4214. return rc;
  4215. } else
  4216. return -EINVAL;
  4217. return length;
  4218. }
  4219. SLAB_ATTR(shrink);
  4220. #ifdef CONFIG_NUMA
  4221. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4222. {
  4223. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4224. }
  4225. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4226. const char *buf, size_t length)
  4227. {
  4228. unsigned long ratio;
  4229. int err;
  4230. err = strict_strtoul(buf, 10, &ratio);
  4231. if (err)
  4232. return err;
  4233. if (ratio <= 100)
  4234. s->remote_node_defrag_ratio = ratio * 10;
  4235. return length;
  4236. }
  4237. SLAB_ATTR(remote_node_defrag_ratio);
  4238. #endif
  4239. #ifdef CONFIG_SLUB_STATS
  4240. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4241. {
  4242. unsigned long sum = 0;
  4243. int cpu;
  4244. int len;
  4245. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4246. if (!data)
  4247. return -ENOMEM;
  4248. for_each_online_cpu(cpu) {
  4249. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4250. data[cpu] = x;
  4251. sum += x;
  4252. }
  4253. len = sprintf(buf, "%lu", sum);
  4254. #ifdef CONFIG_SMP
  4255. for_each_online_cpu(cpu) {
  4256. if (data[cpu] && len < PAGE_SIZE - 20)
  4257. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4258. }
  4259. #endif
  4260. kfree(data);
  4261. return len + sprintf(buf + len, "\n");
  4262. }
  4263. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4264. {
  4265. int cpu;
  4266. for_each_online_cpu(cpu)
  4267. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4268. }
  4269. #define STAT_ATTR(si, text) \
  4270. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4271. { \
  4272. return show_stat(s, buf, si); \
  4273. } \
  4274. static ssize_t text##_store(struct kmem_cache *s, \
  4275. const char *buf, size_t length) \
  4276. { \
  4277. if (buf[0] != '0') \
  4278. return -EINVAL; \
  4279. clear_stat(s, si); \
  4280. return length; \
  4281. } \
  4282. SLAB_ATTR(text); \
  4283. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4284. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4285. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4286. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4287. STAT_ATTR(FREE_FROZEN, free_frozen);
  4288. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4289. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4290. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4291. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4292. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4293. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4294. STAT_ATTR(FREE_SLAB, free_slab);
  4295. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4296. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4297. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4298. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4299. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4300. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4301. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4302. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4303. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4304. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4305. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4306. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4307. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4308. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4309. #endif
  4310. static struct attribute *slab_attrs[] = {
  4311. &slab_size_attr.attr,
  4312. &object_size_attr.attr,
  4313. &objs_per_slab_attr.attr,
  4314. &order_attr.attr,
  4315. &min_partial_attr.attr,
  4316. &cpu_partial_attr.attr,
  4317. &objects_attr.attr,
  4318. &objects_partial_attr.attr,
  4319. &partial_attr.attr,
  4320. &cpu_slabs_attr.attr,
  4321. &ctor_attr.attr,
  4322. &aliases_attr.attr,
  4323. &align_attr.attr,
  4324. &hwcache_align_attr.attr,
  4325. &reclaim_account_attr.attr,
  4326. &destroy_by_rcu_attr.attr,
  4327. &shrink_attr.attr,
  4328. &reserved_attr.attr,
  4329. &slabs_cpu_partial_attr.attr,
  4330. #ifdef CONFIG_SLUB_DEBUG
  4331. &total_objects_attr.attr,
  4332. &slabs_attr.attr,
  4333. &sanity_checks_attr.attr,
  4334. &trace_attr.attr,
  4335. &red_zone_attr.attr,
  4336. &poison_attr.attr,
  4337. &store_user_attr.attr,
  4338. &validate_attr.attr,
  4339. &alloc_calls_attr.attr,
  4340. &free_calls_attr.attr,
  4341. #endif
  4342. #ifdef CONFIG_ZONE_DMA
  4343. &cache_dma_attr.attr,
  4344. #endif
  4345. #ifdef CONFIG_NUMA
  4346. &remote_node_defrag_ratio_attr.attr,
  4347. #endif
  4348. #ifdef CONFIG_SLUB_STATS
  4349. &alloc_fastpath_attr.attr,
  4350. &alloc_slowpath_attr.attr,
  4351. &free_fastpath_attr.attr,
  4352. &free_slowpath_attr.attr,
  4353. &free_frozen_attr.attr,
  4354. &free_add_partial_attr.attr,
  4355. &free_remove_partial_attr.attr,
  4356. &alloc_from_partial_attr.attr,
  4357. &alloc_slab_attr.attr,
  4358. &alloc_refill_attr.attr,
  4359. &alloc_node_mismatch_attr.attr,
  4360. &free_slab_attr.attr,
  4361. &cpuslab_flush_attr.attr,
  4362. &deactivate_full_attr.attr,
  4363. &deactivate_empty_attr.attr,
  4364. &deactivate_to_head_attr.attr,
  4365. &deactivate_to_tail_attr.attr,
  4366. &deactivate_remote_frees_attr.attr,
  4367. &deactivate_bypass_attr.attr,
  4368. &order_fallback_attr.attr,
  4369. &cmpxchg_double_fail_attr.attr,
  4370. &cmpxchg_double_cpu_fail_attr.attr,
  4371. &cpu_partial_alloc_attr.attr,
  4372. &cpu_partial_free_attr.attr,
  4373. &cpu_partial_node_attr.attr,
  4374. &cpu_partial_drain_attr.attr,
  4375. #endif
  4376. #ifdef CONFIG_FAILSLAB
  4377. &failslab_attr.attr,
  4378. #endif
  4379. NULL
  4380. };
  4381. static struct attribute_group slab_attr_group = {
  4382. .attrs = slab_attrs,
  4383. };
  4384. static ssize_t slab_attr_show(struct kobject *kobj,
  4385. struct attribute *attr,
  4386. char *buf)
  4387. {
  4388. struct slab_attribute *attribute;
  4389. struct kmem_cache *s;
  4390. int err;
  4391. attribute = to_slab_attr(attr);
  4392. s = to_slab(kobj);
  4393. if (!attribute->show)
  4394. return -EIO;
  4395. err = attribute->show(s, buf);
  4396. return err;
  4397. }
  4398. static ssize_t slab_attr_store(struct kobject *kobj,
  4399. struct attribute *attr,
  4400. const char *buf, size_t len)
  4401. {
  4402. struct slab_attribute *attribute;
  4403. struct kmem_cache *s;
  4404. int err;
  4405. attribute = to_slab_attr(attr);
  4406. s = to_slab(kobj);
  4407. if (!attribute->store)
  4408. return -EIO;
  4409. err = attribute->store(s, buf, len);
  4410. return err;
  4411. }
  4412. static void kmem_cache_release(struct kobject *kobj)
  4413. {
  4414. struct kmem_cache *s = to_slab(kobj);
  4415. kfree(s->name);
  4416. kfree(s);
  4417. }
  4418. static const struct sysfs_ops slab_sysfs_ops = {
  4419. .show = slab_attr_show,
  4420. .store = slab_attr_store,
  4421. };
  4422. static struct kobj_type slab_ktype = {
  4423. .sysfs_ops = &slab_sysfs_ops,
  4424. .release = kmem_cache_release
  4425. };
  4426. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4427. {
  4428. struct kobj_type *ktype = get_ktype(kobj);
  4429. if (ktype == &slab_ktype)
  4430. return 1;
  4431. return 0;
  4432. }
  4433. static const struct kset_uevent_ops slab_uevent_ops = {
  4434. .filter = uevent_filter,
  4435. };
  4436. static struct kset *slab_kset;
  4437. #define ID_STR_LENGTH 64
  4438. /* Create a unique string id for a slab cache:
  4439. *
  4440. * Format :[flags-]size
  4441. */
  4442. static char *create_unique_id(struct kmem_cache *s)
  4443. {
  4444. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4445. char *p = name;
  4446. BUG_ON(!name);
  4447. *p++ = ':';
  4448. /*
  4449. * First flags affecting slabcache operations. We will only
  4450. * get here for aliasable slabs so we do not need to support
  4451. * too many flags. The flags here must cover all flags that
  4452. * are matched during merging to guarantee that the id is
  4453. * unique.
  4454. */
  4455. if (s->flags & SLAB_CACHE_DMA)
  4456. *p++ = 'd';
  4457. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4458. *p++ = 'a';
  4459. if (s->flags & SLAB_DEBUG_FREE)
  4460. *p++ = 'F';
  4461. if (!(s->flags & SLAB_NOTRACK))
  4462. *p++ = 't';
  4463. if (p != name + 1)
  4464. *p++ = '-';
  4465. p += sprintf(p, "%07d", s->size);
  4466. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4467. return name;
  4468. }
  4469. static int sysfs_slab_add(struct kmem_cache *s)
  4470. {
  4471. int err;
  4472. const char *name;
  4473. int unmergeable;
  4474. if (slab_state < SYSFS)
  4475. /* Defer until later */
  4476. return 0;
  4477. unmergeable = slab_unmergeable(s);
  4478. if (unmergeable) {
  4479. /*
  4480. * Slabcache can never be merged so we can use the name proper.
  4481. * This is typically the case for debug situations. In that
  4482. * case we can catch duplicate names easily.
  4483. */
  4484. sysfs_remove_link(&slab_kset->kobj, s->name);
  4485. name = s->name;
  4486. } else {
  4487. /*
  4488. * Create a unique name for the slab as a target
  4489. * for the symlinks.
  4490. */
  4491. name = create_unique_id(s);
  4492. }
  4493. s->kobj.kset = slab_kset;
  4494. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4495. if (err) {
  4496. kobject_put(&s->kobj);
  4497. return err;
  4498. }
  4499. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4500. if (err) {
  4501. kobject_del(&s->kobj);
  4502. kobject_put(&s->kobj);
  4503. return err;
  4504. }
  4505. kobject_uevent(&s->kobj, KOBJ_ADD);
  4506. if (!unmergeable) {
  4507. /* Setup first alias */
  4508. sysfs_slab_alias(s, s->name);
  4509. kfree(name);
  4510. }
  4511. return 0;
  4512. }
  4513. static void sysfs_slab_remove(struct kmem_cache *s)
  4514. {
  4515. if (slab_state < SYSFS)
  4516. /*
  4517. * Sysfs has not been setup yet so no need to remove the
  4518. * cache from sysfs.
  4519. */
  4520. return;
  4521. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4522. kobject_del(&s->kobj);
  4523. kobject_put(&s->kobj);
  4524. }
  4525. /*
  4526. * Need to buffer aliases during bootup until sysfs becomes
  4527. * available lest we lose that information.
  4528. */
  4529. struct saved_alias {
  4530. struct kmem_cache *s;
  4531. const char *name;
  4532. struct saved_alias *next;
  4533. };
  4534. static struct saved_alias *alias_list;
  4535. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4536. {
  4537. struct saved_alias *al;
  4538. if (slab_state == SYSFS) {
  4539. /*
  4540. * If we have a leftover link then remove it.
  4541. */
  4542. sysfs_remove_link(&slab_kset->kobj, name);
  4543. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4544. }
  4545. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4546. if (!al)
  4547. return -ENOMEM;
  4548. al->s = s;
  4549. al->name = name;
  4550. al->next = alias_list;
  4551. alias_list = al;
  4552. return 0;
  4553. }
  4554. static int __init slab_sysfs_init(void)
  4555. {
  4556. struct kmem_cache *s;
  4557. int err;
  4558. down_write(&slub_lock);
  4559. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4560. if (!slab_kset) {
  4561. up_write(&slub_lock);
  4562. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4563. return -ENOSYS;
  4564. }
  4565. slab_state = SYSFS;
  4566. list_for_each_entry(s, &slab_caches, list) {
  4567. err = sysfs_slab_add(s);
  4568. if (err)
  4569. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4570. " to sysfs\n", s->name);
  4571. }
  4572. while (alias_list) {
  4573. struct saved_alias *al = alias_list;
  4574. alias_list = alias_list->next;
  4575. err = sysfs_slab_alias(al->s, al->name);
  4576. if (err)
  4577. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4578. " %s to sysfs\n", s->name);
  4579. kfree(al);
  4580. }
  4581. up_write(&slub_lock);
  4582. resiliency_test();
  4583. return 0;
  4584. }
  4585. __initcall(slab_sysfs_init);
  4586. #endif /* CONFIG_SYSFS */
  4587. /*
  4588. * The /proc/slabinfo ABI
  4589. */
  4590. #ifdef CONFIG_SLABINFO
  4591. static void print_slabinfo_header(struct seq_file *m)
  4592. {
  4593. seq_puts(m, "slabinfo - version: 2.1\n");
  4594. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  4595. "<objperslab> <pagesperslab>");
  4596. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  4597. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  4598. seq_putc(m, '\n');
  4599. }
  4600. static void *s_start(struct seq_file *m, loff_t *pos)
  4601. {
  4602. loff_t n = *pos;
  4603. down_read(&slub_lock);
  4604. if (!n)
  4605. print_slabinfo_header(m);
  4606. return seq_list_start(&slab_caches, *pos);
  4607. }
  4608. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  4609. {
  4610. return seq_list_next(p, &slab_caches, pos);
  4611. }
  4612. static void s_stop(struct seq_file *m, void *p)
  4613. {
  4614. up_read(&slub_lock);
  4615. }
  4616. static int s_show(struct seq_file *m, void *p)
  4617. {
  4618. unsigned long nr_partials = 0;
  4619. unsigned long nr_slabs = 0;
  4620. unsigned long nr_inuse = 0;
  4621. unsigned long nr_objs = 0;
  4622. unsigned long nr_free = 0;
  4623. struct kmem_cache *s;
  4624. int node;
  4625. s = list_entry(p, struct kmem_cache, list);
  4626. for_each_online_node(node) {
  4627. struct kmem_cache_node *n = get_node(s, node);
  4628. if (!n)
  4629. continue;
  4630. nr_partials += n->nr_partial;
  4631. nr_slabs += atomic_long_read(&n->nr_slabs);
  4632. nr_objs += atomic_long_read(&n->total_objects);
  4633. nr_free += count_partial(n, count_free);
  4634. }
  4635. nr_inuse = nr_objs - nr_free;
  4636. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4637. nr_objs, s->size, oo_objects(s->oo),
  4638. (1 << oo_order(s->oo)));
  4639. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4640. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4641. 0UL);
  4642. seq_putc(m, '\n');
  4643. return 0;
  4644. }
  4645. static const struct seq_operations slabinfo_op = {
  4646. .start = s_start,
  4647. .next = s_next,
  4648. .stop = s_stop,
  4649. .show = s_show,
  4650. };
  4651. static int slabinfo_open(struct inode *inode, struct file *file)
  4652. {
  4653. return seq_open(file, &slabinfo_op);
  4654. }
  4655. static const struct file_operations proc_slabinfo_operations = {
  4656. .open = slabinfo_open,
  4657. .read = seq_read,
  4658. .llseek = seq_lseek,
  4659. .release = seq_release,
  4660. };
  4661. static int __init slab_proc_init(void)
  4662. {
  4663. proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
  4664. return 0;
  4665. }
  4666. module_init(slab_proc_init);
  4667. #endif /* CONFIG_SLABINFO */