memory-failure.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11. * failure.
  12. *
  13. * In addition there is a "soft offline" entry point that allows stop using
  14. * not-yet-corrupted-by-suspicious pages without killing anything.
  15. *
  16. * Handles page cache pages in various states. The tricky part
  17. * here is that we can access any page asynchronously in respect to
  18. * other VM users, because memory failures could happen anytime and
  19. * anywhere. This could violate some of their assumptions. This is why
  20. * this code has to be extremely careful. Generally it tries to use
  21. * normal locking rules, as in get the standard locks, even if that means
  22. * the error handling takes potentially a long time.
  23. *
  24. * There are several operations here with exponential complexity because
  25. * of unsuitable VM data structures. For example the operation to map back
  26. * from RMAP chains to processes has to walk the complete process list and
  27. * has non linear complexity with the number. But since memory corruptions
  28. * are rare we hope to get away with this. This avoids impacting the core
  29. * VM.
  30. */
  31. /*
  32. * Notebook:
  33. * - hugetlb needs more code
  34. * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
  35. * - pass bad pages to kdump next kernel
  36. */
  37. #include <linux/kernel.h>
  38. #include <linux/mm.h>
  39. #include <linux/page-flags.h>
  40. #include <linux/kernel-page-flags.h>
  41. #include <linux/sched.h>
  42. #include <linux/ksm.h>
  43. #include <linux/rmap.h>
  44. #include <linux/export.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/migrate.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/suspend.h>
  51. #include <linux/slab.h>
  52. #include <linux/swapops.h>
  53. #include <linux/hugetlb.h>
  54. #include <linux/memory_hotplug.h>
  55. #include <linux/mm_inline.h>
  56. #include <linux/kfifo.h>
  57. #include "internal.h"
  58. int sysctl_memory_failure_early_kill __read_mostly = 0;
  59. int sysctl_memory_failure_recovery __read_mostly = 1;
  60. atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
  61. #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  62. u32 hwpoison_filter_enable = 0;
  63. u32 hwpoison_filter_dev_major = ~0U;
  64. u32 hwpoison_filter_dev_minor = ~0U;
  65. u64 hwpoison_filter_flags_mask;
  66. u64 hwpoison_filter_flags_value;
  67. EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  68. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  69. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  70. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  71. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  72. static int hwpoison_filter_dev(struct page *p)
  73. {
  74. struct address_space *mapping;
  75. dev_t dev;
  76. if (hwpoison_filter_dev_major == ~0U &&
  77. hwpoison_filter_dev_minor == ~0U)
  78. return 0;
  79. /*
  80. * page_mapping() does not accept slab pages.
  81. */
  82. if (PageSlab(p))
  83. return -EINVAL;
  84. mapping = page_mapping(p);
  85. if (mapping == NULL || mapping->host == NULL)
  86. return -EINVAL;
  87. dev = mapping->host->i_sb->s_dev;
  88. if (hwpoison_filter_dev_major != ~0U &&
  89. hwpoison_filter_dev_major != MAJOR(dev))
  90. return -EINVAL;
  91. if (hwpoison_filter_dev_minor != ~0U &&
  92. hwpoison_filter_dev_minor != MINOR(dev))
  93. return -EINVAL;
  94. return 0;
  95. }
  96. static int hwpoison_filter_flags(struct page *p)
  97. {
  98. if (!hwpoison_filter_flags_mask)
  99. return 0;
  100. if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  101. hwpoison_filter_flags_value)
  102. return 0;
  103. else
  104. return -EINVAL;
  105. }
  106. /*
  107. * This allows stress tests to limit test scope to a collection of tasks
  108. * by putting them under some memcg. This prevents killing unrelated/important
  109. * processes such as /sbin/init. Note that the target task may share clean
  110. * pages with init (eg. libc text), which is harmless. If the target task
  111. * share _dirty_ pages with another task B, the test scheme must make sure B
  112. * is also included in the memcg. At last, due to race conditions this filter
  113. * can only guarantee that the page either belongs to the memcg tasks, or is
  114. * a freed page.
  115. */
  116. #ifdef CONFIG_MEMCG_SWAP
  117. u64 hwpoison_filter_memcg;
  118. EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  119. static int hwpoison_filter_task(struct page *p)
  120. {
  121. struct mem_cgroup *mem;
  122. struct cgroup_subsys_state *css;
  123. unsigned long ino;
  124. if (!hwpoison_filter_memcg)
  125. return 0;
  126. mem = try_get_mem_cgroup_from_page(p);
  127. if (!mem)
  128. return -EINVAL;
  129. css = mem_cgroup_css(mem);
  130. /* root_mem_cgroup has NULL dentries */
  131. if (!css->cgroup->dentry)
  132. return -EINVAL;
  133. ino = css->cgroup->dentry->d_inode->i_ino;
  134. css_put(css);
  135. if (ino != hwpoison_filter_memcg)
  136. return -EINVAL;
  137. return 0;
  138. }
  139. #else
  140. static int hwpoison_filter_task(struct page *p) { return 0; }
  141. #endif
  142. int hwpoison_filter(struct page *p)
  143. {
  144. if (!hwpoison_filter_enable)
  145. return 0;
  146. if (hwpoison_filter_dev(p))
  147. return -EINVAL;
  148. if (hwpoison_filter_flags(p))
  149. return -EINVAL;
  150. if (hwpoison_filter_task(p))
  151. return -EINVAL;
  152. return 0;
  153. }
  154. #else
  155. int hwpoison_filter(struct page *p)
  156. {
  157. return 0;
  158. }
  159. #endif
  160. EXPORT_SYMBOL_GPL(hwpoison_filter);
  161. /*
  162. * Send all the processes who have the page mapped a signal.
  163. * ``action optional'' if they are not immediately affected by the error
  164. * ``action required'' if error happened in current execution context
  165. */
  166. static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
  167. unsigned long pfn, struct page *page, int flags)
  168. {
  169. struct siginfo si;
  170. int ret;
  171. printk(KERN_ERR
  172. "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
  173. pfn, t->comm, t->pid);
  174. si.si_signo = SIGBUS;
  175. si.si_errno = 0;
  176. si.si_addr = (void *)addr;
  177. #ifdef __ARCH_SI_TRAPNO
  178. si.si_trapno = trapno;
  179. #endif
  180. si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
  181. if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
  182. si.si_code = BUS_MCEERR_AR;
  183. ret = force_sig_info(SIGBUS, &si, current);
  184. } else {
  185. /*
  186. * Don't use force here, it's convenient if the signal
  187. * can be temporarily blocked.
  188. * This could cause a loop when the user sets SIGBUS
  189. * to SIG_IGN, but hopefully no one will do that?
  190. */
  191. si.si_code = BUS_MCEERR_AO;
  192. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  193. }
  194. if (ret < 0)
  195. printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
  196. t->comm, t->pid, ret);
  197. return ret;
  198. }
  199. /*
  200. * When a unknown page type is encountered drain as many buffers as possible
  201. * in the hope to turn the page into a LRU or free page, which we can handle.
  202. */
  203. void shake_page(struct page *p, int access)
  204. {
  205. if (!PageSlab(p)) {
  206. lru_add_drain_all();
  207. if (PageLRU(p))
  208. return;
  209. drain_all_pages();
  210. if (PageLRU(p) || is_free_buddy_page(p))
  211. return;
  212. }
  213. /*
  214. * Only call shrink_slab here (which would also shrink other caches) if
  215. * access is not potentially fatal.
  216. */
  217. if (access) {
  218. int nr;
  219. int nid = page_to_nid(p);
  220. do {
  221. struct shrink_control shrink = {
  222. .gfp_mask = GFP_KERNEL,
  223. };
  224. node_set(nid, shrink.nodes_to_scan);
  225. shrink.priority = DEF_PRIORITY;
  226. nr = shrink_slab(&shrink, 1000, 1000);
  227. if (page_count(p) == 1)
  228. break;
  229. } while (nr > 10);
  230. }
  231. }
  232. EXPORT_SYMBOL_GPL(shake_page);
  233. /*
  234. * Kill all processes that have a poisoned page mapped and then isolate
  235. * the page.
  236. *
  237. * General strategy:
  238. * Find all processes having the page mapped and kill them.
  239. * But we keep a page reference around so that the page is not
  240. * actually freed yet.
  241. * Then stash the page away
  242. *
  243. * There's no convenient way to get back to mapped processes
  244. * from the VMAs. So do a brute-force search over all
  245. * running processes.
  246. *
  247. * Remember that machine checks are not common (or rather
  248. * if they are common you have other problems), so this shouldn't
  249. * be a performance issue.
  250. *
  251. * Also there are some races possible while we get from the
  252. * error detection to actually handle it.
  253. */
  254. struct to_kill {
  255. struct list_head nd;
  256. struct task_struct *tsk;
  257. unsigned long addr;
  258. char addr_valid;
  259. };
  260. /*
  261. * Failure handling: if we can't find or can't kill a process there's
  262. * not much we can do. We just print a message and ignore otherwise.
  263. */
  264. /*
  265. * Schedule a process for later kill.
  266. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  267. * TBD would GFP_NOIO be enough?
  268. */
  269. static void add_to_kill(struct task_struct *tsk, struct page *p,
  270. struct vm_area_struct *vma,
  271. struct list_head *to_kill,
  272. struct to_kill **tkc)
  273. {
  274. struct to_kill *tk;
  275. if (*tkc) {
  276. tk = *tkc;
  277. *tkc = NULL;
  278. } else {
  279. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  280. if (!tk) {
  281. printk(KERN_ERR
  282. "MCE: Out of memory while machine check handling\n");
  283. return;
  284. }
  285. }
  286. tk->addr = page_address_in_vma(p, vma);
  287. tk->addr_valid = 1;
  288. /*
  289. * In theory we don't have to kill when the page was
  290. * munmaped. But it could be also a mremap. Since that's
  291. * likely very rare kill anyways just out of paranoia, but use
  292. * a SIGKILL because the error is not contained anymore.
  293. */
  294. if (tk->addr == -EFAULT) {
  295. pr_info("MCE: Unable to find user space address %lx in %s\n",
  296. page_to_pfn(p), tsk->comm);
  297. tk->addr_valid = 0;
  298. }
  299. get_task_struct(tsk);
  300. tk->tsk = tsk;
  301. list_add_tail(&tk->nd, to_kill);
  302. }
  303. /*
  304. * Kill the processes that have been collected earlier.
  305. *
  306. * Only do anything when DOIT is set, otherwise just free the list
  307. * (this is used for clean pages which do not need killing)
  308. * Also when FAIL is set do a force kill because something went
  309. * wrong earlier.
  310. */
  311. static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
  312. int fail, struct page *page, unsigned long pfn,
  313. int flags)
  314. {
  315. struct to_kill *tk, *next;
  316. list_for_each_entry_safe (tk, next, to_kill, nd) {
  317. if (forcekill) {
  318. /*
  319. * In case something went wrong with munmapping
  320. * make sure the process doesn't catch the
  321. * signal and then access the memory. Just kill it.
  322. */
  323. if (fail || tk->addr_valid == 0) {
  324. printk(KERN_ERR
  325. "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  326. pfn, tk->tsk->comm, tk->tsk->pid);
  327. force_sig(SIGKILL, tk->tsk);
  328. }
  329. /*
  330. * In theory the process could have mapped
  331. * something else on the address in-between. We could
  332. * check for that, but we need to tell the
  333. * process anyways.
  334. */
  335. else if (kill_proc(tk->tsk, tk->addr, trapno,
  336. pfn, page, flags) < 0)
  337. printk(KERN_ERR
  338. "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
  339. pfn, tk->tsk->comm, tk->tsk->pid);
  340. }
  341. put_task_struct(tk->tsk);
  342. kfree(tk);
  343. }
  344. }
  345. static int task_early_kill(struct task_struct *tsk, int force_early)
  346. {
  347. if (!tsk->mm)
  348. return 0;
  349. if (force_early)
  350. return 1;
  351. if (tsk->flags & PF_MCE_PROCESS)
  352. return !!(tsk->flags & PF_MCE_EARLY);
  353. return sysctl_memory_failure_early_kill;
  354. }
  355. /*
  356. * Collect processes when the error hit an anonymous page.
  357. */
  358. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  359. struct to_kill **tkc, int force_early)
  360. {
  361. struct vm_area_struct *vma;
  362. struct task_struct *tsk;
  363. struct anon_vma *av;
  364. av = page_lock_anon_vma(page);
  365. if (av == NULL) /* Not actually mapped anymore */
  366. return;
  367. read_lock(&tasklist_lock);
  368. for_each_process (tsk) {
  369. struct anon_vma_chain *vmac;
  370. if (!task_early_kill(tsk, force_early))
  371. continue;
  372. list_for_each_entry(vmac, &av->head, same_anon_vma) {
  373. vma = vmac->vma;
  374. if (!page_mapped_in_vma(page, vma))
  375. continue;
  376. if (vma->vm_mm == tsk->mm)
  377. add_to_kill(tsk, page, vma, to_kill, tkc);
  378. }
  379. }
  380. read_unlock(&tasklist_lock);
  381. page_unlock_anon_vma(av);
  382. }
  383. /*
  384. * Collect processes when the error hit a file mapped page.
  385. */
  386. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  387. struct to_kill **tkc, int force_early)
  388. {
  389. struct vm_area_struct *vma;
  390. struct task_struct *tsk;
  391. struct prio_tree_iter iter;
  392. struct address_space *mapping = page->mapping;
  393. mutex_lock(&mapping->i_mmap_mutex);
  394. read_lock(&tasklist_lock);
  395. for_each_process(tsk) {
  396. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  397. if (!task_early_kill(tsk, force_early))
  398. continue;
  399. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
  400. pgoff) {
  401. /*
  402. * Send early kill signal to tasks where a vma covers
  403. * the page but the corrupted page is not necessarily
  404. * mapped it in its pte.
  405. * Assume applications who requested early kill want
  406. * to be informed of all such data corruptions.
  407. */
  408. if (vma->vm_mm == tsk->mm)
  409. add_to_kill(tsk, page, vma, to_kill, tkc);
  410. }
  411. }
  412. read_unlock(&tasklist_lock);
  413. mutex_unlock(&mapping->i_mmap_mutex);
  414. }
  415. /*
  416. * Collect the processes who have the corrupted page mapped to kill.
  417. * This is done in two steps for locking reasons.
  418. * First preallocate one tokill structure outside the spin locks,
  419. * so that we can kill at least one process reasonably reliable.
  420. */
  421. static void collect_procs(struct page *page, struct list_head *tokill,
  422. int force_early)
  423. {
  424. struct to_kill *tk;
  425. if (!page->mapping)
  426. return;
  427. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  428. if (!tk)
  429. return;
  430. if (PageAnon(page))
  431. collect_procs_anon(page, tokill, &tk, force_early);
  432. else
  433. collect_procs_file(page, tokill, &tk, force_early);
  434. kfree(tk);
  435. }
  436. /*
  437. * Error handlers for various types of pages.
  438. */
  439. enum outcome {
  440. IGNORED, /* Error: cannot be handled */
  441. FAILED, /* Error: handling failed */
  442. DELAYED, /* Will be handled later */
  443. RECOVERED, /* Successfully recovered */
  444. };
  445. static const char *action_name[] = {
  446. [IGNORED] = "Ignored",
  447. [FAILED] = "Failed",
  448. [DELAYED] = "Delayed",
  449. [RECOVERED] = "Recovered",
  450. };
  451. /*
  452. * XXX: It is possible that a page is isolated from LRU cache,
  453. * and then kept in swap cache or failed to remove from page cache.
  454. * The page count will stop it from being freed by unpoison.
  455. * Stress tests should be aware of this memory leak problem.
  456. */
  457. static int delete_from_lru_cache(struct page *p)
  458. {
  459. if (!isolate_lru_page(p)) {
  460. /*
  461. * Clear sensible page flags, so that the buddy system won't
  462. * complain when the page is unpoison-and-freed.
  463. */
  464. ClearPageActive(p);
  465. ClearPageUnevictable(p);
  466. /*
  467. * drop the page count elevated by isolate_lru_page()
  468. */
  469. page_cache_release(p);
  470. return 0;
  471. }
  472. return -EIO;
  473. }
  474. /*
  475. * Error hit kernel page.
  476. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  477. * could be more sophisticated.
  478. */
  479. static int me_kernel(struct page *p, unsigned long pfn)
  480. {
  481. return IGNORED;
  482. }
  483. /*
  484. * Page in unknown state. Do nothing.
  485. */
  486. static int me_unknown(struct page *p, unsigned long pfn)
  487. {
  488. printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
  489. return FAILED;
  490. }
  491. /*
  492. * Clean (or cleaned) page cache page.
  493. */
  494. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  495. {
  496. int err;
  497. int ret = FAILED;
  498. struct address_space *mapping;
  499. delete_from_lru_cache(p);
  500. /*
  501. * For anonymous pages we're done the only reference left
  502. * should be the one m_f() holds.
  503. */
  504. if (PageAnon(p))
  505. return RECOVERED;
  506. /*
  507. * Now truncate the page in the page cache. This is really
  508. * more like a "temporary hole punch"
  509. * Don't do this for block devices when someone else
  510. * has a reference, because it could be file system metadata
  511. * and that's not safe to truncate.
  512. */
  513. mapping = page_mapping(p);
  514. if (!mapping) {
  515. /*
  516. * Page has been teared down in the meanwhile
  517. */
  518. return FAILED;
  519. }
  520. /*
  521. * Truncation is a bit tricky. Enable it per file system for now.
  522. *
  523. * Open: to take i_mutex or not for this? Right now we don't.
  524. */
  525. if (mapping->a_ops->error_remove_page) {
  526. err = mapping->a_ops->error_remove_page(mapping, p);
  527. if (err != 0) {
  528. printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
  529. pfn, err);
  530. } else if (page_has_private(p) &&
  531. !try_to_release_page(p, GFP_NOIO)) {
  532. pr_info("MCE %#lx: failed to release buffers\n", pfn);
  533. } else {
  534. ret = RECOVERED;
  535. }
  536. } else {
  537. /*
  538. * If the file system doesn't support it just invalidate
  539. * This fails on dirty or anything with private pages
  540. */
  541. if (invalidate_inode_page(p))
  542. ret = RECOVERED;
  543. else
  544. printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
  545. pfn);
  546. }
  547. return ret;
  548. }
  549. /*
  550. * Dirty cache page page
  551. * Issues: when the error hit a hole page the error is not properly
  552. * propagated.
  553. */
  554. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  555. {
  556. struct address_space *mapping = page_mapping(p);
  557. SetPageError(p);
  558. /* TBD: print more information about the file. */
  559. if (mapping) {
  560. /*
  561. * IO error will be reported by write(), fsync(), etc.
  562. * who check the mapping.
  563. * This way the application knows that something went
  564. * wrong with its dirty file data.
  565. *
  566. * There's one open issue:
  567. *
  568. * The EIO will be only reported on the next IO
  569. * operation and then cleared through the IO map.
  570. * Normally Linux has two mechanisms to pass IO error
  571. * first through the AS_EIO flag in the address space
  572. * and then through the PageError flag in the page.
  573. * Since we drop pages on memory failure handling the
  574. * only mechanism open to use is through AS_AIO.
  575. *
  576. * This has the disadvantage that it gets cleared on
  577. * the first operation that returns an error, while
  578. * the PageError bit is more sticky and only cleared
  579. * when the page is reread or dropped. If an
  580. * application assumes it will always get error on
  581. * fsync, but does other operations on the fd before
  582. * and the page is dropped between then the error
  583. * will not be properly reported.
  584. *
  585. * This can already happen even without hwpoisoned
  586. * pages: first on metadata IO errors (which only
  587. * report through AS_EIO) or when the page is dropped
  588. * at the wrong time.
  589. *
  590. * So right now we assume that the application DTRT on
  591. * the first EIO, but we're not worse than other parts
  592. * of the kernel.
  593. */
  594. mapping_set_error(mapping, EIO);
  595. }
  596. return me_pagecache_clean(p, pfn);
  597. }
  598. /*
  599. * Clean and dirty swap cache.
  600. *
  601. * Dirty swap cache page is tricky to handle. The page could live both in page
  602. * cache and swap cache(ie. page is freshly swapped in). So it could be
  603. * referenced concurrently by 2 types of PTEs:
  604. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  605. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  606. * and then
  607. * - clear dirty bit to prevent IO
  608. * - remove from LRU
  609. * - but keep in the swap cache, so that when we return to it on
  610. * a later page fault, we know the application is accessing
  611. * corrupted data and shall be killed (we installed simple
  612. * interception code in do_swap_page to catch it).
  613. *
  614. * Clean swap cache pages can be directly isolated. A later page fault will
  615. * bring in the known good data from disk.
  616. */
  617. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  618. {
  619. ClearPageDirty(p);
  620. /* Trigger EIO in shmem: */
  621. ClearPageUptodate(p);
  622. if (!delete_from_lru_cache(p))
  623. return DELAYED;
  624. else
  625. return FAILED;
  626. }
  627. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  628. {
  629. delete_from_swap_cache(p);
  630. if (!delete_from_lru_cache(p))
  631. return RECOVERED;
  632. else
  633. return FAILED;
  634. }
  635. /*
  636. * Huge pages. Needs work.
  637. * Issues:
  638. * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
  639. * To narrow down kill region to one page, we need to break up pmd.
  640. */
  641. static int me_huge_page(struct page *p, unsigned long pfn)
  642. {
  643. int res = 0;
  644. struct page *hpage = compound_head(p);
  645. /*
  646. * We can safely recover from error on free or reserved (i.e.
  647. * not in-use) hugepage by dequeuing it from freelist.
  648. * To check whether a hugepage is in-use or not, we can't use
  649. * page->lru because it can be used in other hugepage operations,
  650. * such as __unmap_hugepage_range() and gather_surplus_pages().
  651. * So instead we use page_mapping() and PageAnon().
  652. * We assume that this function is called with page lock held,
  653. * so there is no race between isolation and mapping/unmapping.
  654. */
  655. if (!(page_mapping(hpage) || PageAnon(hpage))) {
  656. res = dequeue_hwpoisoned_huge_page(hpage);
  657. if (!res)
  658. return RECOVERED;
  659. }
  660. return DELAYED;
  661. }
  662. /*
  663. * Various page states we can handle.
  664. *
  665. * A page state is defined by its current page->flags bits.
  666. * The table matches them in order and calls the right handler.
  667. *
  668. * This is quite tricky because we can access page at any time
  669. * in its live cycle, so all accesses have to be extremely careful.
  670. *
  671. * This is not complete. More states could be added.
  672. * For any missing state don't attempt recovery.
  673. */
  674. #define dirty (1UL << PG_dirty)
  675. #define sc (1UL << PG_swapcache)
  676. #define unevict (1UL << PG_unevictable)
  677. #define mlock (1UL << PG_mlocked)
  678. #define writeback (1UL << PG_writeback)
  679. #define lru (1UL << PG_lru)
  680. #define swapbacked (1UL << PG_swapbacked)
  681. #define head (1UL << PG_head)
  682. #define tail (1UL << PG_tail)
  683. #define compound (1UL << PG_compound)
  684. #define slab (1UL << PG_slab)
  685. #define reserved (1UL << PG_reserved)
  686. static struct page_state {
  687. unsigned long mask;
  688. unsigned long res;
  689. char *msg;
  690. int (*action)(struct page *p, unsigned long pfn);
  691. } error_states[] = {
  692. { reserved, reserved, "reserved kernel", me_kernel },
  693. /*
  694. * free pages are specially detected outside this table:
  695. * PG_buddy pages only make a small fraction of all free pages.
  696. */
  697. /*
  698. * Could in theory check if slab page is free or if we can drop
  699. * currently unused objects without touching them. But just
  700. * treat it as standard kernel for now.
  701. */
  702. { slab, slab, "kernel slab", me_kernel },
  703. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  704. { head, head, "huge", me_huge_page },
  705. { tail, tail, "huge", me_huge_page },
  706. #else
  707. { compound, compound, "huge", me_huge_page },
  708. #endif
  709. { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
  710. { sc|dirty, sc, "swapcache", me_swapcache_clean },
  711. { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
  712. { unevict, unevict, "unevictable LRU", me_pagecache_clean},
  713. { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
  714. { mlock, mlock, "mlocked LRU", me_pagecache_clean },
  715. { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
  716. { lru|dirty, lru, "clean LRU", me_pagecache_clean },
  717. /*
  718. * Catchall entry: must be at end.
  719. */
  720. { 0, 0, "unknown page state", me_unknown },
  721. };
  722. #undef dirty
  723. #undef sc
  724. #undef unevict
  725. #undef mlock
  726. #undef writeback
  727. #undef lru
  728. #undef swapbacked
  729. #undef head
  730. #undef tail
  731. #undef compound
  732. #undef slab
  733. #undef reserved
  734. static void action_result(unsigned long pfn, char *msg, int result)
  735. {
  736. struct page *page = pfn_to_page(pfn);
  737. printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
  738. pfn,
  739. PageDirty(page) ? "dirty " : "",
  740. msg, action_name[result]);
  741. }
  742. static int page_action(struct page_state *ps, struct page *p,
  743. unsigned long pfn)
  744. {
  745. int result;
  746. int count;
  747. result = ps->action(p, pfn);
  748. action_result(pfn, ps->msg, result);
  749. count = page_count(p) - 1;
  750. if (ps->action == me_swapcache_dirty && result == DELAYED)
  751. count--;
  752. if (count != 0) {
  753. printk(KERN_ERR
  754. "MCE %#lx: %s page still referenced by %d users\n",
  755. pfn, ps->msg, count);
  756. result = FAILED;
  757. }
  758. /* Could do more checks here if page looks ok */
  759. /*
  760. * Could adjust zone counters here to correct for the missing page.
  761. */
  762. return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
  763. }
  764. /*
  765. * Do all that is necessary to remove user space mappings. Unmap
  766. * the pages and send SIGBUS to the processes if the data was dirty.
  767. */
  768. static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
  769. int trapno, int flags)
  770. {
  771. enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  772. struct address_space *mapping;
  773. LIST_HEAD(tokill);
  774. int ret;
  775. int kill = 1, forcekill;
  776. struct page *hpage = compound_head(p);
  777. struct page *ppage;
  778. if (PageReserved(p) || PageSlab(p))
  779. return SWAP_SUCCESS;
  780. /*
  781. * This check implies we don't kill processes if their pages
  782. * are in the swap cache early. Those are always late kills.
  783. */
  784. if (!page_mapped(hpage))
  785. return SWAP_SUCCESS;
  786. if (PageKsm(p))
  787. return SWAP_FAIL;
  788. if (PageSwapCache(p)) {
  789. printk(KERN_ERR
  790. "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
  791. ttu |= TTU_IGNORE_HWPOISON;
  792. }
  793. /*
  794. * Propagate the dirty bit from PTEs to struct page first, because we
  795. * need this to decide if we should kill or just drop the page.
  796. * XXX: the dirty test could be racy: set_page_dirty() may not always
  797. * be called inside page lock (it's recommended but not enforced).
  798. */
  799. mapping = page_mapping(hpage);
  800. if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
  801. mapping_cap_writeback_dirty(mapping)) {
  802. if (page_mkclean(hpage)) {
  803. SetPageDirty(hpage);
  804. } else {
  805. kill = 0;
  806. ttu |= TTU_IGNORE_HWPOISON;
  807. printk(KERN_INFO
  808. "MCE %#lx: corrupted page was clean: dropped without side effects\n",
  809. pfn);
  810. }
  811. }
  812. /*
  813. * ppage: poisoned page
  814. * if p is regular page(4k page)
  815. * ppage == real poisoned page;
  816. * else p is hugetlb or THP, ppage == head page.
  817. */
  818. ppage = hpage;
  819. if (PageTransHuge(hpage)) {
  820. /*
  821. * Verify that this isn't a hugetlbfs head page, the check for
  822. * PageAnon is just for avoid tripping a split_huge_page
  823. * internal debug check, as split_huge_page refuses to deal with
  824. * anything that isn't an anon page. PageAnon can't go away fro
  825. * under us because we hold a refcount on the hpage, without a
  826. * refcount on the hpage. split_huge_page can't be safely called
  827. * in the first place, having a refcount on the tail isn't
  828. * enough * to be safe.
  829. */
  830. if (!PageHuge(hpage) && PageAnon(hpage)) {
  831. if (unlikely(split_huge_page(hpage))) {
  832. /*
  833. * FIXME: if splitting THP is failed, it is
  834. * better to stop the following operation rather
  835. * than causing panic by unmapping. System might
  836. * survive if the page is freed later.
  837. */
  838. printk(KERN_INFO
  839. "MCE %#lx: failed to split THP\n", pfn);
  840. BUG_ON(!PageHWPoison(p));
  841. return SWAP_FAIL;
  842. }
  843. /* THP is split, so ppage should be the real poisoned page. */
  844. ppage = p;
  845. }
  846. }
  847. /*
  848. * First collect all the processes that have the page
  849. * mapped in dirty form. This has to be done before try_to_unmap,
  850. * because ttu takes the rmap data structures down.
  851. *
  852. * Error handling: We ignore errors here because
  853. * there's nothing that can be done.
  854. */
  855. if (kill)
  856. collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
  857. if (hpage != ppage)
  858. lock_page(ppage);
  859. ret = try_to_unmap(ppage, ttu);
  860. if (ret != SWAP_SUCCESS)
  861. printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
  862. pfn, page_mapcount(ppage));
  863. if (hpage != ppage)
  864. unlock_page(ppage);
  865. /*
  866. * Now that the dirty bit has been propagated to the
  867. * struct page and all unmaps done we can decide if
  868. * killing is needed or not. Only kill when the page
  869. * was dirty or the process is not restartable,
  870. * otherwise the tokill list is merely
  871. * freed. When there was a problem unmapping earlier
  872. * use a more force-full uncatchable kill to prevent
  873. * any accesses to the poisoned memory.
  874. */
  875. forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
  876. kill_procs(&tokill, forcekill, trapno,
  877. ret != SWAP_SUCCESS, p, pfn, flags);
  878. return ret;
  879. }
  880. static void set_page_hwpoison_huge_page(struct page *hpage)
  881. {
  882. int i;
  883. int nr_pages = 1 << compound_trans_order(hpage);
  884. for (i = 0; i < nr_pages; i++)
  885. SetPageHWPoison(hpage + i);
  886. }
  887. static void clear_page_hwpoison_huge_page(struct page *hpage)
  888. {
  889. int i;
  890. int nr_pages = 1 << compound_trans_order(hpage);
  891. for (i = 0; i < nr_pages; i++)
  892. ClearPageHWPoison(hpage + i);
  893. }
  894. /**
  895. * memory_failure - Handle memory failure of a page.
  896. * @pfn: Page Number of the corrupted page
  897. * @trapno: Trap number reported in the signal to user space.
  898. * @flags: fine tune action taken
  899. *
  900. * This function is called by the low level machine check code
  901. * of an architecture when it detects hardware memory corruption
  902. * of a page. It tries its best to recover, which includes
  903. * dropping pages, killing processes etc.
  904. *
  905. * The function is primarily of use for corruptions that
  906. * happen outside the current execution context (e.g. when
  907. * detected by a background scrubber)
  908. *
  909. * Must run in process context (e.g. a work queue) with interrupts
  910. * enabled and no spinlocks hold.
  911. */
  912. int memory_failure(unsigned long pfn, int trapno, int flags)
  913. {
  914. struct page_state *ps;
  915. struct page *p;
  916. struct page *hpage;
  917. int res;
  918. unsigned int nr_pages;
  919. if (!sysctl_memory_failure_recovery)
  920. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  921. if (!pfn_valid(pfn)) {
  922. printk(KERN_ERR
  923. "MCE %#lx: memory outside kernel control\n",
  924. pfn);
  925. return -ENXIO;
  926. }
  927. p = pfn_to_page(pfn);
  928. hpage = compound_head(p);
  929. if (TestSetPageHWPoison(p)) {
  930. printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
  931. return 0;
  932. }
  933. nr_pages = 1 << compound_trans_order(hpage);
  934. atomic_long_add(nr_pages, &mce_bad_pages);
  935. /*
  936. * We need/can do nothing about count=0 pages.
  937. * 1) it's a free page, and therefore in safe hand:
  938. * prep_new_page() will be the gate keeper.
  939. * 2) it's a free hugepage, which is also safe:
  940. * an affected hugepage will be dequeued from hugepage freelist,
  941. * so there's no concern about reusing it ever after.
  942. * 3) it's part of a non-compound high order page.
  943. * Implies some kernel user: cannot stop them from
  944. * R/W the page; let's pray that the page has been
  945. * used and will be freed some time later.
  946. * In fact it's dangerous to directly bump up page count from 0,
  947. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  948. */
  949. if (!(flags & MF_COUNT_INCREASED) &&
  950. !get_page_unless_zero(hpage)) {
  951. if (is_free_buddy_page(p)) {
  952. action_result(pfn, "free buddy", DELAYED);
  953. return 0;
  954. } else if (PageHuge(hpage)) {
  955. /*
  956. * Check "filter hit" and "race with other subpage."
  957. */
  958. lock_page(hpage);
  959. if (PageHWPoison(hpage)) {
  960. if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
  961. || (p != hpage && TestSetPageHWPoison(hpage))) {
  962. atomic_long_sub(nr_pages, &mce_bad_pages);
  963. unlock_page(hpage);
  964. return 0;
  965. }
  966. }
  967. set_page_hwpoison_huge_page(hpage);
  968. res = dequeue_hwpoisoned_huge_page(hpage);
  969. action_result(pfn, "free huge",
  970. res ? IGNORED : DELAYED);
  971. unlock_page(hpage);
  972. return res;
  973. } else {
  974. action_result(pfn, "high order kernel", IGNORED);
  975. return -EBUSY;
  976. }
  977. }
  978. /*
  979. * We ignore non-LRU pages for good reasons.
  980. * - PG_locked is only well defined for LRU pages and a few others
  981. * - to avoid races with __set_page_locked()
  982. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  983. * The check (unnecessarily) ignores LRU pages being isolated and
  984. * walked by the page reclaim code, however that's not a big loss.
  985. */
  986. if (!PageHuge(p)) {
  987. if (!PageLRU(hpage))
  988. shake_page(hpage, 0);
  989. if (!PageLRU(hpage)) {
  990. /*
  991. * shake_page could have turned it free.
  992. */
  993. if (is_free_buddy_page(p)) {
  994. action_result(pfn, "free buddy, 2nd try",
  995. DELAYED);
  996. return 0;
  997. }
  998. action_result(pfn, "non LRU", IGNORED);
  999. put_page(p);
  1000. return -EBUSY;
  1001. }
  1002. }
  1003. /*
  1004. * Lock the page and wait for writeback to finish.
  1005. * It's very difficult to mess with pages currently under IO
  1006. * and in many cases impossible, so we just avoid it here.
  1007. */
  1008. lock_page(hpage);
  1009. /*
  1010. * unpoison always clear PG_hwpoison inside page lock
  1011. */
  1012. if (!PageHWPoison(p)) {
  1013. printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
  1014. atomic_long_sub(nr_pages, &mce_bad_pages);
  1015. put_page(hpage);
  1016. res = 0;
  1017. goto out;
  1018. }
  1019. if (hwpoison_filter(p)) {
  1020. if (TestClearPageHWPoison(p))
  1021. atomic_long_sub(nr_pages, &mce_bad_pages);
  1022. unlock_page(hpage);
  1023. put_page(hpage);
  1024. return 0;
  1025. }
  1026. /*
  1027. * For error on the tail page, we should set PG_hwpoison
  1028. * on the head page to show that the hugepage is hwpoisoned
  1029. */
  1030. if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
  1031. action_result(pfn, "hugepage already hardware poisoned",
  1032. IGNORED);
  1033. unlock_page(hpage);
  1034. put_page(hpage);
  1035. return 0;
  1036. }
  1037. /*
  1038. * Set PG_hwpoison on all pages in an error hugepage,
  1039. * because containment is done in hugepage unit for now.
  1040. * Since we have done TestSetPageHWPoison() for the head page with
  1041. * page lock held, we can safely set PG_hwpoison bits on tail pages.
  1042. */
  1043. if (PageHuge(p))
  1044. set_page_hwpoison_huge_page(hpage);
  1045. wait_on_page_writeback(p);
  1046. /*
  1047. * Now take care of user space mappings.
  1048. * Abort on fail: __delete_from_page_cache() assumes unmapped page.
  1049. */
  1050. if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) {
  1051. printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
  1052. res = -EBUSY;
  1053. goto out;
  1054. }
  1055. /*
  1056. * Torn down by someone else?
  1057. */
  1058. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  1059. action_result(pfn, "already truncated LRU", IGNORED);
  1060. res = -EBUSY;
  1061. goto out;
  1062. }
  1063. res = -EBUSY;
  1064. for (ps = error_states;; ps++) {
  1065. if ((p->flags & ps->mask) == ps->res) {
  1066. res = page_action(ps, p, pfn);
  1067. break;
  1068. }
  1069. }
  1070. out:
  1071. unlock_page(hpage);
  1072. return res;
  1073. }
  1074. EXPORT_SYMBOL_GPL(memory_failure);
  1075. #define MEMORY_FAILURE_FIFO_ORDER 4
  1076. #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
  1077. struct memory_failure_entry {
  1078. unsigned long pfn;
  1079. int trapno;
  1080. int flags;
  1081. };
  1082. struct memory_failure_cpu {
  1083. DECLARE_KFIFO(fifo, struct memory_failure_entry,
  1084. MEMORY_FAILURE_FIFO_SIZE);
  1085. spinlock_t lock;
  1086. struct work_struct work;
  1087. };
  1088. static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
  1089. /**
  1090. * memory_failure_queue - Schedule handling memory failure of a page.
  1091. * @pfn: Page Number of the corrupted page
  1092. * @trapno: Trap number reported in the signal to user space.
  1093. * @flags: Flags for memory failure handling
  1094. *
  1095. * This function is called by the low level hardware error handler
  1096. * when it detects hardware memory corruption of a page. It schedules
  1097. * the recovering of error page, including dropping pages, killing
  1098. * processes etc.
  1099. *
  1100. * The function is primarily of use for corruptions that
  1101. * happen outside the current execution context (e.g. when
  1102. * detected by a background scrubber)
  1103. *
  1104. * Can run in IRQ context.
  1105. */
  1106. void memory_failure_queue(unsigned long pfn, int trapno, int flags)
  1107. {
  1108. struct memory_failure_cpu *mf_cpu;
  1109. unsigned long proc_flags;
  1110. struct memory_failure_entry entry = {
  1111. .pfn = pfn,
  1112. .trapno = trapno,
  1113. .flags = flags,
  1114. };
  1115. mf_cpu = &get_cpu_var(memory_failure_cpu);
  1116. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1117. if (kfifo_put(&mf_cpu->fifo, &entry))
  1118. schedule_work_on(smp_processor_id(), &mf_cpu->work);
  1119. else
  1120. pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
  1121. pfn);
  1122. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1123. put_cpu_var(memory_failure_cpu);
  1124. }
  1125. EXPORT_SYMBOL_GPL(memory_failure_queue);
  1126. static void memory_failure_work_func(struct work_struct *work)
  1127. {
  1128. struct memory_failure_cpu *mf_cpu;
  1129. struct memory_failure_entry entry = { 0, };
  1130. unsigned long proc_flags;
  1131. int gotten;
  1132. mf_cpu = &__get_cpu_var(memory_failure_cpu);
  1133. for (;;) {
  1134. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1135. gotten = kfifo_get(&mf_cpu->fifo, &entry);
  1136. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1137. if (!gotten)
  1138. break;
  1139. memory_failure(entry.pfn, entry.trapno, entry.flags);
  1140. }
  1141. }
  1142. static int __init memory_failure_init(void)
  1143. {
  1144. struct memory_failure_cpu *mf_cpu;
  1145. int cpu;
  1146. for_each_possible_cpu(cpu) {
  1147. mf_cpu = &per_cpu(memory_failure_cpu, cpu);
  1148. spin_lock_init(&mf_cpu->lock);
  1149. INIT_KFIFO(mf_cpu->fifo);
  1150. INIT_WORK(&mf_cpu->work, memory_failure_work_func);
  1151. }
  1152. return 0;
  1153. }
  1154. core_initcall(memory_failure_init);
  1155. /**
  1156. * unpoison_memory - Unpoison a previously poisoned page
  1157. * @pfn: Page number of the to be unpoisoned page
  1158. *
  1159. * Software-unpoison a page that has been poisoned by
  1160. * memory_failure() earlier.
  1161. *
  1162. * This is only done on the software-level, so it only works
  1163. * for linux injected failures, not real hardware failures
  1164. *
  1165. * Returns 0 for success, otherwise -errno.
  1166. */
  1167. int unpoison_memory(unsigned long pfn)
  1168. {
  1169. struct page *page;
  1170. struct page *p;
  1171. int freeit = 0;
  1172. unsigned int nr_pages;
  1173. if (!pfn_valid(pfn))
  1174. return -ENXIO;
  1175. p = pfn_to_page(pfn);
  1176. page = compound_head(p);
  1177. if (!PageHWPoison(p)) {
  1178. pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
  1179. return 0;
  1180. }
  1181. nr_pages = 1 << compound_trans_order(page);
  1182. if (!get_page_unless_zero(page)) {
  1183. /*
  1184. * Since HWPoisoned hugepage should have non-zero refcount,
  1185. * race between memory failure and unpoison seems to happen.
  1186. * In such case unpoison fails and memory failure runs
  1187. * to the end.
  1188. */
  1189. if (PageHuge(page)) {
  1190. pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
  1191. return 0;
  1192. }
  1193. if (TestClearPageHWPoison(p))
  1194. atomic_long_sub(nr_pages, &mce_bad_pages);
  1195. pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
  1196. return 0;
  1197. }
  1198. lock_page(page);
  1199. /*
  1200. * This test is racy because PG_hwpoison is set outside of page lock.
  1201. * That's acceptable because that won't trigger kernel panic. Instead,
  1202. * the PG_hwpoison page will be caught and isolated on the entrance to
  1203. * the free buddy page pool.
  1204. */
  1205. if (TestClearPageHWPoison(page)) {
  1206. pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
  1207. atomic_long_sub(nr_pages, &mce_bad_pages);
  1208. freeit = 1;
  1209. if (PageHuge(page))
  1210. clear_page_hwpoison_huge_page(page);
  1211. }
  1212. unlock_page(page);
  1213. put_page(page);
  1214. if (freeit)
  1215. put_page(page);
  1216. return 0;
  1217. }
  1218. EXPORT_SYMBOL(unpoison_memory);
  1219. static struct page *new_page(struct page *p, unsigned long private, int **x)
  1220. {
  1221. int nid = page_to_nid(p);
  1222. if (PageHuge(p))
  1223. return alloc_huge_page_node(page_hstate(compound_head(p)),
  1224. nid);
  1225. else
  1226. return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
  1227. }
  1228. /*
  1229. * Safely get reference count of an arbitrary page.
  1230. * Returns 0 for a free page, -EIO for a zero refcount page
  1231. * that is not free, and 1 for any other page type.
  1232. * For 1 the page is returned with increased page count, otherwise not.
  1233. */
  1234. static int get_any_page(struct page *p, unsigned long pfn, int flags)
  1235. {
  1236. int ret;
  1237. if (flags & MF_COUNT_INCREASED)
  1238. return 1;
  1239. /*
  1240. * The lock_memory_hotplug prevents a race with memory hotplug.
  1241. * This is a big hammer, a better would be nicer.
  1242. */
  1243. lock_memory_hotplug();
  1244. /*
  1245. * Isolate the page, so that it doesn't get reallocated if it
  1246. * was free.
  1247. */
  1248. set_migratetype_isolate(p);
  1249. /*
  1250. * When the target page is a free hugepage, just remove it
  1251. * from free hugepage list.
  1252. */
  1253. if (!get_page_unless_zero(compound_head(p))) {
  1254. if (PageHuge(p)) {
  1255. pr_info("get_any_page: %#lx free huge page\n", pfn);
  1256. ret = dequeue_hwpoisoned_huge_page(compound_head(p));
  1257. } else if (is_free_buddy_page(p)) {
  1258. pr_info("get_any_page: %#lx free buddy page\n", pfn);
  1259. /* Set hwpoison bit while page is still isolated */
  1260. SetPageHWPoison(p);
  1261. ret = 0;
  1262. } else {
  1263. pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
  1264. pfn, p->flags);
  1265. ret = -EIO;
  1266. }
  1267. } else {
  1268. /* Not a free page */
  1269. ret = 1;
  1270. }
  1271. unset_migratetype_isolate(p, MIGRATE_MOVABLE);
  1272. unlock_memory_hotplug();
  1273. return ret;
  1274. }
  1275. static int soft_offline_huge_page(struct page *page, int flags)
  1276. {
  1277. int ret;
  1278. unsigned long pfn = page_to_pfn(page);
  1279. struct page *hpage = compound_head(page);
  1280. LIST_HEAD(pagelist);
  1281. ret = get_any_page(page, pfn, flags);
  1282. if (ret < 0)
  1283. return ret;
  1284. if (ret == 0)
  1285. goto done;
  1286. if (PageHWPoison(hpage)) {
  1287. put_page(hpage);
  1288. pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
  1289. return -EBUSY;
  1290. }
  1291. /* Keep page count to indicate a given hugepage is isolated. */
  1292. list_add(&hpage->lru, &pagelist);
  1293. ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, false,
  1294. MIGRATE_SYNC);
  1295. if (ret) {
  1296. struct page *page1, *page2;
  1297. list_for_each_entry_safe(page1, page2, &pagelist, lru)
  1298. put_page(page1);
  1299. pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
  1300. pfn, ret, page->flags);
  1301. if (ret > 0)
  1302. ret = -EIO;
  1303. return ret;
  1304. }
  1305. done:
  1306. /* overcommit hugetlb page will be freed to buddy */
  1307. if (PageHuge(hpage)) {
  1308. if (!PageHWPoison(hpage))
  1309. atomic_long_add(1 << compound_trans_order(hpage),
  1310. &mce_bad_pages);
  1311. set_page_hwpoison_huge_page(hpage);
  1312. dequeue_hwpoisoned_huge_page(hpage);
  1313. } else {
  1314. SetPageHWPoison(page);
  1315. atomic_long_inc(&mce_bad_pages);
  1316. }
  1317. /* keep elevated page count for bad page */
  1318. return ret;
  1319. }
  1320. /**
  1321. * soft_offline_page - Soft offline a page.
  1322. * @page: page to offline
  1323. * @flags: flags. Same as memory_failure().
  1324. *
  1325. * Returns 0 on success, otherwise negated errno.
  1326. *
  1327. * Soft offline a page, by migration or invalidation,
  1328. * without killing anything. This is for the case when
  1329. * a page is not corrupted yet (so it's still valid to access),
  1330. * but has had a number of corrected errors and is better taken
  1331. * out.
  1332. *
  1333. * The actual policy on when to do that is maintained by
  1334. * user space.
  1335. *
  1336. * This should never impact any application or cause data loss,
  1337. * however it might take some time.
  1338. *
  1339. * This is not a 100% solution for all memory, but tries to be
  1340. * ``good enough'' for the majority of memory.
  1341. */
  1342. int soft_offline_page(struct page *page, int flags)
  1343. {
  1344. int ret;
  1345. unsigned long pfn = page_to_pfn(page);
  1346. struct page *hpage = compound_trans_head(page);
  1347. if (PageHuge(page))
  1348. return soft_offline_huge_page(page, flags);
  1349. if (PageTransHuge(hpage)) {
  1350. if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
  1351. pr_info("soft offline: %#lx: failed to split THP\n",
  1352. pfn);
  1353. return -EBUSY;
  1354. }
  1355. }
  1356. ret = get_any_page(page, pfn, flags);
  1357. if (ret < 0)
  1358. return ret;
  1359. if (ret == 0)
  1360. goto done;
  1361. /*
  1362. * Page cache page we can handle?
  1363. */
  1364. if (!PageLRU(page)) {
  1365. /*
  1366. * Try to free it.
  1367. */
  1368. put_page(page);
  1369. shake_page(page, 1);
  1370. /*
  1371. * Did it turn free?
  1372. */
  1373. ret = get_any_page(page, pfn, 0);
  1374. if (ret < 0)
  1375. return ret;
  1376. if (ret == 0)
  1377. goto done;
  1378. }
  1379. if (!PageLRU(page)) {
  1380. pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
  1381. pfn, page->flags);
  1382. return -EIO;
  1383. }
  1384. lock_page(page);
  1385. wait_on_page_writeback(page);
  1386. /*
  1387. * Synchronized using the page lock with memory_failure()
  1388. */
  1389. if (PageHWPoison(page)) {
  1390. unlock_page(page);
  1391. put_page(page);
  1392. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1393. return -EBUSY;
  1394. }
  1395. /*
  1396. * Try to invalidate first. This should work for
  1397. * non dirty unmapped page cache pages.
  1398. */
  1399. ret = invalidate_inode_page(page);
  1400. unlock_page(page);
  1401. /*
  1402. * RED-PEN would be better to keep it isolated here, but we
  1403. * would need to fix isolation locking first.
  1404. */
  1405. if (ret == 1) {
  1406. put_page(page);
  1407. ret = 0;
  1408. pr_info("soft_offline: %#lx: invalidated\n", pfn);
  1409. goto done;
  1410. }
  1411. /*
  1412. * Simple invalidation didn't work.
  1413. * Try to migrate to a new page instead. migrate.c
  1414. * handles a large number of cases for us.
  1415. */
  1416. ret = isolate_lru_page(page);
  1417. /*
  1418. * Drop page reference which is came from get_any_page()
  1419. * successful isolate_lru_page() already took another one.
  1420. */
  1421. put_page(page);
  1422. if (!ret) {
  1423. LIST_HEAD(pagelist);
  1424. inc_zone_page_state(page, NR_ISOLATED_ANON +
  1425. page_is_file_cache(page));
  1426. list_add(&page->lru, &pagelist);
  1427. ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
  1428. false, MIGRATE_SYNC);
  1429. if (ret) {
  1430. putback_lru_pages(&pagelist);
  1431. pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
  1432. pfn, ret, page->flags);
  1433. if (ret > 0)
  1434. ret = -EIO;
  1435. }
  1436. } else {
  1437. pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
  1438. pfn, ret, page_count(page), page->flags);
  1439. }
  1440. if (ret)
  1441. return ret;
  1442. done:
  1443. atomic_long_add(1, &mce_bad_pages);
  1444. SetPageHWPoison(page);
  1445. /* keep elevated page count for bad page */
  1446. return ret;
  1447. }