eba.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12. * the GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. *
  18. * Author: Artem Bityutskiy (Битюцкий Артём)
  19. */
  20. /*
  21. * The UBI Eraseblock Association (EBA) sub-system.
  22. *
  23. * This sub-system is responsible for I/O to/from logical eraseblock.
  24. *
  25. * Although in this implementation the EBA table is fully kept and managed in
  26. * RAM, which assumes poor scalability, it might be (partially) maintained on
  27. * flash in future implementations.
  28. *
  29. * The EBA sub-system implements per-logical eraseblock locking. Before
  30. * accessing a logical eraseblock it is locked for reading or writing. The
  31. * per-logical eraseblock locking is implemented by means of the lock tree. The
  32. * lock tree is an RB-tree which refers all the currently locked logical
  33. * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
  34. * They are indexed by (@vol_id, @lnum) pairs.
  35. *
  36. * EBA also maintains the global sequence counter which is incremented each
  37. * time a logical eraseblock is mapped to a physical eraseblock and it is
  38. * stored in the volume identifier header. This means that each VID header has
  39. * a unique sequence number. The sequence number is only increased an we assume
  40. * 64 bits is enough to never overflow.
  41. */
  42. #include <linux/slab.h>
  43. #include <linux/crc32.h>
  44. #include <linux/err.h>
  45. #include "ubi.h"
  46. /* Number of physical eraseblocks reserved for atomic LEB change operation */
  47. #define EBA_RESERVED_PEBS 1
  48. /**
  49. * next_sqnum - get next sequence number.
  50. * @ubi: UBI device description object
  51. *
  52. * This function returns next sequence number to use, which is just the current
  53. * global sequence counter value. It also increases the global sequence
  54. * counter.
  55. */
  56. static unsigned long long next_sqnum(struct ubi_device *ubi)
  57. {
  58. unsigned long long sqnum;
  59. spin_lock(&ubi->ltree_lock);
  60. sqnum = ubi->global_sqnum++;
  61. spin_unlock(&ubi->ltree_lock);
  62. return sqnum;
  63. }
  64. /**
  65. * ubi_get_compat - get compatibility flags of a volume.
  66. * @ubi: UBI device description object
  67. * @vol_id: volume ID
  68. *
  69. * This function returns compatibility flags for an internal volume. User
  70. * volumes have no compatibility flags, so %0 is returned.
  71. */
  72. static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
  73. {
  74. if (vol_id == UBI_LAYOUT_VOLUME_ID)
  75. return UBI_LAYOUT_VOLUME_COMPAT;
  76. return 0;
  77. }
  78. /**
  79. * ltree_lookup - look up the lock tree.
  80. * @ubi: UBI device description object
  81. * @vol_id: volume ID
  82. * @lnum: logical eraseblock number
  83. *
  84. * This function returns a pointer to the corresponding &struct ubi_ltree_entry
  85. * object if the logical eraseblock is locked and %NULL if it is not.
  86. * @ubi->ltree_lock has to be locked.
  87. */
  88. static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
  89. int lnum)
  90. {
  91. struct rb_node *p;
  92. p = ubi->ltree.rb_node;
  93. while (p) {
  94. struct ubi_ltree_entry *le;
  95. le = rb_entry(p, struct ubi_ltree_entry, rb);
  96. if (vol_id < le->vol_id)
  97. p = p->rb_left;
  98. else if (vol_id > le->vol_id)
  99. p = p->rb_right;
  100. else {
  101. if (lnum < le->lnum)
  102. p = p->rb_left;
  103. else if (lnum > le->lnum)
  104. p = p->rb_right;
  105. else
  106. return le;
  107. }
  108. }
  109. return NULL;
  110. }
  111. /**
  112. * ltree_add_entry - add new entry to the lock tree.
  113. * @ubi: UBI device description object
  114. * @vol_id: volume ID
  115. * @lnum: logical eraseblock number
  116. *
  117. * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
  118. * lock tree. If such entry is already there, its usage counter is increased.
  119. * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
  120. * failed.
  121. */
  122. static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
  123. int vol_id, int lnum)
  124. {
  125. struct ubi_ltree_entry *le, *le1, *le_free;
  126. le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
  127. if (!le)
  128. return ERR_PTR(-ENOMEM);
  129. le->users = 0;
  130. init_rwsem(&le->mutex);
  131. le->vol_id = vol_id;
  132. le->lnum = lnum;
  133. spin_lock(&ubi->ltree_lock);
  134. le1 = ltree_lookup(ubi, vol_id, lnum);
  135. if (le1) {
  136. /*
  137. * This logical eraseblock is already locked. The newly
  138. * allocated lock entry is not needed.
  139. */
  140. le_free = le;
  141. le = le1;
  142. } else {
  143. struct rb_node **p, *parent = NULL;
  144. /*
  145. * No lock entry, add the newly allocated one to the
  146. * @ubi->ltree RB-tree.
  147. */
  148. le_free = NULL;
  149. p = &ubi->ltree.rb_node;
  150. while (*p) {
  151. parent = *p;
  152. le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
  153. if (vol_id < le1->vol_id)
  154. p = &(*p)->rb_left;
  155. else if (vol_id > le1->vol_id)
  156. p = &(*p)->rb_right;
  157. else {
  158. ubi_assert(lnum != le1->lnum);
  159. if (lnum < le1->lnum)
  160. p = &(*p)->rb_left;
  161. else
  162. p = &(*p)->rb_right;
  163. }
  164. }
  165. rb_link_node(&le->rb, parent, p);
  166. rb_insert_color(&le->rb, &ubi->ltree);
  167. }
  168. le->users += 1;
  169. spin_unlock(&ubi->ltree_lock);
  170. kfree(le_free);
  171. return le;
  172. }
  173. /**
  174. * leb_read_lock - lock logical eraseblock for reading.
  175. * @ubi: UBI device description object
  176. * @vol_id: volume ID
  177. * @lnum: logical eraseblock number
  178. *
  179. * This function locks a logical eraseblock for reading. Returns zero in case
  180. * of success and a negative error code in case of failure.
  181. */
  182. static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
  183. {
  184. struct ubi_ltree_entry *le;
  185. le = ltree_add_entry(ubi, vol_id, lnum);
  186. if (IS_ERR(le))
  187. return PTR_ERR(le);
  188. down_read(&le->mutex);
  189. return 0;
  190. }
  191. /**
  192. * leb_read_unlock - unlock logical eraseblock.
  193. * @ubi: UBI device description object
  194. * @vol_id: volume ID
  195. * @lnum: logical eraseblock number
  196. */
  197. static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
  198. {
  199. struct ubi_ltree_entry *le;
  200. spin_lock(&ubi->ltree_lock);
  201. le = ltree_lookup(ubi, vol_id, lnum);
  202. le->users -= 1;
  203. ubi_assert(le->users >= 0);
  204. up_read(&le->mutex);
  205. if (le->users == 0) {
  206. rb_erase(&le->rb, &ubi->ltree);
  207. kfree(le);
  208. }
  209. spin_unlock(&ubi->ltree_lock);
  210. }
  211. /**
  212. * leb_write_lock - lock logical eraseblock for writing.
  213. * @ubi: UBI device description object
  214. * @vol_id: volume ID
  215. * @lnum: logical eraseblock number
  216. *
  217. * This function locks a logical eraseblock for writing. Returns zero in case
  218. * of success and a negative error code in case of failure.
  219. */
  220. static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
  221. {
  222. struct ubi_ltree_entry *le;
  223. le = ltree_add_entry(ubi, vol_id, lnum);
  224. if (IS_ERR(le))
  225. return PTR_ERR(le);
  226. down_write(&le->mutex);
  227. return 0;
  228. }
  229. /**
  230. * leb_write_lock - lock logical eraseblock for writing.
  231. * @ubi: UBI device description object
  232. * @vol_id: volume ID
  233. * @lnum: logical eraseblock number
  234. *
  235. * This function locks a logical eraseblock for writing if there is no
  236. * contention and does nothing if there is contention. Returns %0 in case of
  237. * success, %1 in case of contention, and and a negative error code in case of
  238. * failure.
  239. */
  240. static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
  241. {
  242. struct ubi_ltree_entry *le;
  243. le = ltree_add_entry(ubi, vol_id, lnum);
  244. if (IS_ERR(le))
  245. return PTR_ERR(le);
  246. if (down_write_trylock(&le->mutex))
  247. return 0;
  248. /* Contention, cancel */
  249. spin_lock(&ubi->ltree_lock);
  250. le->users -= 1;
  251. ubi_assert(le->users >= 0);
  252. if (le->users == 0) {
  253. rb_erase(&le->rb, &ubi->ltree);
  254. kfree(le);
  255. }
  256. spin_unlock(&ubi->ltree_lock);
  257. return 1;
  258. }
  259. /**
  260. * leb_write_unlock - unlock logical eraseblock.
  261. * @ubi: UBI device description object
  262. * @vol_id: volume ID
  263. * @lnum: logical eraseblock number
  264. */
  265. static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
  266. {
  267. struct ubi_ltree_entry *le;
  268. spin_lock(&ubi->ltree_lock);
  269. le = ltree_lookup(ubi, vol_id, lnum);
  270. le->users -= 1;
  271. ubi_assert(le->users >= 0);
  272. up_write(&le->mutex);
  273. if (le->users == 0) {
  274. rb_erase(&le->rb, &ubi->ltree);
  275. kfree(le);
  276. }
  277. spin_unlock(&ubi->ltree_lock);
  278. }
  279. /**
  280. * ubi_eba_unmap_leb - un-map logical eraseblock.
  281. * @ubi: UBI device description object
  282. * @vol: volume description object
  283. * @lnum: logical eraseblock number
  284. *
  285. * This function un-maps logical eraseblock @lnum and schedules corresponding
  286. * physical eraseblock for erasure. Returns zero in case of success and a
  287. * negative error code in case of failure.
  288. */
  289. int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
  290. int lnum)
  291. {
  292. int err, pnum, vol_id = vol->vol_id;
  293. if (ubi->ro_mode)
  294. return -EROFS;
  295. err = leb_write_lock(ubi, vol_id, lnum);
  296. if (err)
  297. return err;
  298. pnum = vol->eba_tbl[lnum];
  299. if (pnum < 0)
  300. /* This logical eraseblock is already unmapped */
  301. goto out_unlock;
  302. dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
  303. vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
  304. err = ubi_wl_put_peb(ubi, pnum, 0);
  305. out_unlock:
  306. leb_write_unlock(ubi, vol_id, lnum);
  307. return err;
  308. }
  309. /**
  310. * ubi_eba_read_leb - read data.
  311. * @ubi: UBI device description object
  312. * @vol: volume description object
  313. * @lnum: logical eraseblock number
  314. * @buf: buffer to store the read data
  315. * @offset: offset from where to read
  316. * @len: how many bytes to read
  317. * @check: data CRC check flag
  318. *
  319. * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
  320. * bytes. The @check flag only makes sense for static volumes and forces
  321. * eraseblock data CRC checking.
  322. *
  323. * In case of success this function returns zero. In case of a static volume,
  324. * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
  325. * returned for any volume type if an ECC error was detected by the MTD device
  326. * driver. Other negative error cored may be returned in case of other errors.
  327. */
  328. int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
  329. void *buf, int offset, int len, int check)
  330. {
  331. int err, pnum, scrub = 0, vol_id = vol->vol_id;
  332. struct ubi_vid_hdr *vid_hdr;
  333. uint32_t uninitialized_var(crc);
  334. err = leb_read_lock(ubi, vol_id, lnum);
  335. if (err)
  336. return err;
  337. pnum = vol->eba_tbl[lnum];
  338. if (pnum < 0) {
  339. /*
  340. * The logical eraseblock is not mapped, fill the whole buffer
  341. * with 0xFF bytes. The exception is static volumes for which
  342. * it is an error to read unmapped logical eraseblocks.
  343. */
  344. dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
  345. len, offset, vol_id, lnum);
  346. leb_read_unlock(ubi, vol_id, lnum);
  347. ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
  348. memset(buf, 0xFF, len);
  349. return 0;
  350. }
  351. dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
  352. len, offset, vol_id, lnum, pnum);
  353. if (vol->vol_type == UBI_DYNAMIC_VOLUME)
  354. check = 0;
  355. retry:
  356. if (check) {
  357. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  358. if (!vid_hdr) {
  359. err = -ENOMEM;
  360. goto out_unlock;
  361. }
  362. err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
  363. if (err && err != UBI_IO_BITFLIPS) {
  364. if (err > 0) {
  365. /*
  366. * The header is either absent or corrupted.
  367. * The former case means there is a bug -
  368. * switch to read-only mode just in case.
  369. * The latter case means a real corruption - we
  370. * may try to recover data. FIXME: but this is
  371. * not implemented.
  372. */
  373. if (err == UBI_IO_BAD_HDR_EBADMSG ||
  374. err == UBI_IO_BAD_HDR) {
  375. ubi_warn("corrupted VID header at PEB "
  376. "%d, LEB %d:%d", pnum, vol_id,
  377. lnum);
  378. err = -EBADMSG;
  379. } else
  380. ubi_ro_mode(ubi);
  381. }
  382. goto out_free;
  383. } else if (err == UBI_IO_BITFLIPS)
  384. scrub = 1;
  385. ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
  386. ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
  387. crc = be32_to_cpu(vid_hdr->data_crc);
  388. ubi_free_vid_hdr(ubi, vid_hdr);
  389. }
  390. err = ubi_io_read_data(ubi, buf, pnum, offset, len);
  391. if (err) {
  392. if (err == UBI_IO_BITFLIPS) {
  393. scrub = 1;
  394. err = 0;
  395. } else if (mtd_is_eccerr(err)) {
  396. if (vol->vol_type == UBI_DYNAMIC_VOLUME)
  397. goto out_unlock;
  398. scrub = 1;
  399. if (!check) {
  400. ubi_msg("force data checking");
  401. check = 1;
  402. goto retry;
  403. }
  404. } else
  405. goto out_unlock;
  406. }
  407. if (check) {
  408. uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
  409. if (crc1 != crc) {
  410. ubi_warn("CRC error: calculated %#08x, must be %#08x",
  411. crc1, crc);
  412. err = -EBADMSG;
  413. goto out_unlock;
  414. }
  415. }
  416. if (scrub)
  417. err = ubi_wl_scrub_peb(ubi, pnum);
  418. leb_read_unlock(ubi, vol_id, lnum);
  419. return err;
  420. out_free:
  421. ubi_free_vid_hdr(ubi, vid_hdr);
  422. out_unlock:
  423. leb_read_unlock(ubi, vol_id, lnum);
  424. return err;
  425. }
  426. /**
  427. * recover_peb - recover from write failure.
  428. * @ubi: UBI device description object
  429. * @pnum: the physical eraseblock to recover
  430. * @vol_id: volume ID
  431. * @lnum: logical eraseblock number
  432. * @buf: data which was not written because of the write failure
  433. * @offset: offset of the failed write
  434. * @len: how many bytes should have been written
  435. *
  436. * This function is called in case of a write failure and moves all good data
  437. * from the potentially bad physical eraseblock to a good physical eraseblock.
  438. * This function also writes the data which was not written due to the failure.
  439. * Returns new physical eraseblock number in case of success, and a negative
  440. * error code in case of failure.
  441. */
  442. static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
  443. const void *buf, int offset, int len)
  444. {
  445. int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
  446. struct ubi_volume *vol = ubi->volumes[idx];
  447. struct ubi_vid_hdr *vid_hdr;
  448. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  449. if (!vid_hdr)
  450. return -ENOMEM;
  451. retry:
  452. new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN);
  453. if (new_pnum < 0) {
  454. ubi_free_vid_hdr(ubi, vid_hdr);
  455. return new_pnum;
  456. }
  457. ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
  458. err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
  459. if (err && err != UBI_IO_BITFLIPS) {
  460. if (err > 0)
  461. err = -EIO;
  462. goto out_put;
  463. }
  464. vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
  465. err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
  466. if (err)
  467. goto write_error;
  468. data_size = offset + len;
  469. mutex_lock(&ubi->buf_mutex);
  470. memset(ubi->peb_buf + offset, 0xFF, len);
  471. /* Read everything before the area where the write failure happened */
  472. if (offset > 0) {
  473. err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
  474. if (err && err != UBI_IO_BITFLIPS)
  475. goto out_unlock;
  476. }
  477. memcpy(ubi->peb_buf + offset, buf, len);
  478. err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
  479. if (err) {
  480. mutex_unlock(&ubi->buf_mutex);
  481. goto write_error;
  482. }
  483. mutex_unlock(&ubi->buf_mutex);
  484. ubi_free_vid_hdr(ubi, vid_hdr);
  485. vol->eba_tbl[lnum] = new_pnum;
  486. ubi_wl_put_peb(ubi, pnum, 1);
  487. ubi_msg("data was successfully recovered");
  488. return 0;
  489. out_unlock:
  490. mutex_unlock(&ubi->buf_mutex);
  491. out_put:
  492. ubi_wl_put_peb(ubi, new_pnum, 1);
  493. ubi_free_vid_hdr(ubi, vid_hdr);
  494. return err;
  495. write_error:
  496. /*
  497. * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
  498. * get another one.
  499. */
  500. ubi_warn("failed to write to PEB %d", new_pnum);
  501. ubi_wl_put_peb(ubi, new_pnum, 1);
  502. if (++tries > UBI_IO_RETRIES) {
  503. ubi_free_vid_hdr(ubi, vid_hdr);
  504. return err;
  505. }
  506. ubi_msg("try again");
  507. goto retry;
  508. }
  509. /**
  510. * ubi_eba_write_leb - write data to dynamic volume.
  511. * @ubi: UBI device description object
  512. * @vol: volume description object
  513. * @lnum: logical eraseblock number
  514. * @buf: the data to write
  515. * @offset: offset within the logical eraseblock where to write
  516. * @len: how many bytes to write
  517. * @dtype: data type
  518. *
  519. * This function writes data to logical eraseblock @lnum of a dynamic volume
  520. * @vol. Returns zero in case of success and a negative error code in case
  521. * of failure. In case of error, it is possible that something was still
  522. * written to the flash media, but may be some garbage.
  523. */
  524. int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
  525. const void *buf, int offset, int len, int dtype)
  526. {
  527. int err, pnum, tries = 0, vol_id = vol->vol_id;
  528. struct ubi_vid_hdr *vid_hdr;
  529. if (ubi->ro_mode)
  530. return -EROFS;
  531. err = leb_write_lock(ubi, vol_id, lnum);
  532. if (err)
  533. return err;
  534. pnum = vol->eba_tbl[lnum];
  535. if (pnum >= 0) {
  536. dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
  537. len, offset, vol_id, lnum, pnum);
  538. err = ubi_io_write_data(ubi, buf, pnum, offset, len);
  539. if (err) {
  540. ubi_warn("failed to write data to PEB %d", pnum);
  541. if (err == -EIO && ubi->bad_allowed)
  542. err = recover_peb(ubi, pnum, vol_id, lnum, buf,
  543. offset, len);
  544. if (err)
  545. ubi_ro_mode(ubi);
  546. }
  547. leb_write_unlock(ubi, vol_id, lnum);
  548. return err;
  549. }
  550. /*
  551. * The logical eraseblock is not mapped. We have to get a free physical
  552. * eraseblock and write the volume identifier header there first.
  553. */
  554. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  555. if (!vid_hdr) {
  556. leb_write_unlock(ubi, vol_id, lnum);
  557. return -ENOMEM;
  558. }
  559. vid_hdr->vol_type = UBI_VID_DYNAMIC;
  560. vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
  561. vid_hdr->vol_id = cpu_to_be32(vol_id);
  562. vid_hdr->lnum = cpu_to_be32(lnum);
  563. vid_hdr->compat = ubi_get_compat(ubi, vol_id);
  564. vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
  565. retry:
  566. pnum = ubi_wl_get_peb(ubi, dtype);
  567. if (pnum < 0) {
  568. ubi_free_vid_hdr(ubi, vid_hdr);
  569. leb_write_unlock(ubi, vol_id, lnum);
  570. return pnum;
  571. }
  572. dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
  573. len, offset, vol_id, lnum, pnum);
  574. err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
  575. if (err) {
  576. ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
  577. vol_id, lnum, pnum);
  578. goto write_error;
  579. }
  580. if (len) {
  581. err = ubi_io_write_data(ubi, buf, pnum, offset, len);
  582. if (err) {
  583. ubi_warn("failed to write %d bytes at offset %d of "
  584. "LEB %d:%d, PEB %d", len, offset, vol_id,
  585. lnum, pnum);
  586. goto write_error;
  587. }
  588. }
  589. vol->eba_tbl[lnum] = pnum;
  590. leb_write_unlock(ubi, vol_id, lnum);
  591. ubi_free_vid_hdr(ubi, vid_hdr);
  592. return 0;
  593. write_error:
  594. if (err != -EIO || !ubi->bad_allowed) {
  595. ubi_ro_mode(ubi);
  596. leb_write_unlock(ubi, vol_id, lnum);
  597. ubi_free_vid_hdr(ubi, vid_hdr);
  598. return err;
  599. }
  600. /*
  601. * Fortunately, this is the first write operation to this physical
  602. * eraseblock, so just put it and request a new one. We assume that if
  603. * this physical eraseblock went bad, the erase code will handle that.
  604. */
  605. err = ubi_wl_put_peb(ubi, pnum, 1);
  606. if (err || ++tries > UBI_IO_RETRIES) {
  607. ubi_ro_mode(ubi);
  608. leb_write_unlock(ubi, vol_id, lnum);
  609. ubi_free_vid_hdr(ubi, vid_hdr);
  610. return err;
  611. }
  612. vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
  613. ubi_msg("try another PEB");
  614. goto retry;
  615. }
  616. /**
  617. * ubi_eba_write_leb_st - write data to static volume.
  618. * @ubi: UBI device description object
  619. * @vol: volume description object
  620. * @lnum: logical eraseblock number
  621. * @buf: data to write
  622. * @len: how many bytes to write
  623. * @dtype: data type
  624. * @used_ebs: how many logical eraseblocks will this volume contain
  625. *
  626. * This function writes data to logical eraseblock @lnum of static volume
  627. * @vol. The @used_ebs argument should contain total number of logical
  628. * eraseblock in this static volume.
  629. *
  630. * When writing to the last logical eraseblock, the @len argument doesn't have
  631. * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
  632. * to the real data size, although the @buf buffer has to contain the
  633. * alignment. In all other cases, @len has to be aligned.
  634. *
  635. * It is prohibited to write more than once to logical eraseblocks of static
  636. * volumes. This function returns zero in case of success and a negative error
  637. * code in case of failure.
  638. */
  639. int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
  640. int lnum, const void *buf, int len, int dtype,
  641. int used_ebs)
  642. {
  643. int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
  644. struct ubi_vid_hdr *vid_hdr;
  645. uint32_t crc;
  646. if (ubi->ro_mode)
  647. return -EROFS;
  648. if (lnum == used_ebs - 1)
  649. /* If this is the last LEB @len may be unaligned */
  650. len = ALIGN(data_size, ubi->min_io_size);
  651. else
  652. ubi_assert(!(len & (ubi->min_io_size - 1)));
  653. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  654. if (!vid_hdr)
  655. return -ENOMEM;
  656. err = leb_write_lock(ubi, vol_id, lnum);
  657. if (err) {
  658. ubi_free_vid_hdr(ubi, vid_hdr);
  659. return err;
  660. }
  661. vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
  662. vid_hdr->vol_id = cpu_to_be32(vol_id);
  663. vid_hdr->lnum = cpu_to_be32(lnum);
  664. vid_hdr->compat = ubi_get_compat(ubi, vol_id);
  665. vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
  666. crc = crc32(UBI_CRC32_INIT, buf, data_size);
  667. vid_hdr->vol_type = UBI_VID_STATIC;
  668. vid_hdr->data_size = cpu_to_be32(data_size);
  669. vid_hdr->used_ebs = cpu_to_be32(used_ebs);
  670. vid_hdr->data_crc = cpu_to_be32(crc);
  671. retry:
  672. pnum = ubi_wl_get_peb(ubi, dtype);
  673. if (pnum < 0) {
  674. ubi_free_vid_hdr(ubi, vid_hdr);
  675. leb_write_unlock(ubi, vol_id, lnum);
  676. return pnum;
  677. }
  678. dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
  679. len, vol_id, lnum, pnum, used_ebs);
  680. err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
  681. if (err) {
  682. ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
  683. vol_id, lnum, pnum);
  684. goto write_error;
  685. }
  686. err = ubi_io_write_data(ubi, buf, pnum, 0, len);
  687. if (err) {
  688. ubi_warn("failed to write %d bytes of data to PEB %d",
  689. len, pnum);
  690. goto write_error;
  691. }
  692. ubi_assert(vol->eba_tbl[lnum] < 0);
  693. vol->eba_tbl[lnum] = pnum;
  694. leb_write_unlock(ubi, vol_id, lnum);
  695. ubi_free_vid_hdr(ubi, vid_hdr);
  696. return 0;
  697. write_error:
  698. if (err != -EIO || !ubi->bad_allowed) {
  699. /*
  700. * This flash device does not admit of bad eraseblocks or
  701. * something nasty and unexpected happened. Switch to read-only
  702. * mode just in case.
  703. */
  704. ubi_ro_mode(ubi);
  705. leb_write_unlock(ubi, vol_id, lnum);
  706. ubi_free_vid_hdr(ubi, vid_hdr);
  707. return err;
  708. }
  709. err = ubi_wl_put_peb(ubi, pnum, 1);
  710. if (err || ++tries > UBI_IO_RETRIES) {
  711. ubi_ro_mode(ubi);
  712. leb_write_unlock(ubi, vol_id, lnum);
  713. ubi_free_vid_hdr(ubi, vid_hdr);
  714. return err;
  715. }
  716. vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
  717. ubi_msg("try another PEB");
  718. goto retry;
  719. }
  720. /*
  721. * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
  722. * @ubi: UBI device description object
  723. * @vol: volume description object
  724. * @lnum: logical eraseblock number
  725. * @buf: data to write
  726. * @len: how many bytes to write
  727. * @dtype: data type
  728. *
  729. * This function changes the contents of a logical eraseblock atomically. @buf
  730. * has to contain new logical eraseblock data, and @len - the length of the
  731. * data, which has to be aligned. This function guarantees that in case of an
  732. * unclean reboot the old contents is preserved. Returns zero in case of
  733. * success and a negative error code in case of failure.
  734. *
  735. * UBI reserves one LEB for the "atomic LEB change" operation, so only one
  736. * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
  737. */
  738. int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
  739. int lnum, const void *buf, int len, int dtype)
  740. {
  741. int err, pnum, tries = 0, vol_id = vol->vol_id;
  742. struct ubi_vid_hdr *vid_hdr;
  743. uint32_t crc;
  744. if (ubi->ro_mode)
  745. return -EROFS;
  746. if (len == 0) {
  747. /*
  748. * Special case when data length is zero. In this case the LEB
  749. * has to be unmapped and mapped somewhere else.
  750. */
  751. err = ubi_eba_unmap_leb(ubi, vol, lnum);
  752. if (err)
  753. return err;
  754. return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype);
  755. }
  756. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  757. if (!vid_hdr)
  758. return -ENOMEM;
  759. mutex_lock(&ubi->alc_mutex);
  760. err = leb_write_lock(ubi, vol_id, lnum);
  761. if (err)
  762. goto out_mutex;
  763. vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
  764. vid_hdr->vol_id = cpu_to_be32(vol_id);
  765. vid_hdr->lnum = cpu_to_be32(lnum);
  766. vid_hdr->compat = ubi_get_compat(ubi, vol_id);
  767. vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
  768. crc = crc32(UBI_CRC32_INIT, buf, len);
  769. vid_hdr->vol_type = UBI_VID_DYNAMIC;
  770. vid_hdr->data_size = cpu_to_be32(len);
  771. vid_hdr->copy_flag = 1;
  772. vid_hdr->data_crc = cpu_to_be32(crc);
  773. retry:
  774. pnum = ubi_wl_get_peb(ubi, dtype);
  775. if (pnum < 0) {
  776. err = pnum;
  777. goto out_leb_unlock;
  778. }
  779. dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
  780. vol_id, lnum, vol->eba_tbl[lnum], pnum);
  781. err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
  782. if (err) {
  783. ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
  784. vol_id, lnum, pnum);
  785. goto write_error;
  786. }
  787. err = ubi_io_write_data(ubi, buf, pnum, 0, len);
  788. if (err) {
  789. ubi_warn("failed to write %d bytes of data to PEB %d",
  790. len, pnum);
  791. goto write_error;
  792. }
  793. if (vol->eba_tbl[lnum] >= 0) {
  794. err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 0);
  795. if (err)
  796. goto out_leb_unlock;
  797. }
  798. vol->eba_tbl[lnum] = pnum;
  799. out_leb_unlock:
  800. leb_write_unlock(ubi, vol_id, lnum);
  801. out_mutex:
  802. mutex_unlock(&ubi->alc_mutex);
  803. ubi_free_vid_hdr(ubi, vid_hdr);
  804. return err;
  805. write_error:
  806. if (err != -EIO || !ubi->bad_allowed) {
  807. /*
  808. * This flash device does not admit of bad eraseblocks or
  809. * something nasty and unexpected happened. Switch to read-only
  810. * mode just in case.
  811. */
  812. ubi_ro_mode(ubi);
  813. goto out_leb_unlock;
  814. }
  815. err = ubi_wl_put_peb(ubi, pnum, 1);
  816. if (err || ++tries > UBI_IO_RETRIES) {
  817. ubi_ro_mode(ubi);
  818. goto out_leb_unlock;
  819. }
  820. vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
  821. ubi_msg("try another PEB");
  822. goto retry;
  823. }
  824. /**
  825. * is_error_sane - check whether a read error is sane.
  826. * @err: code of the error happened during reading
  827. *
  828. * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
  829. * cannot read data from the target PEB (an error @err happened). If the error
  830. * code is sane, then we treat this error as non-fatal. Otherwise the error is
  831. * fatal and UBI will be switched to R/O mode later.
  832. *
  833. * The idea is that we try not to switch to R/O mode if the read error is
  834. * something which suggests there was a real read problem. E.g., %-EIO. Or a
  835. * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
  836. * mode, simply because we do not know what happened at the MTD level, and we
  837. * cannot handle this. E.g., the underlying driver may have become crazy, and
  838. * it is safer to switch to R/O mode to preserve the data.
  839. *
  840. * And bear in mind, this is about reading from the target PEB, i.e. the PEB
  841. * which we have just written.
  842. */
  843. static int is_error_sane(int err)
  844. {
  845. if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
  846. err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
  847. return 0;
  848. return 1;
  849. }
  850. /**
  851. * ubi_eba_copy_leb - copy logical eraseblock.
  852. * @ubi: UBI device description object
  853. * @from: physical eraseblock number from where to copy
  854. * @to: physical eraseblock number where to copy
  855. * @vid_hdr: VID header of the @from physical eraseblock
  856. *
  857. * This function copies logical eraseblock from physical eraseblock @from to
  858. * physical eraseblock @to. The @vid_hdr buffer may be changed by this
  859. * function. Returns:
  860. * o %0 in case of success;
  861. * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
  862. * o a negative error code in case of failure.
  863. */
  864. int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
  865. struct ubi_vid_hdr *vid_hdr)
  866. {
  867. int err, vol_id, lnum, data_size, aldata_size, idx;
  868. struct ubi_volume *vol;
  869. uint32_t crc;
  870. vol_id = be32_to_cpu(vid_hdr->vol_id);
  871. lnum = be32_to_cpu(vid_hdr->lnum);
  872. dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
  873. if (vid_hdr->vol_type == UBI_VID_STATIC) {
  874. data_size = be32_to_cpu(vid_hdr->data_size);
  875. aldata_size = ALIGN(data_size, ubi->min_io_size);
  876. } else
  877. data_size = aldata_size =
  878. ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
  879. idx = vol_id2idx(ubi, vol_id);
  880. spin_lock(&ubi->volumes_lock);
  881. /*
  882. * Note, we may race with volume deletion, which means that the volume
  883. * this logical eraseblock belongs to might be being deleted. Since the
  884. * volume deletion un-maps all the volume's logical eraseblocks, it will
  885. * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
  886. */
  887. vol = ubi->volumes[idx];
  888. spin_unlock(&ubi->volumes_lock);
  889. if (!vol) {
  890. /* No need to do further work, cancel */
  891. dbg_wl("volume %d is being removed, cancel", vol_id);
  892. return MOVE_CANCEL_RACE;
  893. }
  894. /*
  895. * We do not want anybody to write to this logical eraseblock while we
  896. * are moving it, so lock it.
  897. *
  898. * Note, we are using non-waiting locking here, because we cannot sleep
  899. * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
  900. * unmapping the LEB which is mapped to the PEB we are going to move
  901. * (@from). This task locks the LEB and goes sleep in the
  902. * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
  903. * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
  904. * LEB is already locked, we just do not move it and return
  905. * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
  906. * we do not know the reasons of the contention - it may be just a
  907. * normal I/O on this LEB, so we want to re-try.
  908. */
  909. err = leb_write_trylock(ubi, vol_id, lnum);
  910. if (err) {
  911. dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
  912. return MOVE_RETRY;
  913. }
  914. /*
  915. * The LEB might have been put meanwhile, and the task which put it is
  916. * probably waiting on @ubi->move_mutex. No need to continue the work,
  917. * cancel it.
  918. */
  919. if (vol->eba_tbl[lnum] != from) {
  920. dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to "
  921. "PEB %d, cancel", vol_id, lnum, from,
  922. vol->eba_tbl[lnum]);
  923. err = MOVE_CANCEL_RACE;
  924. goto out_unlock_leb;
  925. }
  926. /*
  927. * OK, now the LEB is locked and we can safely start moving it. Since
  928. * this function utilizes the @ubi->peb_buf buffer which is shared
  929. * with some other functions - we lock the buffer by taking the
  930. * @ubi->buf_mutex.
  931. */
  932. mutex_lock(&ubi->buf_mutex);
  933. dbg_wl("read %d bytes of data", aldata_size);
  934. err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
  935. if (err && err != UBI_IO_BITFLIPS) {
  936. ubi_warn("error %d while reading data from PEB %d",
  937. err, from);
  938. err = MOVE_SOURCE_RD_ERR;
  939. goto out_unlock_buf;
  940. }
  941. /*
  942. * Now we have got to calculate how much data we have to copy. In
  943. * case of a static volume it is fairly easy - the VID header contains
  944. * the data size. In case of a dynamic volume it is more difficult - we
  945. * have to read the contents, cut 0xFF bytes from the end and copy only
  946. * the first part. We must do this to avoid writing 0xFF bytes as it
  947. * may have some side-effects. And not only this. It is important not
  948. * to include those 0xFFs to CRC because later the they may be filled
  949. * by data.
  950. */
  951. if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
  952. aldata_size = data_size =
  953. ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
  954. cond_resched();
  955. crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
  956. cond_resched();
  957. /*
  958. * It may turn out to be that the whole @from physical eraseblock
  959. * contains only 0xFF bytes. Then we have to only write the VID header
  960. * and do not write any data. This also means we should not set
  961. * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
  962. */
  963. if (data_size > 0) {
  964. vid_hdr->copy_flag = 1;
  965. vid_hdr->data_size = cpu_to_be32(data_size);
  966. vid_hdr->data_crc = cpu_to_be32(crc);
  967. }
  968. vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
  969. err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
  970. if (err) {
  971. if (err == -EIO)
  972. err = MOVE_TARGET_WR_ERR;
  973. goto out_unlock_buf;
  974. }
  975. cond_resched();
  976. /* Read the VID header back and check if it was written correctly */
  977. err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
  978. if (err) {
  979. if (err != UBI_IO_BITFLIPS) {
  980. ubi_warn("error %d while reading VID header back from "
  981. "PEB %d", err, to);
  982. if (is_error_sane(err))
  983. err = MOVE_TARGET_RD_ERR;
  984. } else
  985. err = MOVE_TARGET_BITFLIPS;
  986. goto out_unlock_buf;
  987. }
  988. if (data_size > 0) {
  989. err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
  990. if (err) {
  991. if (err == -EIO)
  992. err = MOVE_TARGET_WR_ERR;
  993. goto out_unlock_buf;
  994. }
  995. cond_resched();
  996. /*
  997. * We've written the data and are going to read it back to make
  998. * sure it was written correctly.
  999. */
  1000. memset(ubi->peb_buf, 0xFF, aldata_size);
  1001. err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
  1002. if (err) {
  1003. if (err != UBI_IO_BITFLIPS) {
  1004. ubi_warn("error %d while reading data back "
  1005. "from PEB %d", err, to);
  1006. if (is_error_sane(err))
  1007. err = MOVE_TARGET_RD_ERR;
  1008. } else
  1009. err = MOVE_TARGET_BITFLIPS;
  1010. goto out_unlock_buf;
  1011. }
  1012. cond_resched();
  1013. if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
  1014. ubi_warn("read data back from PEB %d and it is "
  1015. "different", to);
  1016. err = -EINVAL;
  1017. goto out_unlock_buf;
  1018. }
  1019. }
  1020. ubi_assert(vol->eba_tbl[lnum] == from);
  1021. vol->eba_tbl[lnum] = to;
  1022. out_unlock_buf:
  1023. mutex_unlock(&ubi->buf_mutex);
  1024. out_unlock_leb:
  1025. leb_write_unlock(ubi, vol_id, lnum);
  1026. return err;
  1027. }
  1028. /**
  1029. * print_rsvd_warning - warn about not having enough reserved PEBs.
  1030. * @ubi: UBI device description object
  1031. *
  1032. * This is a helper function for 'ubi_eba_init_scan()' which is called when UBI
  1033. * cannot reserve enough PEBs for bad block handling. This function makes a
  1034. * decision whether we have to print a warning or not. The algorithm is as
  1035. * follows:
  1036. * o if this is a new UBI image, then just print the warning
  1037. * o if this is an UBI image which has already been used for some time, print
  1038. * a warning only if we can reserve less than 10% of the expected amount of
  1039. * the reserved PEB.
  1040. *
  1041. * The idea is that when UBI is used, PEBs become bad, and the reserved pool
  1042. * of PEBs becomes smaller, which is normal and we do not want to scare users
  1043. * with a warning every time they attach the MTD device. This was an issue
  1044. * reported by real users.
  1045. */
  1046. static void print_rsvd_warning(struct ubi_device *ubi,
  1047. struct ubi_scan_info *si)
  1048. {
  1049. /*
  1050. * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
  1051. * large number to distinguish between newly flashed and used images.
  1052. */
  1053. if (si->max_sqnum > (1 << 18)) {
  1054. int min = ubi->beb_rsvd_level / 10;
  1055. if (!min)
  1056. min = 1;
  1057. if (ubi->beb_rsvd_pebs > min)
  1058. return;
  1059. }
  1060. ubi_warn("cannot reserve enough PEBs for bad PEB handling, reserved %d,"
  1061. " need %d", ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
  1062. if (ubi->corr_peb_count)
  1063. ubi_warn("%d PEBs are corrupted and not used",
  1064. ubi->corr_peb_count);
  1065. }
  1066. /**
  1067. * ubi_eba_init_scan - initialize the EBA sub-system using scanning information.
  1068. * @ubi: UBI device description object
  1069. * @si: scanning information
  1070. *
  1071. * This function returns zero in case of success and a negative error code in
  1072. * case of failure.
  1073. */
  1074. int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
  1075. {
  1076. int i, j, err, num_volumes;
  1077. struct ubi_scan_volume *sv;
  1078. struct ubi_volume *vol;
  1079. struct ubi_scan_leb *seb;
  1080. struct rb_node *rb;
  1081. dbg_eba("initialize EBA sub-system");
  1082. spin_lock_init(&ubi->ltree_lock);
  1083. mutex_init(&ubi->alc_mutex);
  1084. ubi->ltree = RB_ROOT;
  1085. ubi->global_sqnum = si->max_sqnum + 1;
  1086. num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
  1087. for (i = 0; i < num_volumes; i++) {
  1088. vol = ubi->volumes[i];
  1089. if (!vol)
  1090. continue;
  1091. cond_resched();
  1092. vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
  1093. GFP_KERNEL);
  1094. if (!vol->eba_tbl) {
  1095. err = -ENOMEM;
  1096. goto out_free;
  1097. }
  1098. for (j = 0; j < vol->reserved_pebs; j++)
  1099. vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
  1100. sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i));
  1101. if (!sv)
  1102. continue;
  1103. ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
  1104. if (seb->lnum >= vol->reserved_pebs)
  1105. /*
  1106. * This may happen in case of an unclean reboot
  1107. * during re-size.
  1108. */
  1109. ubi_scan_move_to_list(sv, seb, &si->erase);
  1110. else
  1111. vol->eba_tbl[seb->lnum] = seb->pnum;
  1112. }
  1113. }
  1114. if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
  1115. ubi_err("no enough physical eraseblocks (%d, need %d)",
  1116. ubi->avail_pebs, EBA_RESERVED_PEBS);
  1117. if (ubi->corr_peb_count)
  1118. ubi_err("%d PEBs are corrupted and not used",
  1119. ubi->corr_peb_count);
  1120. err = -ENOSPC;
  1121. goto out_free;
  1122. }
  1123. ubi->avail_pebs -= EBA_RESERVED_PEBS;
  1124. ubi->rsvd_pebs += EBA_RESERVED_PEBS;
  1125. if (ubi->bad_allowed) {
  1126. ubi_calculate_reserved(ubi);
  1127. if (ubi->avail_pebs < ubi->beb_rsvd_level) {
  1128. /* No enough free physical eraseblocks */
  1129. ubi->beb_rsvd_pebs = ubi->avail_pebs;
  1130. print_rsvd_warning(ubi, si);
  1131. } else
  1132. ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
  1133. ubi->avail_pebs -= ubi->beb_rsvd_pebs;
  1134. ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
  1135. }
  1136. dbg_eba("EBA sub-system is initialized");
  1137. return 0;
  1138. out_free:
  1139. for (i = 0; i < num_volumes; i++) {
  1140. if (!ubi->volumes[i])
  1141. continue;
  1142. kfree(ubi->volumes[i]->eba_tbl);
  1143. ubi->volumes[i]->eba_tbl = NULL;
  1144. }
  1145. return err;
  1146. }